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Abstract

Signal detection theory (SDT) is the primary performance model and data-
analysis method for sensory experiments (in audition, vision, etc.) —detecting whether a
stimulus is present or discriminating between two possible stimuli. SDT allows the
experimenter to separately estimate discriminability (the observer’s ability to
discriminate the presence or absence of the stimulus) and bias (the observer’s
preference to respond “yes” or “no”). Applications of SDT are widespread—to sensory
coding, memory, value-based decision-making, and analysis of the information content
of neural spiking. The same analysis has also been used in applied settings to
understand the performance of baggage screeners, disease diagnosis from medical
images, and the efficacy of medical diagnostic tests. | review the theory and discuss
applications to behavioral and neural responses. | review the application of SDT to
discrimination judgments and metacognition—the observer’s confidence in those
judgments.
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Introduction

Suppose you are out on a foggy night and looking down the street ahead of you.
You hear a sound that seems like footsteps and get the vague visual impression of
someone walking toward you. Is there someone there or not? Signal detection theory
suggests that, somewhere in your brain, you combine all the evidence for the presence
of a person—a faint smell of perfume, the sound of footsteps, a faint outline that
resembles a human figure—resulting in a single number that represents the strength of
the evidence. That number will typically be small if no one is out there, and large if
someone is there.

If one repeats this experience multiple times, the strength of the evidence will
vary across occasions, even if the circumstance (absence or presence) doesn’t change.
That is, the strength of the evidence is random—on average higher when someone is



there and lower when no one is there. This stochasticity of the evidence can come from
many sources, both external and internal. External randomness can be from the varying
density of the fog, the variation in sound, smell and body outline across people and
across viewpoints, and even from the randomness of the stimulus itself, such as the
random number of photons arriving at the retina from a dim location in the scene.
Randomness can be internal to the observer, such as the randomness of neural
responses to repeated, identical stimuli. Signal detection theory provides a model of
how observers derive a binary response (the person is there or isn’t) using this noisy
evidence.

Signal detection theory (Peterson et al., 1954; Van Meter & Middleton, 1954),
also sometimes called sensory decision theory, grew out of statistical decision theory
(all of which conveniently have the acronym SDT). It provides both a theory of how
decisions under uncertainty are made, as well as a method for analyzing behavioral and
neural data (Green & Swets, 1966; Macmillan & Creelman, 1991; Wickens, 2002). SDT
is applicable to a wide variety of tasks, including sensory experiments (vision, audition,
touch, proprioception, etc.), neuroeconomic experiments (where the intensive
parameter is value), and experiments on memory (where the intensive parameter is the
memory strength). It also applies in everyday life when making yes-or-no decisions
based on uncertain evidence (e.g., Does this suitcase contain a weapon? Does this
mammogram indicate breast cancer?).

Signal Detection Theory: Optimal Decision-Making

Measurement model

In standard signal detection theory, for a given decision (e.g., one trial of an
experiment), there are two possible states of the world—either there is a signal (“S”), or
there is no signal (“N”). It is the observer’s task to determine whether the world is in
state “S” or “N”. In our example above, “S” represents a scene in which a person is
approaching you. The observer makes an observation of that world state (views a visual
display, listens to an auditory stimulus, etc.), resulting in a measurement—a single
number (the “decision variable” x) that summarizes the evidence concerning the state of
the world. We assume that x is typically larger when a signal is present (e.g., when
someone is approaching) than when it is absent. The decision variable also varies from
trial to trial even when the stimulus is fixed. For any given state of the world, we assume
that the distribution of x is Gaussian (i.e., x is normally distributed) and that the variance
of this distribution is fixed—not depending on whether a signal is present or not. Thus,
the measurement model is (Fig. 1A):
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Signals typically lead to larger values of x than when no signal is present, pg > .
Signal strength corresponds to the difference in the means pg — py:.

INSERT FIGURE 1 ABOUT HERE

Observer’s perspective and the SDT model

The measurement model above describes the situation with which an observer is
confronted. The world is either in state S or NV (a person is approaching or not) and
provides the observer with a noisy measurement x (the sensory evidence). The
observer knows the value of x and wants to infer whether the state of the world is S or
N, that is, whether to say “yes” or “no”. The probabilities given in Eq. 1 are
measurement distributions—the probability of getting any particular measurement x on
a trial when the state of the world is, for example, S. But, for the observer, these
probabilities are, in a sense, backwards. The decision-maker knows the value of x.
What the decision-maker doesn’t know is the true state of the world. Thus, from the
decision-maker’s perspective, p(x|S) is the probability of getting the measurement x
(that the observer knows, and therefore is no longer random) given a particular state of
the world S (that the observer doesn’t know). When a conditional probability is regarded
in this way (the value to the left of the “I” is known and fixed, and the value after it is
unknown and to be estimated or decided upon), it is referred to as a likelihood.

What decision should the observer make? Referring to Fig. 1B, the observer
receives measurement x and thus knows the two likelihoods p(x | N ) and p(x|S) (the
values of the two curves above the measurement). A simple decision procedure is to
choose the world state that is more likely:

Say “yes” it p(x|S) > p(x|N)
Say “no” otherwise.

(@)

This is called the maximum-Ilikelihood (or ML) observer. We will see below that this is a
good decision rule in certain circumstances but is not always optimal. Note that the
curve for p(x|S) is always above that for p(x | N) to the right of where the two curves
cross. The ML rule is (Fig. 1C):
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Say “yes” if x >
(3)

Say “no” otherwise.

The rule is that the observer should compare the evidence to a fixed criterion (here, the
criterion is ¢ = (pg + py)/2) and say “yes” when the measurement exceeds the
decision criterion.

The ML rule may seem a little ad hoc, since likelihood is a slippery concept; it is
the probability of something you already know to be true (the measurement). It makes
more sense to compare the probabilities of the two events you don’t know—the possible
states of the world. Thus, one might prefer to adopt the following decision rule:



Say “yes” if p(S|x) > p(N | x)
Say “no” otherwise.

(4)

Notice that the only difference between Eqgs. 2 and 4 is the order of the items in
the conditional probabilities. The curves in Fig. 1A provide the values of the likelihood of
each state of the world given the measurement. For the observer to determine the
probabilities in Eq. 4, we need to apply Bayes’ Rule to each term:

P(S|x) = px[SHP(S)

px) )
P(N|x) = p(x|N)P(N) .

px)

In these equations, we have new terms P(S) and P(N) = 1 — P(S). These are
called prior probabilities (see Vol. 1, Chapter 26). They are the probabilities of the two
possible states of the world prior to collecting the evidence x. For example, if you were
out waiting for a friend who said they would arrive around this time, P(S) would be high.

