## Mathematical Tools

for Neural and Cognitive Science

Fall semester, 2023

## Section 1: Linear Algebra

## Linear Algebra

"Linear algebra has become as basic and as applicable as calculus, and fortunately it is easier"

- Gilbert Strang, Linear Algebra and its Applications
$\ldots$ and this is even more true today than when the book was published!

Vectors
$\begin{array}{ll}\text { Ordered lists of numbers, } & \vec{x}=\left(\begin{array}{c}x_{1} \\ x_{2} \\ x_{3} \\ \vdots \\ \text { depicted in 3 ways: } \\ x_{N}\end{array}\right)\end{array}$


## Vector operations

- scalar multiplication
- addition, vector spaces
- length, unit vectors
- inner product (a.k.a. "dot" product)
- definition/notation: sum of pairwise products
- geometry: cosines, squared length, orthogonality test
[on board: geometry]


## Inner product with a unit vector

- projection onto line

- distance to line/plane
- change of coordinates
[on board: geometry]


## Vectors as "operators"

- "averager"
- "windowed averager"
- "smooth averager"
- "local differencer"
- "component selector"
[on board]


## Linear System

$S$ is a linear system if (and only if) it obeys the principle of superposition:
$S(a \vec{x}+b \vec{y})=a S(\vec{x})+b S(\vec{y})$


For any input vectors $\{\vec{x}, \vec{y}\}$, and any scalars $\{a, b\}$, the two diagrams at the right must produce the same response.


## Linear Systems

- Very well understood (150+ years of effort)
- Excellent design/characterization toolbox
- An idealization (they do not exist!)
- Useful nevertheless:
- conceptualize fundamental issues
- provide baseline performance
- provide building blocks for more complex models


## Implications of Linearity



## Implications of Linearity



write input vector
as weighted sum of
"impulse vectors"
"standard basis"
"axis vectors"

## Implications of Linearity



Response to any input can be computed from responses to impulses This defines the operation of matrix multiplication

## Matrix multiplication

Two interpretations of $M \vec{v}$
input perspective: weighted sum of columns

output perspective: inner product with rows



## Matrix multiplication

- two interpretations of $M \vec{v}$ :
- weighted sum of columns
- inner products with rows
- transpose $A^{T}$, symmetric matrices $\left(A=A^{T}\right)$
- distributive property: directly from linearity!
- associative property: cascade of two linear systems is linear. Defines matrix multiplication.

Cascaded linear systems $\Rightarrow$ product of matrices


## Matrix multiplication

- two interpretations of $M \vec{v}$ :
- "input perspective": weighted sum of columns
- "output perspective": inner product with rows
- transpose $A^{T}$, symmetric matrices $\left(A=A^{T}\right)$
- distributive property: directly from linearity!
- associative property: cascade of two linear systems is linear. Defines matrix multiplication.
- generally not commutative $(A B \neq B A)$,
but note that $(A B)^{T}=B^{T} A^{T}$
- vectors as matrices: Inner products, Outer products


## Singular Value Decomposition (SVD)

Any matrix $M$ can be factorized as

$$
M=U S V^{T}
$$

with $U, V$ orthogonal, $S$ diagonal

- geometry: "rotate, stretch, rotate"
- columns of $V$ are basis for input coordinate system
- columns of $U$ are basis for output coordinate system
- $S$ rescales axes, and determines what "gets through"


## SVD geometry (in 2D)

Apply $M$ to four vectors (heads at colored points):


## Singular Value Decomposition (SVD)

Any matrix $M$ can be factorized as

$$
M=U S V^{T}
$$

with $U, V$ orthogonal, $S$ diagonal

- unique, up to permutations and sign flips
- sum of "outer products"
- nullspace and rangespace
- inverse and pseudo-inverse
$M \vec{x}=\sum_{k} \hat{u}_{k}\left(s_{k}\left(\hat{v}_{k}^{T} \vec{x}\right)\right)=\sum_{k} s_{k}\left(\hat{u}_{k} \hat{v}_{k}^{T}\right) \vec{x} \quad$ (sum of outer products)

orthogonal basis for output space

$\qquad$

$\qquad$


