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Abstract
Signal detection theory (SDT) is the primary performance model and data-

analysis method for sensory experiments (in audition, vision, etc.)—detecting whether a 
stimulus is present or discriminating between two possible stimuli. SDT allows the 
experimenter to separately estimate discriminability (the observer’s ability to 
discriminate the presence or absence of the stimulus) and bias (the observer’s 
preference to respond “yes” or “no”). Applications of SDT are widespread—to sensory 
coding, memory, value-based decision-making, and analysis of the information content 
of neural spiking. The same analysis has also been used in applied settings to 
understand the performance of baggage screeners, disease diagnosis from medical 
images, and the efficacy of medical diagnostic tests. I review the theory and discuss 
applications to behavioral and neural responses. I review the application of SDT to 
discrimination judgments and metacognition—the observer’s confidence in those 
judgments.
Keywords: signal detection, ROC curve, decision-making, metacognition, d-prime

Introduction
Suppose you are out on a foggy night and looking down the street ahead of you. 

You hear a sound that seems like footsteps and get the vague visual impression of 
someone walking toward you. Is there someone there or not? Signal detection theory 
suggests that, somewhere in your brain, you combine all the evidence for the presence 
of a person—a faint smell of perfume, the sound of footsteps, a faint outline that 
resembles a human figure—resulting in a single number that represents the strength of 
the evidence. That number will typically be small if no one is out there, and large if 
someone is there.

If one repeats this experience multiple times, the strength of the evidence will 
vary across occasions, even if the circumstance (absence or presence) doesn’t change. 
That is, the strength of the evidence is random—on average higher when someone is 
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there and lower when no one is there. This stochasticity of the evidence can come from 
many sources, both external and internal. External randomness can be from the varying 
density of the fog, the variation in sound, smell and body outline across people and 
across viewpoints, and even from the randomness of the stimulus itself, such as the 
random number of photons arriving at the retina from a dim location in the scene. 
Randomness can be internal to the observer, such as the randomness of neural 
responses to repeated, identical stimuli. Signal detection theory provides a model of 
how observers derive a binary response (the person is there or isn’t) using this noisy 
evidence.

Signal detection theory (Peterson et al., 1954; Van Meter & Middleton, 1954), 
also sometimes called sensory decision theory, grew out of statistical decision theory 
(all of which conveniently have the acronym SDT). It provides both a theory of how 
decisions under uncertainty are made, as well as a method for analyzing behavioral and 
neural data (Green & Swets, 1966; Macmillan & Creelman, 1991; Wickens, 2002). SDT 
is applicable to a wide variety of tasks, including sensory experiments (vision, audition, 
touch, proprioception, etc.), neuroeconomic experiments (where the intensive 
parameter is value), and experiments on memory (where the intensive parameter is the 
memory strength). It also applies in everyday life when making yes-or-no decisions 
based on uncertain evidence (e.g., Does this suitcase contain a weapon? Does this 
mammogram indicate breast cancer?).

Signal Detection Theory: Optimal Decision-Making
Measurement model 

In standard signal detection theory, for a given decision (e.g., one trial of an 
experiment), there are two possible states of the world—either there is a signal (“S”), or 
there is no signal (“N”). It is the observer’s task to determine whether the world is in 
state “S” or “N”. In our example above, “S” represents a scene in which a person is 
approaching you. The observer makes an observation of that world state (views a visual 
display, listens to an auditory stimulus, etc.), resulting in a measurement—a single 
number (the “decision variable” ) that summarizes the evidence concerning the state of 
the world. We assume that  is typically larger when a signal is present (e.g., when 
someone is approaching) than when it is absent. The decision variable also varies from 
trial to trial even when the stimulus is fixed. For any given state of the world, we assume 
that the distribution of  is Gaussian (i.e.,  is normally distributed) and that the variance 
of this distribution is fixed—not depending on whether a signal is present or not. Thus, 
the measurement model is (Fig. 1A):

(1)

x
x

x x

p(x |N ) =
1

2πσ
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(x − μN)2
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p(x |S ) =
1

2πσ
exp [−

(x − μS)2

2σ2 ] .
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Signals typically lead to larger values of  than when no signal is present, . 
Signal strength corresponds to the difference in the means .

INSERT FIGURE 1 ABOUT HERE

Observer’s perspective and the SDT model 
The measurement model above describes the situation with which an observer is 

confronted. The world is either in state  or  (a person is approaching or not) and 
provides the observer with a noisy measurement  (the sensory evidence). The 
observer knows the value of  and wants to infer whether the state of the world is  or 

, that is, whether to say “yes” or “no”. The probabilities given in Eq. 1 are 
measurement distributions—the probability of getting any particular measurement  on 
a trial when the state of the world is, for example, . But, for the observer, these 
probabilities are, in a sense, backwards. The decision-maker knows the value of . 
What the decision-maker doesn’t know is the true state of the world. Thus, from the 
decision-maker’s perspective,  is the probability of getting the measurement  
(that the observer knows, and therefore is no longer random) given a particular state of 
the world  (that the observer doesn’t know). When a conditional probability is regarded 
in this way (the value to the left of the “|” is known and fixed, and the value after it is 
unknown and to be estimated or decided upon), it is referred to as a likelihood. 

What decision should the observer make? Referring to Fig. 1B, the observer 
receives measurement  and thus knows the two likelihoods  and  (the 
values of the two curves above the measurement). A simple decision procedure is to 
choose the world state that is more likely:

(2)

This is called the maximum-likelihood (or ML) observer. We will see below that this is a 
good decision rule in certain circumstances but is not always optimal. Note that the 
curve for  is always above that for  to the right of where the two curves 
cross. The ML rule is (Fig. 1C):

(3)

The rule is that the observer should compare the evidence to a fixed criterion (here, the 
criterion is ) and say “yes” when the measurement exceeds the 
decision criterion.