In a lab experiment, there is typically an equal number of signal and no-signal trials,
P(S)=P(N)=0.5.

P(S|x) and P(N | x) are posterior probabilities—they are the probabilities of the
two possible states of the world after the measurement is made (I’'m using the standard
convention of denoting probabilities of discrete events as P and probability densities for
continuous domains as p). Thus, the decision procedure in Eq. 4 is known as the
maximum a posteriori (or MAP) rule, as it chooses the state of the world with maximum
posterior probability. The term in the denominator in Eq. 5 is a nuisance term that
ensures that P(S | x) + P(N | x) = 1. Fortunately, we won’t need to compute it.
Substituting Eq. 5 into Eq. 4, the MAP rule becomes

S N
Say “yes” if pxlS) >p( )
p&x|N)  p(S)

Say “no” otherwise.

= ﬂopt (6)

The value on the left-hand side is called a likelihood ratio. It is the ratio of the
values of the two curves above the measurement (Fig. 1B). The right-hand side is called
the prior odds and provides a criterion, ﬂopt’ that the likelihood ratio must exceed to say

“yes”. If the prior odds are equal to one (i.e., no-signal and signal trials are equally likely
to occur), then Eq. 6 yields the same decision procedure as maximum likelihood (Eq. 2).
Fig. 1D illustrates the value of the likelihood ratio as a function of x. As you can see, the
likelihood ratio increases monotonically so that Eq. 6, a criterion on likelihood ratio, will
again result in a procedure that compares the strength of the evidence to a criterion:

Say “yes” if x > Copt -
7

Say “no” otherwise.



For the MAP procedure, the optimal criterion ¢t will depend on the means (ug and
Hy), the common standard deviation (o), and the prior odds.

INSERT FIGURE 2 ABOUT HERE
There are two possible states of the world and two possible decision outcomes:

Decision

“Yes” “NO”

State of S Hit Miss
the world N

False Alarm | Correct Reject

Once the various elements of the theory are known (the specifics of the two
measurement distributions and the criterion), the theory predicts the probability of each
of these four possible trial outcomes (Fig. 2A,B). This 2x2 set of possible outcomes
should sound familiar. It’s the same 2x2 one encounters in typical descriptions of
hypothesis tests in statistics (see Vol. 1, Chapter 25). Type | error, or a, corresponds to
the false-alarm rate, P(“yes” | N )—rejecting the null hypothesis when it is correct. Type
Il error, or /3, corresponds to the miss rate, P(“no” | S')—accepting the null hypothesis
when it is false. The same 2x2 appears in medical decision-making, where diagnostic
tests for disease are rated by their sensitivity (the probability of detecting the disease
when the patient is sick), P(“yes” | S), and specificity (the probability of failing to detect
the disease when the patient is healthy), P(“no” | N).

Examining Eq. 6, if signal trials are more prevalent than no-signal trials, the prior
odds, P(N)/P(S) will be low and thus the observer will require only a small likelihood
ratio to lead to a “yes” response. In other words, the criterion ¢ will be low, so that only
weak evidence is required to say “yes” (Fig. 2C). In our example, if you already
expected a friend was arriving, then the slightest hint of an approaching person will lead
to a conclusion that your friend is arriving. The result of a low criterion is a high hit rate
(correct “yes” responses when the signal is present) and low correct-reject rate (correct
“no” responses when the signal is absent). Conversely, if no-signal trials are more
prevalent (e.g., you are on a road that is rarely travelled), the resulting criterion will be
high, so that stronger evidence is required to say “yes” (Fig. 2D). The result is a low hit
rate as well as a high correct-reject rate. The rates of these two correct responses trade
off as the criterion is varied.

The ideal observer

Among other fields, sensory neuroscience has been heavily influenced by the
idea of an optimal, normative or ideal observer (Geisler, 1989). Human performance can
be compared to predicted optimal performance to determine human efficiency at a given
task. Consider a visual signal-detection task in which the observer discriminates a
small, briefly presented visual pattern vs. a uniform gray field. If you place that image on
a known place on the observer’s retina, then one can calculate the expected number of
photons landing on each receptor for the uniform field and for the patterned stimulus.



The ideal observer calculates a weighted sum of the photon catches of the receptors.
For dim but not completely dark conditions, the resulting predictions are isomorphic to
standard signal detection theory.

For signal detection theory, ideal observers were developed from the very start
(Green & Swets, 1966). | now develop the ideal observer for standard signal detection
theory. To do this, we need to decide on a “cost function” (i.e., what is it that we are
trying to optimize?). | assume the observer is aware of the value of each possible
decision outcome (hit, false alarm, etc.):

Response
“Yes” “No”
S V(S,“yes”) | V(S,“no”
V(N, “yes”) | V(N,“no”

Stimulus

Here, the values of this payoff matrix might be in units of monetary payoff or in
units of psychological utility. Typically, the values associated with correct answers (hits,
correct rejects) are positive, and the other two values are negative (i.e., losses). |
assume again that the observer is aware of the design of the experiment and, in
particular, the prior probability that the signal is present, P(S). The simplest payoff
matrix is symmetric, resulting in a gain for correct answers (hits and correct rejects) and
a loss for incorrect answers (false alarms and misses). But, real-world examples often
have strongly asymmetric payoff matrices. For an airport baggage screener, a false
alarm just leads to a more careful search of a suitcase and an annoyed and
inconvenienced passenger. A miss, on the other hand, can lead to an attempt to blow up
the plane! The case of a radiologist examining a mammogram is similarly asymmetric.

The ideal observer is supplied with a measurement x and maps that
measurement to a response (“yes” or “no”) by choosing the response that maximizes
the expected gain—the average value the observer will gain if a trial with that
measurement and response were repeated a large number of times. The expected gain
of each response depends on the various probabilities and associated values:

E [V(“yes” |x)] = V(S, “yes”)P(S | x) + V(N, “yes”)P(N | x)
E [V(“no” |x)] = V(S§,“no”)P(S | x) + V(N, “no”)P(N | x),

where [E[] denotes expected value. | am computing the expectation of the value of a
given response (e.g., the expectation of V(“yes” | x)). This requires an expectation
because the value depends on the true state of the world, and the evidence only
specifies the probability of each possible state. The expected value of each response is
equal to the value of that response in any given world state (e.g., “S”) times the
probability of that world state given the evidence (e.g., P(S | x)). This is summed over
all possible world states (“S” and “N”). The ideal observer responds “yes” when

E [V(“yes” |x)] > [E [V(“no” |x)]. Substituting Eq. 8 into this inequality we find that the
ideal observer should



P(S|x) S V(N, “no”) — V(N, “yes”)
P(N|x) — V(S,“yes”) — V(S, “no” 9)
Say “no” otherwise.

