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Fitting models to data

• How do we estimate parameters?
- formulate model + objective function (common 

choice: ML)

- optimize (closed form, gradient descent, etc)

• How good are parameter estimates?

• How well does model fit ?
- likelihood or posterior comparisons

- model failures

Retina
Optic
Nerve

LGN
Optic
Tract

Visual
Cortex

Goal is to estimate:

Example: modeling response of a sensory neuron



Geometric view

1D stimulus over time  
(e.g., flickering bars)

• 8 x 6 stimulus block 
       = 48-dimensional vector
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Response is captured by 
relationship between the 
distribution of  red points 
(spiking stim) and blue+red 
points (all stim),  
expressed in terms of  
Bayes’ rule: s1

s2
Cannot estimate directly (“curse of dimensionality”).   
We need a model



Some tractable model options

• Low-order polynomial [Volterra ‘13; Wiener ‘58; 
DeBoer and Kuyper ‘68; ...]  

• Low-dimensional subspace [Bialek ‘88; Brenner 
etal ‘00; Schwartz etal ‘01; Touryan and Dan ‘02; ...]

• Recursive linear with exponential 
nonlinearity [Truccolo etal ‘05; Pillow etal ‘05]

Low-order polynomial model
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• Threshold-like nonlinearity => linear classifier
• Classic model for Artificial Neural Networks
      - McCullough & Pitts (1943), Rosenblatt (1957), etc

• No spikes (output is firing rate)

Example: LN cascade model



LNP cascade model
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• Simplest descriptive spiking model

• Easily fit to (extracellular) data

• Descriptive, and interpretable (although not mechanistic)

Simple LNP fitting

• Assuming:

- stochastic stimuli, spherically distributed

- average of spike-triggered ensemble (STA) 
is shifted from that of raw ensemble

• The STA (i.e., linear regression!) gives an 
unbiased estimate of w (for any f).  [on board]

• For exponential f, this is the ML estimate!   
[on board]

[Bussgang 52; de Boer & Kuyper 68]

Computing the STA
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non-spiking stimuli
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STA corresponds to a “direction” in stimulus space 

Projecting onto the STA

STA response

Solving for nonparametric nonlinearity



Projecting onto an axis orthogonal to the STA

Projecting onto an axis orthogonal to the STA

stimulus filter point
nonlinearity

probabilistic
spiking

LNP model, fit to retinal ganglion cells

A simple white noise analysis of neuronal light responses 205
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Figure 4. (a) Spatial profile of the STA from a macaque ON-centre retinal ganglion cell 45 ms
before a spike. Each square stimulus element was 60 µm on a side. (b) Time course of the STA
at the centre of the receptive field. Red, green and blue phosphors are shown in corresponding
colours. The mean of the Gaussian intensity distribution for each gun was 0.5 and the standard
deviation was 0.16. Contrast refers to the difference from the mean intensity. (c) Static nonlinearity
N(g) estimated from this cell. The smooth curve is a parametrized form of the cumulative normal
function fitted to the data. See the text for details. (d) Same as (a), for a simultaneously recorded
OFF cell. (e) Same as (b), for the cell in (d). (f ) Same as (c), for the cell in (d). !t = 15 ms.

the STA was computed. The STA was a movie, containing contrast values (deviations from
mean intensity of 0.5) for each of the three guns at each spatial location in a sequence of time
bins preceding a spike. Figure 4(a) shows a frame of this movie 45 ms prior to a spike. This
ON-centre cell spiked, on average, after a brightening in the region of the display where the
STA had entries significantly greater (brighter) than zero (grey)—the centre of the neuron’s
spatial receptive field. A weak antagonistic surround (darker than grey) encircles the centre.
The STA tapered to near zero far from the centre indicating that stimulus perturbations at these
locations were not correlated with spikes. Figure 4(b) shows the red, green and blue phosphor
intensities in the STA summed over the centre of the receptive field plotted as a function of
time prior to the spike. The tapering to zero at about 200 ms prior to the spike indicates that
stimulus perturbations before this time were not correlated with spikes and thus defines the
memory of the cell. Since the STA is proportional to the linear weighting of visual inputs
w, these time courses represent the time-reversed impulse responses to red, green and blue
phosphor modulation in the centre of the receptive field. The biphasic form of these impulse
responses indicates temporal bandpass filtering. The relative amplitude of the red, green and
blue traces reflects the relative strength of inputs to the cell from the three types of cone
photoreceptor. The STA time course in the surround was weaker and of opposite polarity (not
shown). Similar results from a simultaneously recorded OFF-centre ganglion cell are shown
in figures 4(d) and (e).