The ML rule may seem a little ad hoc, since likelihood is a slippery concept; it is 
the probability of something you already know to be true (the measurement). It makes 
more sense to compare the probabilities of the two events you don’t know—the possible 
states of the world. Thus, one might prefer to adopt the following decision rule:

x μS > μN
μS − μN

S N
x

x S
N

x
S

x

p(x |S ) x

S

x p(x |N ) p(x |S )

Say “yes” if p(x |S ) > p(x |N )
Say “no” otherwise.

p(x |S ) p(x |N )

Say “yes” if x >
μS + μN

2
Say “no” otherwise.

c = (μS + μN)/2
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(4)

Notice that the only difference between Eqs. 2 and 4 is the order of the items in 
the conditional probabilities. The curves in Fig. 1A provide the values of the likelihood of 
each state of the world given the measurement. For the observer to determine the 
probabilities in Eq. 4, we need to apply Bayes’ Rule to each term:

(5)

In these equations, we have new terms  and . These are 
called prior probabilities (see Vol. 1, Chapter 26). They are the probabilities of the two 
possible states of the world prior to collecting the evidence . For example, if you were 
out waiting for a friend who said they would arrive around this time,  would be high. 
In a lab experiment, there is typically an equal number of signal and no-signal trials, 

.
 and  are posterior probabilities—they are the probabilities of the 

two possible states of the world after the measurement is made (I’m using the standard 
convention of denoting probabilities of discrete events as  and probability densities for 
continuous domains as ). Thus, the decision procedure in Eq. 4 is known as the 
maximum a posteriori (or MAP) rule, as it chooses the state of the world with maximum 
posterior probability. The term in the denominator in Eq. 5 is a nuisance term that 
ensures that . Fortunately, we won’t need to compute it. 
Substituting Eq. 5 into Eq. 4, the MAP rule becomes

(6)

The value on the left-hand side is called a likelihood ratio. It is the ratio of the 
values of the two curves above the measurement (Fig. 1B). The right-hand side is called 
the prior odds and provides a criterion, , that the likelihood ratio must exceed to say 
“yes”. If the prior odds are equal to one (i.e., no-signal and signal trials are equally likely 
to occur), then Eq. 6 yields the same decision procedure as maximum likelihood (Eq. 2). 
Fig. 1D illustrates the value of the likelihood ratio as a function of . As you can see, the 
likelihood ratio increases monotonically so that Eq. 6, a criterion on likelihood ratio, will 
again result in a procedure that compares the strength of the evidence to a criterion:

(7)

Say “yes” if p(S |x) > p(N |x)
Say “no” otherwise.

P(S |x) =
p(x |S )P(S )

p(x)

P(N |x) =
p(x |N )P(N )

p(x)
.

P(S ) P(N ) = 1 − P(S )

x
P(S )

P(S ) = P(N ) = 0.5
P(S |x) P(N |x)

P
p

P(S |x) + P(N |x) = 1

Say “yes” if 
p(x |S )
p(x |N )

>
p(N )
p(S )

= βopt

Say “no” otherwise.

βopt

x

Say “yes” if x > copt
Say “no” otherwise.
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For the MAP procedure, the optimal criterion  will depend on the means (  and 
), the common standard deviation ( ), and the prior odds.

INSERT FIGURE 2 ABOUT HERE

There are two possible states of the world and two possible decision outcomes:

Once the various elements of the theory are known (the specifics of the two 
measurement distributions and the criterion), the theory predicts the probability of each 
of these four possible trial outcomes (Fig. 2A,B). This 2x2 set of possible outcomes 
should sound familiar. It’s the same 2x2 one encounters in typical descriptions of 
hypothesis tests in statistics (see Vol. 1, Chapter 25). Type I error, or , corresponds to 
the false-alarm rate, —rejecting the null hypothesis when it is correct. Type 
II error, or , corresponds to the miss rate, —accepting the null hypothesis 
when it is false. The same 2x2 appears in medical decision-making, where diagnostic 
tests for disease are rated by their sensitivity (the probability of detecting the disease 
when the patient is sick), , and specificity (the probability of failing to detect 
the disease when the patient is healthy), .

Examining Eq. 6, if signal trials are more prevalent than no-signal trials, the prior 
odds,  will be low and thus the observer will require only a small likelihood 
ratio to lead to a “yes” response. In other words, the criterion  will be low, so that only 
weak evidence is required to say “yes” (Fig. 2C). In our example, if you already 
expected a friend was arriving, then the slightest hint of an approaching person will lead 
to a conclusion that your friend is arriving. The result of a low criterion is a high hit rate 
(correct “yes” responses when the signal is present) and low correct-reject rate (correct 
“no” responses when the signal is absent). Conversely, if no-signal trials are more 
prevalent (e.g., you are on a road that is rarely travelled), the resulting criterion will be 
high, so that stronger evidence is required to say “yes” (Fig. 2D). The result is a low hit 
rate as well as a high correct-reject rate. The rates of these two correct responses trade 
off as the criterion is varied.
The ideal observer 

Among other fields, sensory neuroscience has been heavily influenced by the 
idea of an optimal, normative or ideal observer (Geisler, 1989). Human performance can 
be compared to predicted optimal performance to determine human efficiency at a given 
task. Consider a visual signal-detection task in which the observer discriminates a 
small, briefly presented visual pattern vs. a uniform gray field. If you place that image on 
a known place on the observer’s retina, then one can calculate the expected number of 
photons landing on each receptor for the uniform field and for the patterned stimulus. 

copt μS
μN σ

Decision

“Yes” “No”

State of 
the world

S Hit Miss

N False Alarm Correct Reject

α
P(“yes” |N )

β P(“no” |S )

P(“yes” |S )
P(“no” |N )

P(N )/P(S )
c
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The ideal observer calculates a weighted sum of the photon catches of the receptors. 
For dim but not completely dark conditions, the resulting predictions are isomorphic to 
standard signal detection theory.

For signal detection theory, ideal observers were developed from the very start 
(Green & Swets, 1966). I now develop the ideal observer for standard signal detection 
theory. To do this, we need to decide on a “cost function” (i.e., what is it that we are 
trying to optimize?). I assume the observer is aware of the value of each possible 
decision outcome (hit, false alarm, etc.):

Here, the values of this payoff matrix might be in units of monetary payoff or in 
units of psychological utility. Typically, the values associated with correct answers (hits, 
correct rejects) are positive, and the other two values are negative (i.e., losses). I 
assume again that the observer is aware of the design of the experiment and, in 
particular, the prior probability that the signal is present, . The simplest payoff 
matrix is symmetric, resulting in a gain for correct answers (hits and correct rejects) and 
a loss for incorrect answers (false alarms and misses). But, real-world examples often 
have strongly asymmetric payoff matrices. For an airport baggage screener, a false 
alarm just leads to a more careful search of a suitcase and an annoyed and 
inconvenienced passenger. A miss, on the other hand, can lead to an attempt to blow up 
the plane! The case of a radiologist examining a mammogram is similarly asymmetric.