Say “yes” if

Thus, the ideal observer says “yes” when the posterior odds (the ratio on the left-hand
side) exceeds a criterion derived from the payoff matrix. This criterion is the excess
value of being correct (rather than incorrect) on no-signal trials (the numerator) divided
by the excess value of being correct on signal trials.

Making the same substitutions as we did for the MAP decision procedure, the
maximum-expected-gain decision rule becomes

f px|S) o PAV) VIV, "no”) — VN, *yes”) _
pxIN) = P(S) V(S,yes’) — V(S,n0”) " OPY (10)
Say “no” otherwise.

Say “yes” i

This is again a decision rule based on the likelihood ratio. On the right are the prior odds
(as in Eq. 6) and a second term from the payoff matrix. When no-signal trials are
prevalent (large P(N)), the likelihood ratio will have to be large to convince the
observer to say “yes”. Similarly, when the extra value for being correct on a no-signal
trial (the numerator on the right) is much bigger than the extra value for being correct on
signal trials (the denominator), the likelihood ratio will have to be large to convince the
observer to say “yes”.

In summary, the criterion the observer uses determines the observer’s bias for
saying “yes”. There are two principal ways to affect bias: priors and payoffs. If the
observer is in a situation in which, on most trials, the signal is present (e.g., you expect
your friend to show up on that foggy night), and they are aware of this prior distribution
(P(S) is near one), then it makes sense to be easily swayed to respond “yes”’—to set a
low value of cqpt. In contrast, if signals are rare (few patients have this particular

disease, very few pieces of baggage contain guns or bombs), then perhaps a high
(conservative) criterion is appropriate. At the same time, decisions have consequences.
Allowing a bomb onto a plane or sending a sick patient home without treatment can be
disastrous, indicating a very high cost of a miss for baggage screeners or doctors, so a
liberal criterion is appropriate. This is the difficult situation faced by airport baggage
screeners and by radiologists —the payoff matrix implies use of a liberal criterion, but
the priors suggest a conservative one. In fact, the evidence suggests that human
observers are ill-equipped to select an optimal criterion when the priors are far from
50:50 (Wolfe et al., 2007).

Standardized model

The model outlined in Fig. 1 is general in the sense that there are parameters for
both means (ug and ) and the common standard deviation (o). However, all of the
derivations of the normative model above, and analysis of data below, are based only
on the response rates (hit rate, false-alarm rate, etc.) and the likelihood ratio. None of
these values will change with a change of variables for the decision variable involving a
horizontal shift or a rescaling of the decision variable. One standard presentation of



signal detection theory, especially for yes-no tasks such as I've described, imposes a
change of variables so that the decision axis is in units of z-score for the no-signal
distribution. That is, we apply a change of variables y = (x — ,uN)/o: This change of
variables leads to the following model (Fig. 3):

yz
p(y|N) = exp |—| and
V27 2
1 _d/ 2
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Here, d’ (“d prime”) is a ratio between the strength of the signal and the standard
deviation of the noise—the signal-to-noise ratio. This term appears in many engineering
disciplines concerning signal processing, where signal strength is usually given in units

of power and noise in units of variance. That is, the signal-to-noise ratio SNR = d?>.
INSERT FIGURE 3 ABOUT HERE

All three decision rules (ML, MAP and maximum expected gain) result in a
criterion value of the likelihood ratio (typically denoted as f3). For the standardized
model, the relationship between the decision variable, y, and f is particularly simple,
showing that a criterion :Bopt on likelihood ratio corresponds to a criterion cgpt on the

decision variable:

(copt =4’
exp | —————
t:P(Copt|S) _ ? _exp | td/—d—/z
P pleoptI N) Bt Pt
exp [—— )
/ d/2
log ﬂopt = Coptd T
d 1ogfopt

Thus, the optimal criterion on the decision variable is determined by, and monotonically
increases with, the optimal criterion on the likelihood ratio. If one requires a large
likelihood ratio to say “yes”, that will lead to a large, conservative criterion on the
decision variable. For the maximum expected gain model (Eq. 10), this implies that



d 1ogpfopt
Copt =7 +———
2 d (13)
d 1 P(N) V(N, “no”) — V(N, “yes”)
=—+4 — |log——+log
2 d P(S) V(S, “yes”) — V(S, “no”

Thus, the effects of priors and payoffs on the optimal criterion are additive.

With the standardized representation of signal detection theory (Fig. 3), the main
benefit of signal detection is made clear—the distinction between discriminability and
bias. The stronger the signal, the more accurately one can perform the task. In this
representation, signal strength or discriminability corresponds to the separation between
the two distributions, d’. On the other hand, given a fixed amount of information (fixed
d’), the bias toward responding “yes” or “no” is reflected in the position of the decision
criterion ¢ and may be defined for the normative model as copt — C\L, Where

cmL = d'/2 is the neutral or ML criterion. The optimal criterion, cqpy, is determined by

the priors and payoffs. If the payoffs are symmetric (equal benefits for hits and correct
rejects, equal penalties for false alarms and misses), then the optimal behavior is MAP.
If, in addition, there are equal priors (P(S) = P(N) = 0.5), the optimal behavior is ML.

Data Analysis: The Experimenter’s Perspective

Parameter estimation from data

We now examine signal detection theory from the perspective of the
experimenter. From this perspective, the goal is to use behavioral data to infer
something about how an observer’s decisions were made. In the case of signal
detection theory, an experimenter might like to infer the model parameters from data.
The full model includes details of the stimulus encoding (i, 1y and o), the prior (P(S)),
and the payoff matrix (the four values of V). We would like to estimate these parameters
because there is no guarantee that observers use accurate estimates of these
parameters in formulating a decision—humans may not behave in accordance with the
normative model.

However, given that the general encoding model is equivalent in all of its
predictions to the standardized model, the only parameters that can be estimated are d’
(i.e., (ug — py)/0) and the criterion (c). Experimentally, we know that the prior and
payoff matrix can affect this criterion, but for a given, fixed set of conditions, all we can
estimate are d’ and c. There are two degrees of freedom in the data we collect (hit and
false-alarm rate) and two degrees of freedom in the standardized model (d’ and ¢),
enabling a direct mapping from a pair of hit and false-alarm rates to estimates of d’ and
C.