[Chichilnisky & Kalmer, 2002]
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Psychophysical “Classification Image”

|Research Focus

Seeing patterns in the noise

Eero P. Simoncelli

Howard Hughes Medical Institute, Center for Neural Science, and Courant Insitute for Mathematical Sciences, New York University,
4 Washington Place, Rm. 809, New York, NY 10003, USA

How do observers detect the presence of objects or
features in visual images? Stochastic stimuli (for
example, white noise) have become popular choices for
providing a linear characterization of early sensory
mechanisms. A recent paper by Neri and Heeger takes
this type of methodology a step further, and succeeds
in isolating and characterizing non-linear mechanisms
responsible for the detection and identification of a
specific visual target.

What is it that allows us to detect the presence of objects or
features in visual images? And are the mechanisms
responsible for detection also responsible for identification
of those features? Traditional attempts to answer such
questions are based on psychopysical experiments, in
which the experimentor measures the detectability or
identifiability of some fixed target as a function of target
brightness and perhaps other target attributes. Early on in
such research, experimentors realized the importance of
randomizing the presentation of stimuli, in order to avoid
unwanted history-dependence in their measurements.
Over thirty years ago, a number of authors proposed a
more extreme form of randomization, in which stimuli are
drawn randomly from an ensemble and presented in rapid
succession [1,2]. The stimuli are then labelled according to
responses (for example, ‘yes’ or ‘no’ in a psychophysical
detection task), and the properties of these ‘response-
triggered’ stimulus sets are analyzed.

Related approaches have also been developed, in which
a stimulus is buried in noise, and one analyzes the
influence of each particular sample of noise on the
subjective response (see, for example, [3,4]). There has
been a resurgence of interest in these techniques (see [5]
for a number of examples), partly as a result of the
development of computer hardware and software capable
of both real-time random stimulus generation and compu-
tationally intensive statistical analysis.

An example: detecting and identifying a target
A recent article by Neri and Heeger provides an intriguing
example of the use of this type of technique to reveal non-
linear mechanisms used for detection and identification of
a vertical bar [6]. The stimuli aremovies, each nine frames
long, containing a set of eleven abutting vertical bars. The
intensities of the bars are chosen randomly on each frame
from a uniform distribution. An example stimulus is
illustrated in Fig. 1. After each movie is presented, the
subject reports whether they believe the central location of

the middle frame contained a target bar of known polarity
(bright or dark). The purpose of the experiment is to
determine those aspects of the 9 £ 11 space–time array of
intensities that determine the subject’s response.

Consider the intensity of a single bar in the movie. This
intensity takes on a random value for each trial, drawn
from some probability distribution. On each trial, the
observer indicates whether or not they have seen the
target. The result is a partition of the bar intensities into
two sets: those for which the subject answered ‘yes’, and
those on which they answered ‘no’. A comparison of these
two conditional distributions of bar values can tell us
something about the relationship between that particular
pixel and the subject’s behavior on this task.

Some hypothetical situations are illustrated with
simulated data in Fig. 2. Figure 2a shows the distribution
of bar intensities across all trials. If the subject’s responses
do not depend on this bar intensity, then the distribution of
stimuli associated with ‘yes’ (or ‘no’) responses should be
the same shape as the full stimulus distribution (up to
statistical sampling error) (Fig. 2b). Conversely, if these
response-triggered distributions do not match that of the
full set of stimuli, we can infer something about the
relationship between that bar and the response. For
example, Fig. 2c shows response-triggered distributions

Fig. 1. Depiction of a typical stimulus as used in Neri and Heeger’s experiments [6].
Each stimulus was a movie consisting of nine frames of eleven vertical bars,
whose intensities were chosen randomly from a uniform distribution on each
frame. Subjects were asked whether they saw a bright bar in the middle of the
stimulus block, on the middle frame.
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http://tics.trends.com for a case where higher bar intensity increases the
probability of the subject’s responding ‘yes’. Similarly,
Fig. 2d shows a case in which ‘yes’ responses are more
likely when the bar intensity has a larger contrast (i.e.
when it deviates further from the background value). Bar
intensities near zero aremore likely to elicit a ‘no’ response,
and those far from zero are more likely to elicit a ‘yes’.

These three example behaviors can be summarized
using the difference between the means and variances of
the two response-triggered distributions. Situation (d)
produces a large difference in variance, but small
difference in mean. Situation (c) produces a large
difference in mean but small difference in variance. And
situation (b) produces little difference in either mean or
variance.

Mechanisms for detection and idenification
Neri and Heeger performed the mean and variance
analysis for every bar in their movie stimuli, and
assembled the results to form two summary movies.
They refer to these as a ‘mean kernel’ (the difference in
mean intensity of the ‘yes’- and ‘no’-triggered distributions
for each location and frame of the stimulus) and a ‘variance
kernel’ (the same calculation for the variances of the
response-triggered distributions). The mean kernel shows
a center–surround type of organization: a positive region
spread over the middle frames, surrounded by two
negative regions that are also spread over the middle
frames.

