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Fall semester, 2025

Section 2: Least Squares

Least squarcs regression: “objective” or “error"
function
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... or, with linear
algebra!
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can solve this with

calculus... [on board]
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Geometry:

Note: this is a 2-D cartoon
of the N-D vectors, not the
two-dimensional (x,y)
measurement space of

previous plots!

Note: partition of sum of squared data values:

1912 =1 Bope |2} +{]17 = Bops] ]

explained residual
Observation Regressor Residual
7 z error
p— P—— o
pa— P s
p— o1
P— i
J— pa— J
Fa— P— N
—F 18 —8 o EF
p— b—
p— P
- p— o]
- pa— o
— 18 —8 Fo 18
N pa— J
— g o
- p— o]
— pa— a
J —w o e
] p— N
] —
ol — o
o b
IE e o 12
o1 -
~ -
m . A
b - S
e o N P
o] o d
N ol o]
L 3 o
o o
Faoa® Lo °

0.




Multiple L e .
regression: m/g}n”y Zﬁkxk” = mﬁlnHy X0
k
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2D example: — — ra— )
E fl - [))1 Pa— P ﬂz P—
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Solution via the “Orthogonality Principle”:

—

Construct matrix X, containing columns 7 and &

2D vector space
containing all linear
 combinations of &
and 2

Alternatively, can solve using SVD...

min ||§ — X |[* =min [|§ — USV" 3]|*
B B
=min[|U"§ - SV 5|”

B

= min [[57* — S5*||”
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where §* =UTy, *=Vv"3
Solution: B3¢, = Yi/sk, for each k

or ggpt = 5#37* = gopt = VS#UTQ’

[on board: transformations, elliptical geometry]




Linear regression example:
Brouwer & Heeger (2009)

¢ Examined coding of color in several visual cortical regions
e Used fMRI
¢ Resulting dataset is 4-d (x/y/z sampled at 3 mm, t sampled at 1.5 s)

¢ Each data element (“voxel” or volume element) indirectly measures
neural activity of 100,000s of neurons via blood oxygenation

e A brief spike in neural activity leads to a BOLD response lasting as
much as 12 s (i.e., 8 “TR”s)

* We treat the transformation from neural activity to measured BOLD
signal as linear (and the response to a spike as the same at all times:
next chapter: this is the BOLD impulse response or HIRF)

Linear regression example:

Brouwer & Heeger (2009)
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Linear regression example:
Brouwer & Heeger (2009)

Step 1: Estimate the HIRF for each voxel using the MR response from
that voxel (a 7' X 1 vector M), based on a “design matrix” (D, a T X 8
matrix) and the HIRF we hope to estimate (H, an 8 X 1 vector giving
the 12 s response to a brief stimulus): M &~ DH, where D looks like:
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Solve by linear regression: H = D*M, average H across an ROI




Linear regression example:
Brouwer & Heeger (2009)

Step 2: Estimate the responses of each voxel to each of the 8 stimulus
colors (an 8 X 1 vector R), based on another “design matrix” (D,, a
T x 8 matrix) and the voxel MR time course (M, a T X 1 vector):

M = D,R, where D, looks like:
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Solve by linear regression: R = DM, repeat for every voxel

Linear regression example:
Brouwer & Heeger (2009)

Step 3: Forward model of voxel tuning. Assume there are 6 “channels”
sensitive to different ranges of color:

Hue tuning model

Hue (angle in L*a*b* space)
Each of the 8 stimulus colors results in a vector of 8 channel responses.

Linear regression example:
Brouwer & Heeger (2009)

Step 3: Split the data into two subsets (for “train” and “test”) B, and
B,. These are m X n matrices, where m is the number of voxels in the
ROI and 7 is the number of response measurements (from Step 2),
which is equal to the number of stimulus colors times the number of
runs included in that subset of the data.

We seck a weight matrix W, and m X 6 matrix representing the amount
by which each channel contributes to each voxel’s response (e.g., the

proportion of neurons in that voxel belonging to each channels).

From the channel tuning functions, we know how strongly each
channel responds to each stimulus, C|, a 6 X n matrix.