Looking again at the standardized model in Fig. 3, we see that the value of c is
the distance of the criterion to the right of the mean of the noise distribution, and d’ is
the sum of that distance plus the distance from the criterion to the mean of the signal
distribution. In other words:
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d' = z[P(Hit)] 4+ z[ P(Correct reject)]
= z[P(Hit)] — z[P(False alarm)] and (14)
¢ = z[P(Correct reject)],

4
where z(P) = ®~!(P) and ®(z) = [ exp(—x2/2)d x is the cumulative
2r —00
standard normal distribution. ®(z) is the area to the left of z under the standard bell
curve, that is, the probability of drawing a random value that is z or less. Thus, z(P) is
the z-score corresponding to a particular probability —the position on the x-axis

corresponding to a patrticular left-hand-tail probability of the standard normal distribution.

As a data-analysis method, the only change is to replace the theoretical
probabilities in Eq. 14 with their empirical estimates. P (Hit) is replaced by the proportion
of signal trials in which the observer’s response was “yes” and P(Correct reject) is
replaced by the proportion of no-signal trials in which the observer responded “no”, etc.

As an example, suppose that there were 60 signal trials of which 47 were hits
and 60 no-signal trials of which 21 were false alarms. We find that

47
P(Hit) = — = 0.783

21
P(False alarm) = — = 0.35.
60

d = z[0.783] — z[0.35] = 0.784 — (—0.385) = 1.169.
¢ = z[P(Correct reject)] = z[1 — 0.35] = 0.385.

There is, however, one possible complication. The z function results in infinite
values if supplied a probability of zero or one. That can result if the data contain no false
alarms or 100% hits. There are two standard procedures for these cases. A fairly typical
procedure is to take the problematic row in the results table and add 1/2 of a trial to both
columns. So, if you had zero false alarms and 20 correct rejects (a correct-reject rate of
100%), you would process the data as if you had 1/2 trial worth of false alarm and 20.5

correct rejects, for a correct-reject rate of = 97.6 % . However, Hautus (1995)

suggests that a less biased procedure is to always add 1/2 trial to all 4 elements of the
results table. That would modify the results of our example above as follows:

475

21.5
P(False alarm) = 1 = 0.353.

d = z[0.779] — z[0.353] = 0.768 — (—0.379) = 1.147.
¢ = z[P(Correct reject)] = z[1 — 0.353] = 0.379.
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The psychometric function, varying signal strength

So far, we have described a particularly simple experiment in which there are
only two possible stimuli (signal and noise). Suppose that you are interested in human
performance as a function of the “strength” of the signal. For example, suppose that you
hypothesize that human perception is tuned to images of faces. You measure detection
performance for faces vs. outdoor scenes as a function of stimulus contrast in the
presence of a fixed noisy background image. That is, for each target you estimate
detectability (d’) as a function of stimulus contrast. You choose 6 contrast levels for the
target, running the face trials in a separate session from the scene trials. In each
session, on half of the trials, there is no target (and the correct answer is “no”), and the
other half of the trials are split equally between the 6 contrast levels (and the correct
response is “yes”). These trials are run in random order. If feedback is supplied after
each trial, it indicates that the correct answer is “yes” and “no” equally often. In this
design, there are hit rates P(“yes”| S, level = i) for every signal level i, but there is a
single, shared false-alarm rate from the no-signal trials.

This shared false-alarm rate does not complicate the analysis. One can use the
d’ and c formulas given above (Eq. 14) separately for every stimulus level. Each
estimate of d’ goes hand-in-hand with a corresponding estimate of c. But, the
calculation of the criterion ¢ only uses the false-alarm rate, that in turn is based only on
the trials with no signal. That is, the single, shared false-alarm rate is used for the
computation of d’ and c for all signal levels. As a result, the criterion ¢ is identical for all
signal levels. This is important—how would the observer be able to use a different value
of the criterion for each signal level, when those levels are randomly intermixed and not
perfectly identifiable by the observer (who only has the noisy measurement x
available)? Fortunately, this multi-intensity analysis is consistent with the use of a single
criterion throughout.

The ROC curve

Signal detection theory makes a specific prediction of the consequences of
changing one’s criterion for performance in a signal-detection task. Fig. 4 illustrates
these predictions. The graphs shown here are referred to as “Receiver Operating
Characteristics” or ROC curves. They illustrate the tradeoff between correct “yes”
answers (hits) and incorrect “yes” answers (false alarms) as the criterion varies. Each
curve corresponds to a particular value of signal discriminability (d’). For any given
value of d’, a liberal (i.e., low) criterion leads to a large hit rate but also a large false-
alarm rate (toward the upper-right of the plot), whereas a conservative (i.e., high)
criterion reduces both hit and false-alarm rates; it shifts performance toward the lower-
left portion of the plot. As d’ increases, the curves push up to the upper-left corner of the
plot (i.e., closer to perfect performance—100% hits, 0% false alarms). The negative
diagonal on this plot corresponds to P(hit) = 1 — P(false alarm) = P(correct reject).
Looking at Fig. 1C, equal hit and correct-reject rates corresponds to using the criterion
where the curves cross, that is, the neutral (unbiased) or ML criterion.

INSERT FIGURE 4 ABOUT HERE
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Signal detection theory nicely segregates two aspects of a binary, yes-no
decision—discriminability (how good you are at discriminating signal from noise) and
bias (do you tend to say “yes” or “no” more often). In the ROC plot, discriminability
determines which curve performance will lie on and bias determines your operating
point along that curve. The curves indicate theoretical, expected performance
( P(“yes’| S, ¢) and P(“yes” | N, ¢)). With a finite number of trials in a dataset, the actual
hit and false-alarm rates will deviate from these values and will reflect binomial (coin-
flip) variability.

Thus, an alternative approach to estimating d' is to do so via the ROC curve. The
first step is to collect, for a given stimulus, a set of hit rate/false-alarm rate pairs, each
corresponding to a different value of the criterion. The experimenter can induce the
observer to adopt different criteria (typically in separate blocks of trials) by simply asking
them to do so or by varying the priors (the proportion of signal trials) or payoffs.
Alternatively, pairs of hit and false-alarm rate can be collected during a single block of
trials by expanding the number of response alternatives.

For example, one can use a set of 5 possible confidence ratings as response
alternatives. For our face-detection experiment, those possible responses would be: 1 =
I’m sure a face is not present; 2 = | think a face is not present but with low confidence; 3
= | have no idea whether a face is present or not; etc. Then, the data can be analyzed
by the experimenter adopting 4 different criteria: (1) treat a response of 1 as “no” and
responses 2-5 as “yes”; (2) treat a response of 1 or 2 as “no” and responses 3-5 as
“yes”; (3) treat responses 1-3 as “no” and responses 4-5 as “yes”; and (4) treat
responses 1-4 as “no” and only response 5 as “yes”. This will yield a set of four points
for an ROC plot, and the experimenter can then choose the ROC curve that best fits the
data (Figure 5A).