If one assumes that each of the stimulus bars influences
the subjective response independently, and that the
probability of a ‘yes’ response varies monotonically with
the intensity of each bar, then this mean kernel represents
themost potent stimulus for generating a ‘yes’ response. In
physiological applications of reverse-correlation, this
kernel can provide a linear characterization of a neuron’s
receptive field (with a few assumptions) [7]. Psychophysi-
cally, the interpretation is similar: the mean kernel
provides a linear description of the mechanism that is
generating subject responses. Note that an ideal detector
for the target would simply measure the intensity at the
central location of the middle frame, and thus the mean
kernel for such a detector would consist only of a positive
central bar. The experimentally measured kernel implies
that the visual system is sub-optimal for this task, and
implies that subject responses are generated by a
mechanism with a center–surround organization, as
found in neurons in retina, lateral geniculate nucleus, or
primary visual cortex.

Themore surprising result comes from the estimation of
the variance kernel, which shows a positive region in the
center of the stimulus spread over the earliest frames (i.e.
preceding the target frame). That is, subjects are more
likely to respond ‘yes’ when the early frames of the
stimulus movie contain high contrast bars in the center.
This means, for example, that a bar with large positive or
negative intensity occuring on the first or second frame
makes it more likely the subject will say that they saw a

Fig. 2. Hypothetical examples illustrating the analysis used by Neri and Heeger for a single bar within the stimulus (i.e. at a single location in a single frame). (a) Distribution
of intensity values (s), relative to mean background intensity, for 10 000 trials. (b,c,d) Three hypothetical distributions of bar intensity values conditioned on subject
response (solid ¼ yes, dashed ¼ no). (b) a bar that has no influence on the subjective response. In this case, both response-triggered intensity distributions are the same
shape as the raw stimulus distribution, apart from statistical variability; (c) a bar whose intensity affects the subject’s response: large intensities are more likely to elicit ‘yes’
responses; (d) a bar whose contrast (deviation from background intensity) affects subject’s response: large constrasts are more likely to elicit ‘yes’ responses.
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[Neri & Heeger, 2002]

Stimuli: 11x9  
movie of bars,  
uniform random 
intensities

Task:  
Is center bar of 
middle frame 
brighter or darker 
than the mean?

Simulation: 
a) raw stimulus 
distribution 
b) cond. dist. for 
irrelevant bar 
c) cond. dist. for 
linear response 
model 
d) cond. dist. for 
quadratic (contrast) 
response 

ML estimation of LNP

fθ(!k · !x)If               is convex (in argument and theta), 
and log              is concave, 
the likelihood of the LNP model is convex
(for all data,                   ) 

fθ(!k · !x)

{n(t), !x(t)}

[Paninski, ’04]

Examples: e
(!k·!x(t))

(!k · !x(t))α, 1 < α < 2



Sources of STA estimation error

• Finite data (convergence goes as 1/N)

• Non-spherical stimuli (estimator can be biased)

• Model failures
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Example 2:  
uniform noise

true

• Neural response depends on spike history

• Symmetric nonlinearities and/or multi-
dimensional front-end (e.g., V1 complex cells)

• White noise doesn’t drive mid- to late-stage 
neurons well

LNP model failures (& solutions)

=> introduce spike history feedback

=> spike-triggered covariance, subspace analyses

=> cascade LNP on top of an “afferent” model

[Truccolo et al ‘05; Pillow et al ‘05]
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Recursive LNP
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model
parameters

stimulus & 
spike train

Critical: Likelihood function has no 
local maxima     [Paninski 04]

post-spike waveform

re
la

tiv
e 

sp
ik

e 
ra

te

0 25 50
0

0.5

1

time (ms)

temporal filter

-200 -150 -100 -50

          

time (ms)

Example ON cell

rLNP

RGC

IF
LNP 74%  of var 

92 % of varrLNP



ON cell

RGC

IF
LNP 74%  of var 

92 % of varrLNP

rLNP

Cross-Correlations

20

30

20

30

20

30

20

30

-50 0 50

20

30

time (ms)

20

30

-50 0 50
time (ms)

ON 
cells

OFF 
cells

GL)
RGC

ra
te

 (s
p/

s)

rLNP

rLNP model

stimulus

stimulus filter

post-spike

exponential
nonlinearity

+

probabilistic
spiking

waveform 

+

coupling 
waveforms

Coupled recursive LNP (crLNP)