The ideal observer is supplied with a measurement  and maps that 
measurement to a response (“yes” or “no”) by choosing the response that maximizes 
the expected gain—the average value the observer will gain if a trial with that 
measurement and response were repeated a large number of times. The expected gain 
of each response depends on the various probabilities and associated values:

(8)

where  denotes expected value. I am computing the expectation of the value of a 
given response (e.g., the expectation of ). This requires an expectation 
because the value depends on the true state of the world, and the evidence only 
specifies the probability of each possible state. The expected value of each response is 
equal to the value of that response in any given world state (e.g., “S”) times the 
probability of that world state given the evidence (e.g., ). This is summed over 
all possible world states (“S” and “N”). The ideal observer responds “yes” when 

. Substituting Eq. 8 into this inequality we find that the 
ideal observer should

Response

“Yes” “No”

Stimulus
S

N V(N, “yes”)
V(S, “yes”) V(S, “no”)

V(N, “no”)

P(S )

x

𝔼 [V(“yes” |x)] = V(S, “yes”)P(S |x) + V(N, “yes”)P(N |x)

𝔼 [V(“no” |x)] = V(S, “no”)P(S |x) + V(N, “no”)P(N |x),
𝔼[]

V(“yes” |x)

P(S |x)

𝔼 [V(“yes” |x)] ≥ 𝔼 [V(“no” |x)]
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(9)

Thus, the ideal observer says “yes” when the posterior odds (the ratio on the left-hand 
side) exceeds a criterion derived from the payoff matrix. This criterion is the excess 
value of being correct (rather than incorrect) on no-signal trials (the numerator) divided 
by the excess value of being correct on signal trials.

Making the same substitutions as we did for the MAP decision procedure, the 
maximum-expected-gain decision rule becomes

(10)

This is again a decision rule based on the likelihood ratio. On the right are the prior odds 
(as in Eq. 6) and a second term from the payoff matrix. When no-signal trials are 
prevalent (large ), the likelihood ratio will have to be large to convince the 
observer to say “yes”. Similarly, when the extra value for being correct on a no-signal 
trial (the numerator on the right) is much bigger than the extra value for being correct on 
signal trials (the denominator), the likelihood ratio will have to be large to convince the 
observer to say “yes”.

In summary, the criterion the observer uses determines the observer’s bias for 
saying “yes”. There are two principal ways to affect bias: priors and payoffs. If the 
observer is in a situation in which, on most trials, the signal is present (e.g., you expect 
your friend to show up on that foggy night), and they are aware of this prior distribution 
(  is near one), then it makes sense to be easily swayed to respond “yes”—to set a 
low value of . In contrast, if signals are rare (few patients have this particular 
disease, very few pieces of baggage contain guns or bombs), then perhaps a high 
(conservative) criterion is appropriate. At the same time, decisions have consequences. 
Allowing a bomb onto a plane or sending a sick patient home without treatment can be 
disastrous, indicating a very high cost of a miss for baggage screeners or doctors, so a 
liberal criterion is appropriate. This is the difficult situation faced by airport baggage 
screeners and by radiologists—the payoff matrix implies use of a liberal criterion, but 
the priors suggest a conservative one. In fact, the evidence suggests that human 
observers are ill-equipped to select an optimal criterion when the priors are far from 
50:50 (Wolfe et al., 2007).
Standardized model 

The model outlined in Fig. 1 is general in the sense that there are parameters for 
both means (  and ) and the common standard deviation ( ). However, all of the 
derivations of the normative model above, and analysis of data below, are based only 
on the response rates (hit rate, false-alarm rate, etc.) and the likelihood ratio. None of 
these values will change with a change of variables for the decision variable involving a 
horizontal shift or a rescaling of the decision variable. One standard presentation of 

Say “yes” if 
P(S |x)
P(N |x)

≥
V(N, “no”) − V(N, “yes”)
V(S, “yes”) − V(S, “no”)

Say “no” otherwise.

Say “yes” if 
p(x |S )
p(x |N )

≥
P(N )
P(S )

V(N, “no”) − V(N, “yes”)
V(S, “yes”) − V(S, “no”)

= βopt

Say “no” otherwise.

P(N )

P(S )
copt

μS μN σ
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signal detection theory, especially for yes-no tasks such as I’ve described, imposes a 
change of variables so that the decision axis is in units of z-score for the no-signal 
distribution. That is, we apply a change of variables . This change of 
variables leads to the following model (Fig. 3):

(11)

Here,  (“d prime”) is a ratio between the strength of the signal and the standard 
deviation of the noise—the signal-to-noise ratio. This term appears in many engineering 
disciplines concerning signal processing, where signal strength is usually given in units 
of power and noise in units of variance. That is, the signal-to-noise ratio .

INSERT FIGURE 3 ABOUT HERE

All three decision rules (ML, MAP and maximum expected gain) result in a 
criterion value of the likelihood ratio (typically denoted as ). For the standardized 
model, the relationship between the decision variable, , and  is particularly simple, 
showing that a criterion  on likelihood ratio corresponds to a criterion  on the 
decision variable:

(12)

Thus, the optimal criterion on the decision variable is determined by, and monotonically 
increases with, the optimal criterion on the likelihood ratio. If one requires a large 
likelihood ratio to say “yes”, that will lead to a large, conservative criterion on the 
decision variable. For the maximum expected gain model (Eq. 10), this implies that

y = (x − μN)/σ

p(y |N ) =
1

2π
exp [−

y2

2 ]  and

p(y |S ) =
1

2π
exp [−

(y − d′￼)2

2 ] , where

d′￼=
μS − μN

σ
.

d′￼

SNR = d′￼2

β
y β

βopt copt

βopt =
p(copt |S )
p(copt |N )

=

exp [−
(copt − d′￼)2

2 ]
exp [−

c2
opt
2 ]

= exp [coptd′￼−
d′￼2

2 ]

log βopt = coptd′￼−
d′￼2

2

copt =
d′￼
2

+
log βopt

d′￼
.
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(13)

Thus, the effects of priors and payoffs on the optimal criterion are additive.
With the standardized representation of signal detection theory (Fig. 3), the main 

benefit of signal detection is made clear—the distinction between discriminability and 
bias. The stronger the signal, the more accurately one can perform the task. In this 
representation, signal strength or discriminability corresponds to the separation between 
the two distributions, . On the other hand, given a fixed amount of information (fixed 

), the bias toward responding “yes” or “no” is reflected in the position of the decision 
criterion  and may be defined for the normative model as , where 

 is the neutral or ML criterion. The optimal criterion, , is determined by 
the priors and payoffs. If the payoffs are symmetric (equal benefits for hits and correct 
rejects, equal penalties for false alarms and misses), then the optimal behavior is MAP. 
If, in addition, there are equal priors ( ), the optimal behavior is ML.

Data Analysis: The Experimenter’s Perspective
Parameter estimation from data 

We now examine signal detection theory from the perspective of the 
experimenter. From this perspective, the goal is to use behavioral data to infer 
something about how an observer’s decisions were made. In the case of signal 
detection theory, an experimenter might like to infer the model parameters from data. 
The full model includes details of the stimulus encoding ( ,  and ), the prior ( ), 
and the payoff matrix (the four values of ). We would like to estimate these parameters 
because there is no guarantee that observers use accurate estimates of these 
parameters in formulating a decision—humans may not behave in accordance with the 
normative model.