INSERT FIGURE 5 ABOUT HERE

To better understand how to think about the “best” ROC curve to fit to a set of hit
rate/false-alarm rate pairs, consider another way of plotting the ROC itself (Fig. 5B).
Here, hit rate is again plotted as a function of false-alarm rate. But, instead of using
linear probability axes, as in Fig. 5A, | convert each probability to its corresponding z-
score, z(P). Standard signal detection theory assumes that the signal and noise
distributions share a common standard deviation. Thus, if you move the criterion one
SD rightward relative to the noise distribution, you have also moved that criterion one
SD rightward relative to the signal distribution. This implies that the ROC “curve” on
these new axes is now a straight line with slope one (Fig. 5B).

Thus, to estimate d’ from a set of pairs of hit and false-alarm rates, one can plot
the data using the z-score axes and find the best-fitting line of slope one. However, the
data points in this plot have x-values (false-alarm rate) and y-values (hit rate) that are
both dependent variables, so standard linear regression is inappropriate here. One
solution is to use a maximume-likelihood method by determining the set of parameters (in
our example, 4 criteria and one value of d') so that the likelihood of the data
(P(confidence ratings | d’, ¢y, ..., ¢;)) is maximized (Dorfman & Alf, 1969).
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Deviations of human behavior from the normative model

As | mentioned, one way to collect data for multiple criteria is to run blocks of
trials that vary in either priors, P(S), or in payoffs (V(S, “yes”), etc.). To do this you will
have to inform your observer of these values or allow them enough trials to experience
the current priors and payoffs. For a known value of d’, the normative theory indicates
the optimal criterion (Eq. 13). There is, of course, no guarantee that humans perform in
an optimal manner. In fact, the typical finding (termed “conservatism”) is that, when
priors or payoffs are made asymmetric, the criterion adopted by human observers
moves in the correct direction away from the neutral ML criterion but is not moved as far
as the normative theory predicts (Ackermann & Landy, 2015; Healy & Kubovy, 1978,
1981; Ulehla, 1966). One explanation of this behavior is that human behavior is, in fact,
optimal, but that observed conservatism is due to a violation of the assumption of
normally distributed noise and that, instead, the noise comes from a different form of
distribution such as the Laplace (Maloney & Thomas, 1991). Another explanation is that
humans typically use distorted values of probabilities (e.g., of the prior probability of a
signal P(S)), leading to conservative criterion placement (Zhang & Maloney, 2012).
Other violations of normative theory include data that contradict the prediction that the
effects of changed priors and changed payoffs on criterion placement are additive as
predicted by Eq. 13 (Locke et al., 2020) and that the criterion is fixed and stable across
a block of trials (Norton et al., 2019; Norton et al., 2017).

Forced-Choice Tasks

Signal detection theory can be applied to other tasks as well, such as two-
alternative forced choice (2AFC). In this task, there are two stimuli presented on each
trial (e.g., a noise pattern vs. a noise pattern plus a low-contrast image of a face). The
observer’s task is to identify which stimulus had the signal (i.e., the face). The two
stimuli could be presented in different spatial locations (e.g., left and right of visual
fixation) or in different temporal intervals, sequentially. Typically, psychophysicists prefer
this task, compared to the yes-no task, because this task is often described as “bias-
free”. That is, the participant can’t be biased to say “yes”, because that’s not one of the
response options, and there is always a signal presented. However, they can be biased
to say “2nd interval” and, in fact, data indicate that participants often do have an interval
bias (Yeshurun et al., 2008). The nomenclature for these different experiments varies,
but the theory is the same—the observer has two noisy measurements (x; and x,, e.g.,
from the first and second interval) and must decide which contained the signal. The
rational decision procedure (assuming that the signal is equally likely to appear in either
location or temporal interval) is to select the interval that led to the larger measurement.

On each trial, the observer has a pair of measurements (x;, x,)—the model for
this experiment comprises a two-dimensional space of potential measurements (Fig. 6).
A trial’s measurement pair is now distributed as a bivariate Gaussian, and we assume
the measurements in the two intervals are independent and both have standard
deviation equal to one (hence the distributions are shown as a set of concentric circles
in Fig. 6). We again adopt the standardized model, so that a no-signal measurement is,
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on average, zero. For the typical, single-interval, yes-no task, where we only have one
measurement, x;, and the observer must say “yes” or “no”, we denote the
discriminability as dﬁ(N' For the forced-choice task, the mean pair of measurements for

trials in which the signal is in interval one is (d{/p;0) and for interval two it is (0,d{p)-
INSERT FIGURE 6 ABOUT HERE

We can treat the forced-choice task as a signal-detection task by, for example,
treating a trial in which the signal is in interval 1 as a “no-signal trial”; when the signal
appears in interval 2, we treat this as a “signal” trial (with the corresponding definitions
of hit, false alarm, etc.). Performance in the forced-choice task is governed by the
separation between these two bivariate Gaussian distributions. We denote performance
(i-e., discriminability) in the forced-choice task as d. From the geometry of Fig. 6, it is

clear that dl’:C = \/EdQN. Note that typical 2AFC behavioral data do not satisfy the
assumptions of ideal behavior as just described. Data often indicate that people do not
place a symmetric criterion between interval 1 and 2, nor do results indicate equal

detectability of the stimulus in interval 1 and the stimulus in interval 2 (Yeshurun et al.,
2008).

When the signal is in interval 2, the ideal observer will be correct when x, > Xx;;
similarly, when the signal is in interval 1, the observer will be correct when x, < X;.
Thus, the probability of being correct is the probability of the set of all pairs of
measurements that satisfy either inequality (by symmetry, they are identical), so that:

00 Xy
Prc =Pxy > x5, =9) = J P(x,|s, = S)J p(x;|s; = N)dxdx,. (15)
—0 —o0

Here’s a useful, important and fairly unobvious fact: For any given value of dﬂ(N’
the value of Pg is equal to the area under the corresponding ROC curve for the yes-
no detection task (Fig. 7A)! This is clearly true at the extremes. When dy = 0, the
observer has no information about which stimulus is which and is forced to guess, so
that Pec = 1/2. The corresponding “area under the ROC” (AUROC or AUC) is the
area under the main diagonal (Fig. 4)— 1/2. Similarly, when dy is effectively infinite,

2AFC performance becomes perfect and the area under the ROC is the entire area of
the ROC plot—one.