[Pillow, Paninski, et. al., 08]
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Figure 1: Model schematic and parameter fits. (A) Model schematic showing parameters for two
coupled neurons. Each cell has a stimulus filter (receptive field), post-spike filter, and “coupling
filters” that capture dependence on spikes in other neurons. Filter outputs are summed and passed
through an exponential nonlinearity to yield spike rate for an instantaneous (Poisson) spike generator.
(B) Mosaics of 11 ON and 16 OFF retinal ganglion cells tiling a single region of visual space. Ellipses
show 1 SD of a Gaussian fit to each receptive field (RF) center, and gray lines indicate a common
4x4 lattice of stimulus pixels. (C) Paramaters fit to an example ON cell. Left: temporal and spatial
components of center (red) and surround (blue) filter components, whose di!erence is the full stimulus
filter. Middle: exponentiated post-spike filter, which multiplies the spike rate following a spike at
time zero. (Relative spike rate drops to zero following a spike and recovers with a slight overshoot
before settling to 1). Right: coupling filters from other cells in the network. Above, black filled
ellipse is the cell’s RF center, and blue and red lines show connections from neighboring OFF and
ON cells (RFs indicated by gray ellipses; line thickness indicates strength of the coupling). Below,
exponentiated coupling filters show the multiplicative e!ect of a spike in a neighboring cell on spike
rate. (D) Analagous plots for parameters fit to an example OFF cell.
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Figure 2: Changes in receptive field estimates induced by coupling. (A) Ellipses show 1SD of
Gaussian fit to RF surround of each cell under full model (above) and “uncoupled” model (below),
showing that coupling induces an e!ective decrease in surround size. (B) Scatter plot of center and
surround RF sizes under full and uncoupled model. (C) Correlation coefficient between all pairs of
spatiotemporal stimulus filters, indicating that coupling decorrelates stimulus filters.

Comparison to an uncoupled model

In order to understand the e!ects of functional coupling in the recurrent-LNP model on the pop-
ulation response, we can compare the performance of the full model with that of a reduced model5
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[Pillow, Paninski, et. al., 08]
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Figure 4: Comparison of linear and Bayesian decoding of population spike responses. a, Schematic:
Bayesian decoding of a stimulus chunk from a set of observed spike times. The stimulus prior p(s),
multiplied by the model-defined likelihood p(r|s) defines the posterior p(s|r), whose mean is the
Bayes’ least-squares estimate. Gray boxes indicate the stimulus chunk to be decoded and the set of
spike times relevant to its decoding. a, Information rate under various decoding methods. 150-ms
single-pixel stimulus segments (18 time bins) were decoded from population spike responses using
linear decoding and Bayesian decoding of the Poisson, uncoupled and full models. The full model
preserves 21% more information than the uncoupled model, indicating the importance of correlations
to the information content of the population response. c, Mutual information decomposed as a
function of temporal frequency for various decoding methods.

uncoupled models exhibit no di!erence in predicting the mean response to repeated stimuli (i.e.,
capturing 80-95% of the PSTH variance in 26 of 27 cells, fig. 3a-c). However, the log-likelihood of
novel single-trial spike trains exhibits a average 13% increase in information under the full model
(fig. 3d), indicating that preserving correlations leads to significantly better prediction of novel
spike responses. How can we make sense of this apparent discrepancy?

Consider how the population response constrains the response of an individual cell on a single
trial. Even though the coupled and uncoupled models yield similarly accurate predictions of the
cell’s average response, on any single trial, the spike trains of other cells in the population carry
information about the response on that trial, since the coupling filters determine when spikes are
most likely to occur relative to the spikes in other cells. To flesh out this intuition, used the model
to make single-trial predictions of a cell’s response using both the stimulus and the spiking activity
in the remainder of the population (fig. 3e-f). For each trial, we sampled spikes for a single cell
using the model-defined probability distribution over those spikes times (see Methods), e!ectively
creating a response raster where both the stimulus and population activity were presented many
times. Averaging this raster gives a prediction of the cell’s spike rate for that specific trial. We
compared single-trial rate predictions with the cell’s true spike times on many di!erent trials, and
found that, on nearly every trial, the model-based prediction correlates better with the observed
spike times than the average response (i.e./ PSTH) of the cell itself (fig. 3g). Thus, correlations
can be exploited to predict spike times more precisely than if we had access to the (true) average
response to a novel stimulus, and much of the trial-to-trial variability in a cell’s response can be
attributed to population activity.

Although the model provides a more accurate description of multi-neuronal encoding, we have not
yet assessed the importance of correlations to the stimulus-related information content of population
spike trains. If the stimulus information can be read out of the time-varying spike rates, with
noise assumed to be independent across neurons, then improved spike train prediction a!orded by
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[Pillow, Paninski, et. al., 08]

Classic V1 models

Simple cell

Complex cell +

“Energy model” (Adelson/Bergen, 1985)

STA failure on complex cell

# stimuli
# spikes 

+

Complex cell model



Spike-triggered covariance (STC)
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STC: suppressive filters

Subspace LNP model
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V1 simple cell
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V1 complex cell
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PSTH validation

Simple cell - STA + 3 eigenvectors: 62% VAF
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