However, given that the general encoding model is equivalent in all of its 
predictions to the standardized model, the only parameters that can be estimated are  
(i.e., ) and the criterion ( ). Experimentally, we know that the prior and 
payoff matrix can affect this criterion, but for a given, fixed set of conditions, all we can 
estimate are  and . There are two degrees of freedom in the data we collect (hit and 
false-alarm rate) and two degrees of freedom in the standardized model (  and ), 
enabling a direct mapping from a pair of hit and false-alarm rates to estimates of  and 
.

Looking again at the standardized model in Fig. 3, we see that the value of  is 
the distance of the criterion to the right of the mean of the noise distribution, and  is 
the sum of that distance plus the distance from the criterion to the mean of the signal 
distribution. In other words:

copt =
d′￼
2

+
log βopt

d′￼

=
d′￼
2

+
1
d′￼[log

P(N )
P(S )

+ log
V(N, “no”) − V(N, “yes”)
V(S, “yes”) − V(S, “no”) ] .

d′￼
d′￼

c copt − cML
cML = d′￼/2 copt

P(S ) = P(N ) = 0.5

μS μN σ P(S )
V

d′￼
(μS − μN)/σ c

d′￼ c
d′￼ c

d′￼
c

c
d′￼
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(14)

where  and  is the cumulative 

standard normal distribution.  is the area to the left of  under the standard bell 
curve, that is, the probability of drawing a random value that is  or less. Thus,  is 
the z-score corresponding to a particular probability—the position on the x-axis 
corresponding to a particular left-hand-tail probability of the standard normal distribution. 

As a data-analysis method, the only change is to replace the theoretical 
probabilities in Eq. 14 with their empirical estimates.  is replaced by the proportion 
of signal trials in which the observer’s response was “yes” and  is 
replaced by the proportion of no-signal trials in which the observer responded “no”, etc.

As an example, suppose that there were 60 signal trials of which 47 were hits 
and 60 no-signal trials of which 21 were false alarms. We find that 

. 

.

.
.

There is, however, one possible complication. The  function results in infinite 
values if supplied a probability of zero or one. That can result if the data contain no false 
alarms or 100% hits. There are two standard procedures for these cases. A fairly typical 
procedure is to take the problematic row in the results table and add 1/2 of a trial to both 
columns. So, if you had zero false alarms and 20 correct rejects (a correct-reject rate of 
100%), you would process the data as if you had 1/2 trial worth of false alarm and 20.5 

correct rejects, for a correct-reject rate of . However, Hautus (1995) 

suggests that a less biased procedure is to always add 1/2 trial to all 4 elements of the 
results table. That would modify the results of our example above as follows: 

.

.

.
.

d′￼= z[P(Hit)] + z[P(Correct reject)]
= z[P(Hit)] − z[P(False alarm)] and

c = z[P(Correct reject)],

z(P) = Φ−1(P) Φ(z) =
1

2π ∫
z

−∞
exp(−x2 /2)d x

Φ(z) z
z z(P)

P(Hit)
P(Correct reject)

P(Hit) =
47
60

= 0.783

P(False alarm) =
21
60

= 0.35

d′￼= z[0.783] − z[0.35] = 0.784 − (−0.385) = 1.169
c = z[P(Correct reject)] = z[1 − 0.35] = 0.385

z

20.5
21

= 97.6 %

P(Hit) =
47.5
61

= 0.779

P(False alarm) =
21.5
61

= 0.353

d′￼= z[0.779] − z[0.353] = 0.768 − (−0.379) = 1.147
c = z[P(Correct reject)] = z[1 − 0.353] = 0.379
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The psychometric function, varying signal strength 
So far, we have described a particularly simple experiment in which there are 

only two possible stimuli (signal and noise). Suppose that you are interested in human 
performance as a function of the “strength” of the signal. For example, suppose that you 
hypothesize that human perception is tuned to images of faces. You measure detection 
performance for faces vs. outdoor scenes as a function of stimulus contrast in the 
presence of a fixed noisy background image. That is, for each target you estimate 
detectability ( ) as a function of stimulus contrast. You choose 6 contrast levels for the 
target, running the face trials in a separate session from the scene trials. In each 
session, on half of the trials, there is no target (and the correct answer is “no”), and the 
other half of the trials are split equally between the 6 contrast levels (and the correct 
response is “yes”). These trials are run in random order. If feedback is supplied after 
each trial, it indicates that the correct answer is “yes” and “no” equally often. In this 
design, there are hit rates  for every signal level , but there is a 
single, shared false-alarm rate from the no-signal trials.

This shared false-alarm rate does not complicate the analysis. One can use the 
 and  formulas given above (Eq. 14) separately for every stimulus level. Each 

estimate of  goes hand-in-hand with a corresponding estimate of . But, the 
calculation of the criterion  only uses the false-alarm rate, that in turn is based only on 
the trials with no signal. That is, the single, shared false-alarm rate is used for the 
computation of  and  for all signal levels. As a result, the criterion  is identical for all 
signal levels. This is important—how would the observer be able to use a different value 
of the criterion for each signal level, when those levels are randomly intermixed and not 
perfectly identifiable by the observer (who only has the noisy measurement  
available)? Fortunately, this multi-intensity analysis is consistent with the use of a single 
criterion throughout.
The ROC curve 

Signal detection theory makes a specific prediction of the consequences of 
changing one’s criterion for performance in a signal-detection task. Fig. 4 illustrates 
these predictions. The graphs shown here are referred to as “Receiver Operating 
Characteristics” or ROC curves. They illustrate the tradeoff between correct “yes” 
answers (hits) and incorrect “yes” answers (false alarms) as the criterion varies. Each 
curve corresponds to a particular value of signal discriminability ( ). For any given 
value of , a liberal (i.e., low) criterion leads to a large hit rate but also a large false-
alarm rate (toward the upper-right of the plot), whereas a conservative (i.e., high) 
criterion reduces both hit and false-alarm rates; it shifts performance toward the lower-
left portion of the plot. As  increases, the curves push up to the upper-left corner of the 
plot (i.e., closer to perfect performance—100% hits, 0% false alarms). The negative 
diagonal on this plot corresponds to . 
Looking at Fig. 1C, equal hit and correct-reject rates corresponds to using the criterion 
where the curves cross, that is, the neutral (unbiased) or ML criterion.

INSERT FIGURE 4 ABOUT HERE
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Signal detection theory nicely segregates two aspects of a binary, yes-no 
decision—discriminability (how good you are at discriminating signal from noise) and 
bias (do you tend to say “yes” or “no” more often). In the ROC plot, discriminability 
determines which curve performance will lie on and bias determines your operating 
point along that curve. The curves indicate theoretical, expected performance 
(  and ). With a finite number of trials in a dataset, the actual 
hit and false-alarm rates will deviate from these values and will reflect binomial (coin-
flip) variability. 