INSERT FIGURE 7 ABOUT HERE

Between these extremes, the fact that P is equal to the area under the
corresponding ROC curve is not obvious. Consider the rectangle outlined in Fig. 7A.
AUC is computed by summing the areas of such rectangles. The rectangle’s height is
an infinitesimal portion of the y-axis, d P(Hit). The width of the rectangle is one minus
the x value at that position on the ROC curve, 1 — P(False alarm) = P(Correct reject).
The full area is the sum over all such rectangles. Those rectangles can be
parameterized by the criterion ¢ that results in the point on the ROC that intersects the
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rectangle. Fig. 7B shows that a differential amount of the y-axis in Fig. 7A corresponds
to a differential amount of area under the signal distribution (S). That is,

dP(Hit|x = ¢) = p(x = c|S)dc. Combining these,

r1

AUROC P(Correct reject | criterion ¢)d P (Hit | criterion ¢)

Jo
= P(x < c|N)p(measurementis c|S)dc

J—o0
r oo

= } P(x| N )p(measurementis c|S)dxdc

J—o0
r oo

= p(measurement is c|S)I P(x|N)dxdc

J—o0

= PFc-
Thus, discriminability, instantiated by the value of d’, inextricably ties predictions of
performance in yes-no and 2AFC tasks.

Alternative Models

The literature includes many alternatives to standard signal detection theory as a
model of detection and discrimination performance. One class of such models is the set
of so-called threshold models. There are several types of threshold models, and I'll
illustrate one here to give an idea of how this class of models works. | assume that the
observer does not have access to the noisy measurement directly, but rather, these
noisy measurements result in one of two internal states, “detect” and “no-detect”
(possibly through a version of signal detection theory to which the observer does not
have conscious access). On Strials, the detect state is entered with probability Ppy;; and
otherwise the no-detect state results. On N trials, the detect state is entered with
probability Pa. Thus, if the observer merely reports the current state, saying “yes” in
the detect state and “no” otherwise, the ROC will have one point at coordinates
(Pea. PHit) (Fig. 8, filled circle).

To generate a full ROC contour, one allows for randomness in the response.
Suppose the observer doesn't trust their internal state. For example, when they are in
the no-detect state, they occasionally decide to say “yes” despite being in the “no-
detect” state. Depending on how often they make this decision, performance will lie
somewhere along the upper line in Fig. 8. Similarly, if the observer instead doesn’t
always trust the internal “detect” state and occasionally says “no” despite being in that
state, their behavior will lie along on the lower line in Fig. 8. The result of this set of
behaviors (mistrust of either the detect or the no-detect state) is an ROC contour
consisting of two straight lines, rather than the smooth curve (Fig. 4) resulting from
standard SDT.
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INSERT FIGURE 8 ABOUT HERE

A generalization of standard signal detection theory drops the assumption of
equal variances for the N and S measurement distributions. For most intensive stimulus
parameters (e.g., luminance, size, weight, speed, loudness, etc.) the just-noticeable
difference (the difference in intensity between a base stimulus and an increment leading
to a criterion discrimination performance such as d’ = 1) is approximately proportional
to the intensity of the base stimulus, which is known as Weber’s Law. There are many
combinations of stimulus encoding and noise that are consistent with Weber’s Law
(Zhou et al., 2024). One model consistent with Weber’s Law drops the equal-variance
assumption and instead suggests that noise standard deviation grows approximately
proportional to stimulus intensity.

INSERT FIGURE 9 ABOUT HERE

Fig. 9Aillustrates an unequal-variance context in which the stronger stimulus has
higher variance, consistent with this model of Weber’s Law, such as might result from,
for example, discrimination of image contrast. One can still posit that observers perform
this task by setting a single criterion ¢ and responding “yes” when the measurement
exceeds this criterion. For the example in Fig. 9A, this leads to the asymmetric ROC
curve shown in Fig. 9B. In Fig. 9A, the S distribution has a standard deviation three
times as large as the N distribution. Thus, if we move ¢ one standard deviation to the
right relative to the N distribution, we will have moved that criterion only one-third of a
standard deviation to the right relative to the S distribution. As a result, if | plot the ROC
curve with the axes scaled as z-scores as | did in Fig. 5B, each shift to the right by one
will lead to a shift upward of 1/3 (in z-score for the false-alarm and hit rates
corresponding to the changed criterion). Thus, | will again have an ROC that is a
straight line, but the slope is no longer one but, instead, is equal to the ratio of the two
standard deviations (here: 1/3, Fig. 9C).

We pointed out above (Observer’s perspective and the SDT model) that the
optimal decision rule, taking payoffs and priors into account, is to impose a threshold on
the likelihood ratio. That derivation only used the two likelihoods and never made
reference to the signal detection theory assumptions of equal variance or Gaussian
measurement distributions. An ideal decision-maker bases decisions only on likelihood
ratio, in other words, the likelihood ratio is a sufficient statistic for this decision.
Inspecting Eq. 10, if we are in a situation with equal priors (P(S) = P(S) = 0.5) and
equal payoffs (the value of being correct on noise trials is the same as on signal trials),
then ﬂopt = 1. That is, the criterion should be placed where the signal and noise
measurement distribution curves cross. For unequal signal and noise variances, the
curves cross in two places (Fig. 9A) and thus the optimal decision-maker doesn’t place
a single criterion, saying “yes” when that criterion is exceeded. Rather, the optimal
strategy is to say yes when the measurement exceeds a high criterion ¢, or falls below
a second, low criterion ¢, because very low values of the measurement are more likely
to occur on signal than on noise trials.

INSERT FIGURE 10 ABOUT HERE
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Having noticed that Eq. 10 can be applied to any pairs of distributions, we can
also drop the assumption that the two distributions are Gaussian. Fig. 10 shows N and
S distributions that are Poisson-distributed, differing in the expected number of counts.
This is a reasonable model for a decision based on the number of photons caught by a
collection of rod photoreceptors in the retina or based on the number of action potentials
from a single neuron. For equal priors and symmetric payoffs, the optimal decision is
maximum likelihood: pick the stimulus based on the higher curve corresponding to the
current measurement (here, resulting in a criterion between one and two counts).

Applications to Neural Data

The tools | have outlined may also be applied in situations in which we have
empirically measured distributions and choose not to make an assumption of a
particular distributional form (Gaussian, Poisson, etc.). A particularly well-known
example is the application to neural responses to visual motion in cortical area MT, the
“middle temporal area” (Britten et al., 1992; Newsome et al., 1989; Salzman et al., 1990;
Salzman et al., 1992); the same ideas can be applied to any discrimination based on
neural responses.

Newsome and colleagues recorded from single neurons in area MT of the
macaque monkey while the monkey viewed a random-dot motion display in which a
subset of the dots moved in either the preferred direction of the neuron or in the
opposite (anti-preferred or null) direction. The other dots moved in random directions.
Across trials, they varied the stimulus coherence—the fraction of dots that moved
together. They included a zero-coherence condition (purely random motion). Each
stimulus was presented many times, resulting in a histogram of the number of action
potentials from the neuron summed over the stimulus duration—one histogram for each
coherence level and motion direction. At the same time, the monkey was awake and
performing a discrimination task on motion direction, effectively deciding whether the
stimulus moved in the currently recorded neuron’s preferred or null direction. The tools
I've discussed allowed Newsome and colleagues to determine what information a single
neuron had concerning the stimulus being displayed (the neurometric function) as well
as about the decision the monkey was about to make (choice probability).