Thus: B; & WC, and estimate W by linear regression.




Linear regression example:
Brouwer & Heeger (2009)

Step 3, continued: Now consider the “test” dataset B,. It’s still true by
the model that B, & WC,, where C, is just like C,, except that it will
represent the series of colors presented in B,. We have from the
“training” dataset an estimate of W.

This time, we treat C, as unknown and W as known. We use linear
regression to estimate 6'2 = W¥B,. This estimates the channel
responses to every presented stimulus in this subset of the data. That is,
it decodes what stimulus was on the screen from the neural data. We
can then compare the decoded color to the true color presented on each
trial.

Linear regression example:

Brouwer & Heeger (2009)
The decoded COIOr: Included stimuli Novel stimuli
“/,,‘o - \. ‘/“)' e \o
\.\77”/' \_/ e N4
/,.\o — A- ’,,. °
\ /‘ \ . ”//J “__/

o0 OO
/ . |

O BV

T /"‘\. 275 /”‘\: /""\,'

( I 3 < 04 » 1 j

NN S A

<75 0 75
CIELAB a*

Fitting a parametric model (general)

723

Experimental Data:

Model: f5(@)

To fit model f3(Z) to data {Zn,¥n},

optimize parameters [ to minimize an error function:
min 3 E (7. (7))
n

Ingredients: data, model, error function, optimization method




Optimization

Heuristics,
exhaustive search,
(pain & suffering)

Iterative descent,
(possibly) nonunique

Quadratic
Iterative descent,

guaranteed

Closed-form
guaranteed

Interpretation warning: fitting a line does not
guarantee data actually lie along a line

These 4 data sets give the same regression fit, and same error:
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[Anscombe, 1973]

Observation
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Polynomial regression
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Polynomial regression - how many terms?
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(to be continued, when we get to “statistics”...)

Weighted Least Squares

mﬁlnz [wn(yn - an)]2

= min W (7 - 53)||

diagonal matrix

Solution via simple extensions of basic regression solution
(ie,let y* =Wy and £* = WZ then solve for3 )
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Outliers

-1 0 1 2 3

error (y- ﬁop( X)

“Trimming”... discard points with large error
(note: a special case of weighted least squares)

trimmedLSfit

-2 -1 0 1 2

Trimming can be done iteratively (discard outlier, re-fit, repeat),
a so-called “greedy” method. When should you stop?




More generally, use a “robust” error metric.
For example:

fld) =

f(d) =log(c* + d?)

“Lorentzian”

d

Note: generally can’t obtain solution directly (i.e., requires an
iterative optimization procedure, such as gradient descent).

In some cases, can use iteratively re-weighted least squares (IRLS)...

Iteratively Re-weighted Least Squares (IRLS)

d2

initialize: wff)) =1

B9 = arg mﬁinz wl [(yn — B,
iterate ! et
(i+1) _ f(yn - B(Z)xn)
W, T (. — B@ )2
) (yn - 6(Z)xn)2

(one of many variants)

Constrained Least Squares

Linear constraint:
2 T3
, where ¢ f=1

arg min Hgf Xg‘
B

Quadratic constraint:

(2 )
argminHX,BH ,  where HBH =1
B

Can be solved exactly using linear algebra (SVD)...
[on board, with geometry]




rotate by V7T
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stretch/squeeze by S* (nonzero rows of S)
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stretch/squeeze by S* (nonzero rows of S)

Solution:
Beopt = V()17 +7E™)

Write solutionas: 3, = " + ¢
Solve for ~:

@) FT =@ 7 +E ) =a

Standard Least Squares regression

Error is vertical distance
(in the “dependent
variable”) from the fitted
line...

arg min || — A7




Total Least Squares Regression
(a.k.a “orthogonal regression”)

Error is squared distance e
from the fitted line...

(<33

expressed as: min || Dal|?,  where ||@|]* = 1
u

Note: “data” matrix D now includes both x and y coordinates

Variance of data D, projected onto axis : T o min
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Set of U’s of Set of @™s of First two components
length 1 length 1 of @™ (rest are zero!),

(i.e., unit vectors) (i.e., unit vectors) for three example S'’s.