Thus, an alternative approach to estimating  is to do so via the ROC curve. The 
first step is to collect, for a given stimulus, a set of hit rate/false-alarm rate pairs, each 
corresponding to a different value of the criterion. The experimenter can induce the 
observer to adopt different criteria (typically in separate blocks of trials) by simply asking 
them to do so or by varying the priors (the proportion of signal trials) or payoffs. 
Alternatively, pairs of hit and false-alarm rate can be collected during a single block of 
trials by expanding the number of response alternatives.

For example, one can use a set of 5 possible confidence ratings as response 
alternatives. For our face-detection experiment, those possible responses would be: 1 = 
I’m sure a face is not present; 2 = I think a face is not present but with low confidence; 3 
= I have no idea whether a face is present or not; etc. Then, the data can be analyzed 
by the experimenter adopting 4 different criteria: (1) treat a response of 1 as “no” and 
responses 2-5 as “yes”; (2) treat a response of 1 or 2 as “no” and responses 3-5 as 
“yes”; (3) treat responses 1-3 as “no” and responses 4-5 as “yes”; and (4) treat 
responses 1-4 as “no” and only response 5 as “yes”. This will yield a set of four points 
for an ROC plot, and the experimenter can then choose the ROC curve that best fits the 
data (Figure 5A).

INSERT FIGURE 5 ABOUT HERE

To better understand how to think about the “best” ROC curve to fit to a set of hit 
rate/false-alarm rate pairs, consider another way of plotting the ROC itself (Fig. 5B). 
Here, hit rate is again plotted as a function of false-alarm rate. But, instead of using 
linear probability axes, as in Fig. 5A, I convert each probability to its corresponding z-
score, . Standard signal detection theory assumes that the signal and noise 
distributions share a common standard deviation. Thus, if you move the criterion one 
SD rightward relative to the noise distribution, you have also moved that criterion one 
SD rightward relative to the signal distribution. This implies that the ROC “curve” on 
these new axes is now a straight line with slope one (Fig. 5B).

Thus, to estimate  from a set of pairs of hit and false-alarm rates, one can plot 
the data using the z-score axes and find the best-fitting line of slope one. However, the 
data points in this plot have x-values (false-alarm rate) and y-values (hit rate) that are 
both dependent variables, so standard linear regression is inappropriate here. One 
solution is to use a maximum-likelihood method by determining the set of parameters (in 
our example, 4 criteria and one value of ) so that the likelihood of the data 
( ) is maximized (Dorfman & Alf, 1969).
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Deviations of human behavior from the normative model 
As I mentioned, one way to collect data for multiple criteria is to run blocks of 

trials that vary in either priors, , or in payoffs ( , etc.). To do this you will 
have to inform your observer of these values or allow them enough trials to experience 
the current priors and payoffs. For a known value of , the normative theory indicates 
the optimal criterion (Eq. 13). There is, of course, no guarantee that humans perform in 
an optimal manner. In fact, the typical finding (termed “conservatism”) is that, when 
priors or payoffs are made asymmetric, the criterion adopted by human observers 
moves in the correct direction away from the neutral ML criterion but is not moved as far 
as the normative theory predicts (Ackermann & Landy, 2015; Healy & Kubovy, 1978, 
1981; Ulehla, 1966). One explanation of this behavior is that human behavior is, in fact, 
optimal, but that observed conservatism is due to a violation of the assumption of 
normally distributed noise and that, instead, the noise comes from a different form of 
distribution such as the Laplace (Maloney & Thomas, 1991). Another explanation is that 
humans typically use distorted values of probabilities (e.g., of the prior probability of a 
signal ), leading to conservative criterion placement (Zhang & Maloney, 2012). 
Other violations of normative theory include data that contradict the prediction that the 
effects of changed priors and changed payoffs on criterion placement are additive as 
predicted by Eq. 13 (Locke et al., 2020) and that the criterion is fixed and stable across 
a block of trials (Norton et al., 2019; Norton et al., 2017).

Forced-Choice Tasks
Signal detection theory can be applied to other tasks as well, such as two-

alternative forced choice (2AFC). In this task, there are two stimuli presented on each 
trial (e.g., a noise pattern vs. a noise pattern plus a low-contrast image of a face). The 
observer’s task is to identify which stimulus had the signal (i.e., the face). The two 
stimuli could be presented in different spatial locations (e.g., left and right of visual 
fixation) or in different temporal intervals, sequentially. Typically, psychophysicists prefer 
this task, compared to the yes-no task, because this task is often described as “bias-
free”. That is, the participant can’t be biased to say “yes”, because that’s not one of the 
response options, and there is always a signal presented. However, they can be biased 
to say “2nd interval” and, in fact, data indicate that participants often do have an interval 
bias (Yeshurun et al., 2008). The nomenclature for these different experiments varies, 
but the theory is the same—the observer has two noisy measurements (  and , e.g., 
from the first and second interval) and must decide which contained the signal. The 
rational decision procedure (assuming that the signal is equally likely to appear in either 
location or temporal interval) is to select the interval that led to the larger measurement.

On each trial, the observer has a pair of measurements —the model for 
this experiment comprises a two-dimensional space of potential measurements (Fig. 6). 
A trial’s measurement pair is now distributed as a bivariate Gaussian, and we assume 
the measurements in the two intervals are independent and both have standard 
deviation equal to one (hence the distributions are shown as a set of concentric circles 
in Fig. 6). We again adopt the standardized model, so that a no-signal measurement is, 

P(S ) V(S, “yes”)

d′￼

P(S )

x1 x2

(x1, x2)



14

on average, zero. For the typical, single-interval, yes-no task, where we only have one 
measurement, , and the observer must say “yes” or “no”, we denote the 
discriminability as . For the forced-choice task, the mean pair of measurements for 
trials in which the signal is in interval one is  and for interval two it is .

INSERT FIGURE 6 ABOUT HERE

We can treat the forced-choice task as a signal-detection task by, for example, 
treating a trial in which the signal is in interval 1 as a “no-signal trial”; when the signal 
appears in interval 2, we treat this as a “signal” trial (with the corresponding definitions 
of hit, false alarm, etc.). Performance in the forced-choice task is governed by the 
separation between these two bivariate Gaussian distributions. We denote performance 
(i.e., discriminability) in the forced-choice task as . From the geometry of Fig. 6, it is 
clear that . Note that typical 2AFC behavioral data do not satisfy the 
assumptions of ideal behavior as just described. Data often indicate that people do not 
place a symmetric criterion between interval 1 and 2, nor do results indicate equal 
detectability of the stimulus in interval 1 and the stimulus in interval 2 (Yeshurun et al., 
2008).