A psychometric function for a task such as this is a measurement of behavioral
performance as a function of a stimulus variable. Here, that could be, for example, d’ for
discriminating leftward vs. rightward motion as a function of motion coherence in a
forced-choice task. The notion of a neurometric function is to generalize this concept
from behavior to the information contained in neural responses. Here, the noisy
measurement is the spike count from the neuron. The “behavior” is generated by an
idealized decision-maker that bases its choice on the neural spike counts in response to
each of the stimuli to be discriminated.

Consider the two histograms in Fig. 11A. The histogram on the left represents
responses “recorded” from a neuron in response to a 10% coherence stimulus moving
in the null direction; the histogram on the right shows the responses at this coherence
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for stimuli moving in the preferred direction. We could pick an arbitrary criterion (such as
where the curves cross) and compute a hit rate (the fraction of preferred-direction
responses that exceed the criterion) and false-alarm rate (the fraction of null-direction
responses that exceed the criterion) and then compute d’ from these two rates.
However, these histograms are empirical distributions; they are a noisy representation
of the true, underlying distributions that would result from an infinite number of trials.

It makes more sense to use all the information we have in these histograms to
compute a measure of the ability of this neuron to discriminate these two stimuli. What
Newsome and colleagues proposed is to use the same trick as described above for
using confidence ratings. Place a “criterion” at 1 action potential, and compute hit and
false-alarm rates based on that criterion. Repeat with the criterion equal to 2, 3, 4, ...
spikes. When you are done, you have produced a piecewise-linear ROC curve
(Fig. 11B). Discrimination performance can be summarized using the area under the
ROC. Recall that the area under the ROC is equivalent to performance in a 2AFC task.
Here, that task is that | give you a random sample from the left-hand histogram and a
random sample from the right-hand histogram. You decide that the sample drawn from
the preferred direction’s distribution is the sample with more action potentials. The area
under the ROC is the predicted proportion of correct decisions in that 2AFC task.
Finally, this exercise can be repeated with the pairs of neural-response histograms
corresponding to each coherence level used in the experiment. The result is a
neurometric function, with predicted direction-discrimination performance as a function
of stimulus coherence (Fig. 11C), yielding a description of the information content in a
single neuron’s firing rate for this task.

INSERT FIGURE 11 ABOUT HERE

The second question that Newsome and colleagues asked was “How informative
is this neuron about the behavior of the animal?” The approach to this question was
quite similar. Obviously, when stimulus coherence was high, response variability was
low (the animal was correct most of the time). The highest response variability was
when the stimulus had no information at all (zero coherence). Fig. 11D again shows two
histograms of neural responses, but this time both are (simulated) responses to
completely random, zero-coherence motion stimuli. However, this time the histograms
are conditioned on the monkey’s response.

The left-hand histogram corresponds to when the animal decided the stimulus
moved in the neuron’s null direction, and the right-hand histogram shows neural
responses when the monkey decided the stimulus moved in the neuron’s preferred
direction. In both cases, the stimuli themselves were completely random and
uninformative. Given the two histograms, we can compute the areas to the right of each
possible criterion, yielding hit and false-alarm rates for the task of deciding what
behavioral response the monkey made given knowledge only of this neuron’s response.
From these rates, we can construct a ROC and compute the area under the ROC, that
they called the choice probability for this neuron. Choice probability is a measure of how
useful this neuron is in discriminating what behavioral choice the monkey subsequently
made. This approach shows the usefulness of the ROC and, in particular, of the area
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under the ROC as a nonparametric analysis method for summarizing discrimination
performance.

Extensions to Metacognition

In this chapter, | have discussed signal detection theory solely with regard to
perceptual decisions (lIs the signal there or not? Are the dots moving to the right or
left?). However, having completed a task, humans also typically have a feeling of how
successfully they carried out the task. In the case of binary decisions (the “first-order”
task), an experimenter can ask the observer something about their estimate of the
probability that decision was correct (the “second-order” task). Reasoning about one’s
own thoughts and actions is called metacognition.

There are many sources of information that one can use to inform a
metacognitive judgment. For a random-dot display, there are stimulus cues that are
correlated with the quality of the stimulus, such as the perceived randomness or
inconsistency of dot motion directions, that could inform a judgment of confidence in the
first-order dot-direction decision. There are also aspects of one’s own behavior that
could inform a decision, such as having low confidence if one’s own reaction time for
the first-order task was long or basing confidence on the previous rate of success in the
task. In addition, one can use the elements of signal detection theory itself to form a
second-order judgment.

INSERT FIGURE 12 ABOUT HERE

Consider again the signal-detection experiment in which the observer is asked to
discriminate stimulus N (a noise pattern) from S (a noise pattern plus a low-contrast
face) and subsequently indicate whether that response was made with low or high
confidence (Fig. 12A). The theoretical setup is that of standard signal detection theory
with two unit-variance measurement distributions separated by d’ (first-order
discriminability) and equal priors and payoffs.The observer’s response bias is
represented by the first-order criterion ¢, (here, the neutral criterion is indicated). If a
measurement lies quite close to this first-order criterion, the likelihood ratio and the
posterior odds will be close to one, so it makes sense to have low confidence; if the
measurement is far from the criterion, this justifies increased confidence. Thus, a simple
model of the metacognitive judgment is that the observer adopts second-order criteria
(one for each possible first-order response: ¢, |,y and ¢,,—s) and responds “high

confidence” if the measurement is farther from the first-order criterion than the
corresponding second-order criterion.

Consider the case when the first-order response is “S”. Thus, the measurement
lies to the right of ¢;. For the second-order task (the confidence response), there are
two possible stimuli that could have appeared (corresponding to first-order hits and false
alarms) and two possible confidence responses. When the stimulus was, in fact, S the
response “S” was correct. If the confidence response was “high”, we might say that high
confidence was justified (because they were correct) and call that a second-order hit.
When the stimulus was N, then high confidence was unjustified, and we can call that a
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second-order false alarm. However, if confidence was low, that is a 2nd-order correct
reject.