When the signal is in interval 2, the ideal observer will be correct when ; 
similarly, when the signal is in interval 1, the observer will be correct when . 
Thus, the probability of being correct is the probability of the set of all pairs of 
measurements that satisfy either inequality (by symmetry, they are identical), so that:

. (15)

Here’s a useful, important and fairly unobvious fact: For any given value of , 
the value of  is equal to the area under the corresponding ROC curve for the yes-
no detection task (Fig. 7A)! This is clearly true at the extremes. When , the 
observer has no information about which stimulus is which and is forced to guess, so 
that . The corresponding “area under the ROC” (AUROC or AUC) is the 
area under the main diagonal (Fig. 4)— . Similarly, when  is effectively infinite, 
2AFC performance becomes perfect and the area under the ROC is the entire area of 
the ROC plot—one.

INSERT FIGURE 7 ABOUT HERE

Between these extremes, the fact that  is equal to the area under the 
corresponding ROC curve is not obvious. Consider the rectangle outlined in Fig. 7A. 
AUC is computed by summing the areas of such rectangles. The rectangle’s height is 
an infinitesimal portion of the y-axis, . The width of the rectangle is one minus 
the x value at that position on the ROC curve, . 
The full area is the sum over all such rectangles. Those rectangles can be 
parameterized by the criterion  that results in the point on the ROC that intersects the 
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rectangle. Fig. 7B shows that a differential amount of the y-axis in Fig. 7A corresponds 
to a differential amount of area under the signal distribution ( ). That is, 

. Combining these,

(16)

Thus, discriminability, instantiated by the value of , inextricably ties predictions of 
performance in yes-no and 2AFC tasks.

Alternative Models
The literature includes many alternatives to standard signal detection theory as a 

model of detection and discrimination performance. One class of such models is the set 
of so-called threshold models. There are several types of threshold models, and I’ll 
illustrate one here to give an idea of how this class of models works. I assume that the 
observer does not have access to the noisy measurement directly, but rather, these 
noisy measurements result in one of two internal states, “detect” and “no-detect” 
(possibly through a version of signal detection theory to which the observer does not 
have conscious access). On S trials, the detect state is entered with probability  and 
otherwise the no-detect state results. On N trials, the detect state is entered with 
probability . Thus, if the observer merely reports the current state, saying “yes” in 
the detect state and “no” otherwise, the ROC will have one point at coordinates 

 (Fig. 8, filled circle).
To generate a full ROC contour, one allows for randomness in the response. 

Suppose the observer doesn’t trust their internal state. For example, when they are in 
the no-detect state, they occasionally decide to say “yes” despite being in the “no-
detect” state. Depending on how often they make this decision, performance will lie 
somewhere along the upper line in Fig. 8. Similarly, if the observer instead doesn’t 
always trust the internal “detect” state and occasionally says “no” despite being in that 
state, their behavior will lie along on the lower line in Fig. 8. The result of this set of 
behaviors (mistrust of either the detect or the no-detect state) is an ROC contour 
consisting of two straight lines, rather than the smooth curve (Fig. 4) resulting from 
standard SDT.

S
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INSERT FIGURE 8 ABOUT HERE

A generalization of standard signal detection theory drops the assumption of 
equal variances for the N and S measurement distributions. For most intensive stimulus 
parameters (e.g., luminance, size, weight, speed, loudness, etc.) the just-noticeable 
difference (the difference in intensity between a base stimulus and an increment leading 
to a criterion discrimination performance such as ) is approximately proportional 
to the intensity of the base stimulus, which is known as Weber’s Law. There are many 
combinations of stimulus encoding and noise that are consistent with Weber’s Law 
(Zhou et al., 2024). One model consistent with Weber’s Law drops the equal-variance 
assumption and instead suggests that noise standard deviation grows approximately 
proportional to stimulus intensity.

INSERT FIGURE 9 ABOUT HERE

Fig. 9A illustrates an unequal-variance context in which the stronger stimulus has 
higher variance, consistent with this model of Weber’s Law, such as might result from, 
for example, discrimination of image contrast. One can still posit that observers perform 
this task by setting a single criterion  and responding “yes” when the measurement 
exceeds this criterion. For the example in Fig. 9A, this leads to the asymmetric ROC 
curve shown in Fig. 9B. In Fig. 9A, the  distribution has a standard deviation three 
times as large as the  distribution. Thus, if we move  one standard deviation to the 
right relative to the  distribution, we will have moved that criterion only one-third of a 
standard deviation to the right relative to the  distribution. As a result, if I plot the ROC 
curve with the axes scaled as z-scores as I did in Fig. 5B, each shift to the right by one 
will lead to a shift upward of 1/3 (in z-score for the false-alarm and hit rates 
corresponding to the changed criterion). Thus, I will again have an ROC that is a 
straight line, but the slope is no longer one but, instead, is equal to the ratio of the two 
standard deviations (here: , Fig. 9C).

We pointed out above (Observer’s perspective and the SDT model) that the 
optimal decision rule, taking payoffs and priors into account, is to impose a threshold on 
the likelihood ratio. That derivation only used the two likelihoods and never made 
reference to the signal detection theory assumptions of equal variance or Gaussian 
measurement distributions. An ideal decision-maker bases decisions only on likelihood 
ratio, in other words, the likelihood ratio is a sufficient statistic for this decision. 
Inspecting Eq. 10, if we are in a situation with equal priors ( ) and 
equal payoffs (the value of being correct on noise trials is the same as on signal trials), 
then . That is, the criterion should be placed where the signal and noise 
measurement distribution curves cross. For unequal signal and noise variances, the 
curves cross in two places (Fig. 9A) and thus the optimal decision-maker doesn’t place 
a single criterion, saying “yes” when that criterion is exceeded. Rather, the optimal 
strategy is to say yes when the measurement exceeds a high criterion  or falls below 
a second, low criterion , because very low values of the measurement are more likely 
to occur on signal than on noise trials.

INSERT FIGURE 10 ABOUT HERE
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Having noticed that Eq. 10 can be applied to any pairs of distributions, we can 
also drop the assumption that the two distributions are Gaussian. Fig. 10 shows  and 

 distributions that are Poisson-distributed, differing in the expected number of counts. 
This is a reasonable model for a decision based on the number of photons caught by a 
collection of rod photoreceptors in the retina or based on the number of action potentials 
from a single neuron. For equal priors and symmetric payoffs, the optimal decision is 
maximum likelihood: pick the stimulus based on the higher curve corresponding to the 
current measurement (here, resulting in a criterion between one and two counts).

Applications to Neural Data
The tools I have outlined may also be applied in situations in which we have 

empirically measured distributions and choose not to make an assumption of a 
particular distributional form (Gaussian, Poisson, etc.). A particularly well-known 
example is the application to neural responses to visual motion in cortical area MT, the 
“middle temporal area” (Britten et al., 1992; Newsome et al., 1989; Salzman et al., 1990; 
Salzman et al., 1992); the same ideas can be applied to any discrimination based on 
neural responses.

Newsome and colleagues recorded from single neurons in area MT of the 
macaque monkey while the monkey viewed a random-dot motion display in which a 
subset of the dots moved in either the preferred direction of the neuron or in the 
opposite (anti-preferred or null) direction. The other dots moved in random directions. 
Across trials, they varied the stimulus coherence—the fraction of dots that moved 
together. They included a zero-coherence condition (purely random motion). Each 
stimulus was presented many times, resulting in a histogram of the number of action 
potentials from the neuron summed over the stimulus duration—one histogram for each 
coherence level and motion direction. At the same time, the monkey was awake and 
performing a discrimination task on motion direction, effectively deciding whether the 
stimulus moved in the currently recorded neuron’s preferred or null direction. The tools 
I’ve discussed allowed Newsome and colleagues to determine what information a single 
neuron had concerning the stimulus being displayed (the neurometric function) as well 
as about the decision the monkey was about to make (choice probability).

A psychometric function for a task such as this is a measurement of behavioral 
performance as a function of a stimulus variable. Here, that could be, for example,  for 
discriminating leftward vs. rightward motion as a function of motion coherence in a 
forced-choice task. The notion of a neurometric function is to generalize this concept 
from behavior to the information contained in neural responses. Here, the noisy 
measurement is the spike count from the neuron. The “behavior” is generated by an 
idealized decision-maker that bases its choice on the neural spike counts in response to 
each of the stimuli to be discriminated. 

Consider the two histograms in Fig. 11A. The histogram on the left represents 
responses “recorded” from a neuron in response to a 10% coherence stimulus moving 
in the null direction; the histogram on the right shows the responses at this coherence 
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for stimuli moving in the preferred direction. We could pick an arbitrary criterion (such as 
where the curves cross) and compute a hit rate (the fraction of preferred-direction 
responses that exceed the criterion) and false-alarm rate (the fraction of null-direction 
responses that exceed the criterion) and then compute  from these two rates. 
However, these histograms are empirical distributions; they are a noisy representation 
of the true, underlying distributions that would result from an infinite number of trials.

It makes more sense to use all the information we have in these histograms to 
compute a measure of the ability of this neuron to discriminate these two stimuli. What 
Newsome and colleagues proposed is to use the same trick as described above for 
using confidence ratings. Place a “criterion” at 1 action potential, and compute hit and 
false-alarm rates based on that criterion. Repeat with the criterion equal to 2, 3, 4, … 
spikes. When you are done, you have produced a piecewise-linear ROC curve 
(Fig. 11B). Discrimination performance can be summarized using the area under the 
ROC. Recall that the area under the ROC is equivalent to performance in a 2AFC task. 
Here, that task is that I give you a random sample from the left-hand histogram and a 
random sample from the right-hand histogram. You decide that the sample drawn from 
the preferred direction’s distribution is the sample with more action potentials. The area 
under the ROC is the predicted proportion of correct decisions in that 2AFC task. 
Finally, this exercise can be repeated with the pairs of neural-response histograms 
corresponding to each coherence level used in the experiment. The result is a 
neurometric function, with predicted direction-discrimination performance as a function 
of stimulus coherence (Fig. 11C), yielding a description of the information content in a 
single neuron’s firing rate for this task.

INSERT FIGURE 11 ABOUT HERE

The second question that Newsome and colleagues asked was “How informative 
is this neuron about the behavior of the animal?” The approach to this question was 
quite similar. Obviously, when stimulus coherence was high, response variability was 
low (the animal was correct most of the time). The highest response variability was 
when the stimulus had no information at all (zero coherence). Fig. 11D again shows two 
histograms of neural responses, but this time both are (simulated) responses to 
completely random, zero-coherence motion stimuli. However, this time the histograms 
are conditioned on the monkey’s response.

The left-hand histogram corresponds to when the animal decided the stimulus 
moved in the neuron’s null direction, and the right-hand histogram shows neural 
responses when the monkey decided the stimulus moved in the neuron’s preferred 
direction. In both cases, the stimuli themselves were completely random and 
uninformative. Given the two histograms, we can compute the areas to the right of each 
possible criterion, yielding hit and false-alarm rates for the task of deciding what 
behavioral response the monkey made given knowledge only of this neuron’s response. 
From these rates, we can construct a ROC and compute the area under the ROC, that 
they called the choice probability for this neuron. Choice probability is a measure of how 
useful this neuron is in discriminating what behavioral choice the monkey subsequently 
made. This approach shows the usefulness of the ROC and, in particular, of the area 
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under the ROC as a nonparametric analysis method for summarizing discrimination 
performance.

Extensions to Metacognition
In this chapter, I have discussed signal detection theory solely with regard to 

perceptual decisions (Is the signal there or not? Are the dots moving to the right or 
left?). However, having completed a task, humans also typically have a feeling of how 
successfully they carried out the task. In the case of binary decisions (the “first-order” 
task), an experimenter can ask the observer something about their estimate of the 
probability that decision was correct (the “second-order” task). Reasoning about one’s 
own thoughts and actions is called metacognition.

There are many sources of information that one can use to inform a 
metacognitive judgment. For a random-dot display, there are stimulus cues that are 
correlated with the quality of the stimulus, such as the perceived randomness or 
inconsistency of dot motion directions, that could inform a judgment of confidence in the 
first-order dot-direction decision. There are also aspects of one’s own behavior that 
could inform a decision, such as having low confidence if one’s own reaction time for 
the first-order task was long or basing confidence on the previous rate of success in the 
task. In addition, one can use the elements of signal detection theory itself to form a 
second-order judgment.

INSERT FIGURE 12 ABOUT HERE

Consider again the signal-detection experiment in which the observer is asked to 
discriminate stimulus  (a noise pattern) from  (a noise pattern plus a low-contrast 
face) and subsequently indicate whether that response was made with low or high 
confidence (Fig. 12A). The theoretical setup is that of standard signal detection theory 
with two unit-variance measurement distributions separated by  (first-order 
discriminability) and equal priors and payoffs.The observer’s response bias is 
represented by the first-order criterion  (here, the neutral criterion is indicated). If a 
measurement lies quite close to this first-order criterion, the likelihood ratio and the 
posterior odds will be close to one, so it makes sense to have low confidence; if the 
measurement is far from the criterion, this justifies increased confidence. Thus, a simple 
model of the metacognitive judgment is that the observer adopts second-order criteria 
(one for each possible first-order response:  and ) and responds “high 
confidence” if the measurement is farther from the first-order criterion than the 
corresponding second-order criterion.

Consider the case when the first-order response is “S”. Thus, the measurement 
lies to the right of . For the second-order task (the confidence response), there are 
two possible stimuli that could have appeared (corresponding to first-order hits and false 
alarms) and two possible confidence responses. When the stimulus was, in fact,  the 
response “S” was correct. If the confidence response was “high”, we might say that high 
confidence was justified (because they were correct) and call that a second-order hit. 
When the stimulus was , then high confidence was unjustified, and we can call that a 
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second-order false alarm. However, if confidence was low, that is a 2nd-order correct 
reject.