The first-order criterion ¢, is estimated using the first-order false-alarm rate.
Given the estimated values of ¢; and d’, and any possible value of the second-order
criterion ¢,|,—g, the predicted probabilities of 2nd-order hits and false alarms can be

calculated. These are the probability that, for each stimulus, the measurement exceeds
Cor=S given that it already exceeds c,. Varying Co|p=s OVEr the entire range yields a

2nd-order ROC curve (Fig. 12B). The measured second-order hit and false-alarm rates
are not likely to land on this theoretical ROC curve. Maniscalco and Lau (2012)
proposed a measure of metacognitive sensitivity (how sensitive you are to your own
stimulus information and the quality of your first-order judgment) by computing what
they called meta-d’ (for a comprehensive summary of metacognition metrics, see
Rahnev, 2025). Any given pair of d’ and ¢, values results in a second-order ROC curve.

Maniscalco and Lau defined meta-d’ as the value of d’ that, if paired with the
criterion “corresponding to” ¢, yields the observed pair of second-order hit and false-
alarm rates. One has, of course, to determine what you mean by the corresponding
first-order criterion, since you are now treating the problem as if the two distributions are
a different distance apart. The sensible solution, proposed by Maniscalco and Lau, is to
use the criterion “c,” along with the new value of d’ so that the corresponding value of
the likelihood ratio /3 for that criterion is the same as the value f derived from the first-
order responses.

The literature on metacognition has many other definitions of metacognitive
sensitivity. The development of the meta-d’ metric was, among other things, an attempt
to develop a metric that estimates metacognitive sensitivity independent of
(metacognitive) bias and first-order discriminability. However, meta-d’ tracks first-order
sensitivity. That is, if d’is high, meta-d' is likely to be high as well. Thus, to derive a
metric for the quality of metacognition itself, Maniscalco and Lau proposed that
researchers report the M-ratio (meta-d’/d’)—the fraction of the information in the first-
order judgment that is effectively used in the second-order confidence judgment.

Conclusion

In the 70 years (as of this writing) since signal detection theory was introduced, it
has become the standard model and data-analysis technique for detection and
discrimination experiments in a wide variety of research areas, often far from the
sensory experiments in which it was first described. It allows the researcher to
separately estimate observer sensitivity (d) and response bias (c or ). Through careful
estimation of the ROC curve, it also allows the experimenter to test the underlying
assumptions (continuous decision variable, equal variances, Gaussian distributions).
The method can be used with other distributions, including discrete distributions, such
as are found in single-unit neural measurements. It is a general model of behavior and
the information in neural coding, with wide applicability.
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Figure 1. Standard signal detection theory. (A) The probability distribution for the
evidence x on no-signal (N) and signal trials (S) with means ,, and pg and common
standard deviation o. (B) The likelihood values p(x | N) and p(x|S) corresponding to a
measured evidence value x. (C) The maximume-likelihood observer sets a criterion ¢
where the curves cross and says “yes” when the decision variable exceeds that
criterion. (D) The likelihood ratio (p(x|.S)/p(x|N)) increases monotonically with x. Any
criterion on likelihood ratio corresponds to a criterion on the decision variable x. The
optimal criterion, for equal priors and payoffs, Copt (where the curves cross in panel C)

corresponds to a criterion on likelihood ratio, ﬂopt = 1.
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Figure 2. Criterion and decision outcomes. (A) When a signal was presented, these
areas represent the probabilities of a hit and a miss. (B) When no signal was presented,
these areas represent the probabilities of a false alarm and a correct reject. (C) The
criterion ¢ indexes the observer’s bias to say “yes”. Low values lead to a liberal bias: a
high hit rate and few correct rejects. (D) Moving the criterion rightward leads to a
conservative bias: a reduced hit rate, but increased correct rejects.
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Figure 3. Standardized signal detection theory. Once standardized, the separation
between the distributions (d') provides a metric for discriminability.
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Figure 4. ROC curves for four values of d'. The dashed negative diagonal corresponds
to predicted performance for a neutral criterion (where the two curves cross as in

Fig. 1C), so that hit rate is identical to the correct-reject rate (i.e., one minus the false-
alarm rate). For any value of d’ the corresponding curve is traced from lower-left to
upper-right as the criterion ¢ decreases.
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Figure 5. Estimation of d’ using confidence ratings and the ROC curve. (A) From five
detection confidence levels we can derive four points on the ROC curve and determine
d’ from the best-fitting ROC curve. (B) Plotted on probability (z-score) axes, the ROC

curves become lines with slope 1.
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Figure 6. Two-alternative forced choice (2AFC) task. In each trial, there are two stimuli,
leading to measurements x; and x,. A no-signal measurement is, on average, zero. A
measurement of a signal is, on average, equal to dQN—the value of d’ one would have
on a single-interval, yes-no task. The concentric circles represent the bivariate
distribution of (x;, x,). The distance between the two distributions, dl’zc, governs
performance in the 2AFC task.
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Figure 7. Demonstration that the area under the ROC equals predicted 2AFC
performance. (A) The area is the sum of differential areas with width equal to the
probability of a correct reject for a criterion that leads to the hit rate for that rectangle.

(B) The height dp(Hit) of the rectangle in (A) is equal to the area of the rectangle shown

here.
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Figure 8. The ROC curve resulting from a threshold theory in which the detect state is
entered on no-signal trials with probability Pgp and with probability Phjt on signal trials.
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Figure 9. SDT with unequal variances. (A) The measurement distribution p(x|.S) has a
standard deviation three times larger than p(x | V). Note that S is more likely than N
both to the right of ¢;, andto the left of ¢;. (B) If only a single criterion is used, a non-
convex ROC curve results. (C) Plotted on probability (z-score) axes, this ROC curve is a
straight line with slope equal to the ratio of the noise and signal standard deviations
(here: 1/3).
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Figure 10. Signal detection theory with a discrete measurement distribution (Poisson).
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Figure 11. Signal detection theory applied to neural spiking data. (A) Simulated
histograms of the number of action potentials (spikes) in response to a brief random-dot
motion stimulus moving in either the neuron’s preferred direction (white) or the opposite
(null) direction (gray). (B) ROC curve derived from the data in (A). (C) Neurometric
function—the area under the ROC (as in panel B) as a function of motion coherence.
(D) Histograms of spike counts conditioned on the monkey’s response for a zero-
coherence motion stimulus, that may be analyzed as above to determine “choice
probability”.
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Figure 12. SDT and metacognition. The observer first discriminates between stimuli N
and S and then reports whether they have low or high confidence in that judgment.

(A) Criterion ¢ determines the discrimination decision. Neighboring criteria Colr=N and
5= determine the confidence response. The denoted areas correspond to high-
confidence “S” reports when the stimulus was indeed S (a second-order hit); low-
confidence “S” reports when it was, in fact, N (a second-order correct reject).

(B) Sweeping ¢,|,—g across all possible values yields a second-order ROC, that can be

compared to confidence data.