The first-order criterion  is estimated using the first-order false-alarm rate. 
Given the estimated values of  and , and any possible value of the second-order 
criterion , the predicted probabilities of 2nd-order hits and false alarms can be 
calculated. These are the probability that, for each stimulus, the measurement exceeds 

 given that it already exceeds . Varying  over the entire range yields a 
2nd-order ROC curve (Fig. 12B). The measured second-order hit and false-alarm rates 
are not likely to land on this theoretical ROC curve. Maniscalco and Lau (2012) 
proposed a measure of metacognitive sensitivity (how sensitive you are to your own 
stimulus information and the quality of your first-order judgment) by computing what 
they called meta-  (for a comprehensive summary of metacognition metrics, see 
Rahnev, 2025). Any given pair of  and  values results in a second-order ROC curve.

Maniscalco and Lau defined meta-  as the value of  that, if paired with the 
criterion “corresponding to” , yields the observed pair of second-order hit and false-
alarm rates. One has, of course, to determine what you mean by the corresponding 
first-order criterion, since you are now treating the problem as if the two distributions are 
a different distance apart. The sensible solution, proposed by Maniscalco and Lau, is to 
use the criterion “ ” along with the new value of  so that the corresponding value of 
the likelihood ratio  for that criterion is the same as the value  derived from the first-
order responses.

The literature on metacognition has many other definitions of metacognitive 
sensitivity. The development of the meta-  metric was, among other things, an attempt 
to develop a metric that estimates metacognitive sensitivity independent of 
(metacognitive) bias and first-order discriminability. However, meta-  tracks first-order 
sensitivity. That is, if  is high, meta-  is likely to be high as well. Thus, to derive a 
metric for the quality of metacognition itself, Maniscalco and Lau proposed that 
researchers report the M-ratio ( )—the fraction of the information in the first-
order judgment that is effectively used in the second-order confidence judgment.

Conclusion
In the 70 years (as of this writing) since signal detection theory was introduced, it 

has become the standard model and data-analysis technique for detection and 
discrimination experiments in a wide variety of research areas, often far from the 
sensory experiments in which it was first described. It allows the researcher to 
separately estimate observer sensitivity ( ) and response bias (  or ). Through careful 
estimation of the ROC curve, it also allows the experimenter to test the underlying 
assumptions (continuous decision variable, equal variances, Gaussian distributions). 
The method can be used with other distributions, including discrete distributions, such 
as are found in single-unit neural measurements. It is a general model of behavior and 
the information in neural coding, with wide applicability.
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Figure 1. Standard signal detection theory. (A) The probability distribution for the 
evidence  on no-signal (N) and signal trials (S) with means  and  and common 
standard deviation . (B) The likelihood values  and  corresponding to a 
measured evidence value . (C) The maximum-likelihood observer sets a criterion  
where the curves cross and says “yes” when the decision variable exceeds that 
criterion. (D) The likelihood ratio ( ) increases monotonically with . Any 
criterion on likelihood ratio corresponds to a criterion on the decision variable . The 
optimal criterion, for equal priors and payoffs,  (where the curves cross in panel C) 
corresponds to a criterion on likelihood ratio, .
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Figure 2. Criterion and decision outcomes. (A) When a signal was presented, these 
areas represent the probabilities of a hit and a miss. (B) When no signal was presented, 
these areas represent the probabilities of a false alarm and a correct reject. (C) The 
criterion  indexes the observer’s bias to say “yes”. Low values lead to a liberal bias: a 
high hit rate and few correct rejects. (D) Moving the criterion rightward leads to a 
conservative bias: a reduced hit rate, but increased correct rejects.
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Figure 3. Standardized signal detection theory. Once standardized, the separation 
between the distributions ( ) provides a metric for discriminability.d′￼
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Figure 4. ROC curves for four values of . The dashed negative diagonal corresponds 
to predicted performance for a neutral criterion (where the two curves cross as in 
Fig. 1C), so that hit rate is identical to the correct-reject rate (i.e., one minus the false-
alarm rate). For any value of  the corresponding curve is traced from lower-left to 
upper-right as the criterion  decreases.
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Figure 5. Estimation of  using confidence ratings and the ROC curve. (A) From five 
detection confidence levels we can derive four points on the ROC curve and determine 

 from the best-fitting ROC curve. (B) Plotted on probability (z-score) axes, the ROC 
curves become lines with slope 1.
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Figure 6. Two-alternative forced choice (2AFC) task. In each trial, there are two stimuli, 
leading to measurements  and . A no-signal measurement is, on average, zero. A 
measurement of a signal is, on average, equal to —the value of  one would have 
on a single-interval, yes-no task. The concentric circles represent the bivariate 
distribution of . The distance between the two distributions, , governs 
performance in the 2AFC task.
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Figure 7. Demonstration that the area under the ROC equals predicted 2AFC 
performance. (A) The area is the sum of differential areas with width equal to the 
probability of a correct reject for a criterion that leads to the hit rate for that rectangle. 
(B) The height  of the rectangle in (A) is equal to the area of the rectangle shown 
here.
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Figure 8. The ROC curve resulting from a threshold theory in which the detect state is 
entered on no-signal trials with probability  and with probability  on signal trials.PFA PHit
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Figure 9. SDT with unequal variances. (A) The measurement distribution  has a 
standard deviation three times larger than . Note that  is more likely than  
both to the right of  and to the left of . (B) If only a single criterion is used, a non-
convex ROC curve results. (C) Plotted on probability (z-score) axes, this ROC curve is a 
straight line with slope equal to the ratio of the noise and signal standard deviations 
(here: 1/3).
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Figure 10. Signal detection theory with a discrete measurement distribution (Poisson).
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Figure 11. Signal detection theory applied to neural spiking data. (A) Simulated 
histograms of the number of action potentials (spikes) in response to a brief random-dot 
motion stimulus moving in either the neuron’s preferred direction (white) or the opposite 
(null) direction (gray). (B) ROC curve derived from the data in (A). (C) Neurometric 
function—the area under the ROC (as in panel B) as a function of motion coherence. 
(D) Histograms of spike counts conditioned on the monkey’s response for a zero-
coherence motion stimulus, that may be analyzed as above to determine “choice 
probability”.
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Figure 12. SDT and metacognition. The observer first discriminates between stimuli  
and  and then reports whether they have low or high confidence in that judgment. 
(A) Criterion  determines the discrimination decision. Neighboring criteria  and 

 determine the confidence response. The denoted areas correspond to high-
confidence “ ” reports when the stimulus was indeed  (a second-order hit); low-
confidence  “ ” reports when it was, in fact,  (a second-order correct reject). 
(B) Sweeping  across all possible values yields a second-order ROC, that can be 
compared to confidence data.
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