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Tumor, or not?

(357,221) = 328

Decision-making and categorization (outline)

One-dimensional evidence, binary decision:
Signal detection theory (SDT)
Discriminability: Fisher Information

N-dimensional evidence, binary decision:
Linear discriminant analysis (LDA)
Quadratic discriminant analysis (QDA)

N-dimensional evidence, more than 2 categories:
Labeled data: ML or MAP extension of QDA
Unlabeled data: K-means or soft K-means clustering




Signal Detection Theory (or, Statistical Decision Theory)

P(xIN) P(x1S)

Likelihood of N \ /

Likelihood of S

X (measurement)

Stimulus is either “signal” (S) or “noise” (N).

P(x1 S) and P(x| N) specify distributions of possible
measurement x, conditioned on stimulus value.

After x is measured, an ideal observer uses these as
“likelihood functions” of the stimuli value (S or N).

The Maximum likelihood (ML) decision rule

P(xIN) P(x1S)

Measurement:

“gr
(signal)

Ea—

Decision: (noise)

Say “S”if p(x|S) > p(x|N)
“N” otherwise.

Maximum likelihood (ML) decision rule

P(xIN) P(xIS)

Measurement: :
:
x
Decision: “N” : “S”
ecision: (noise) . (signal)
. Hs + HNn (assuming
Say “‘Sifx>—=——=¢ equal-shaped
2 symmetric
unimodal

“N” otherwise. distributions)




More generally, ML decision rule
can have multiple thresholds:

PXIS)
P(XIN)
N egr 1 aN
P(IS)
Pmm v‘z\
: : : X
N 1 oegr eN S

Reminder: posterior via Bayes’ Rule

Likelihood Prior

Posterior

——
s < PEIPS)

p(.X) “— normalizing term

The Maximum a posteriori (MAP) decision rule

Say “S” if P(S|x) > P(N|x)

“N” otherwise.
N))P(N
S say s if PELSPS) | pINPQY)
px) p(x)
“N” otherwise.

= Say "S” if p(x| S)P(S) > p(x| N)P(N)
“N” otherwise.




The MAP decision rule

maximizes proportion of correct answers, faking
prior probability into account.

CuL
P(XIN)p(N)
E X
N : “gy

—

Compared to ML threshold, the MAP threshold
moves away from higher-probability option.

Ratio form of MAP decision rule

P(S|x)
P(N|x)
“N” (\‘Hﬁar\uiea \Alhere

I find this confusing.

P S why not write it in terms of LR, S P S
saying that it’s now about
comparing LR to PO?
Then when you do the Bayes

P N version, it's comparing LR to PO ]V P N
times VO... 4

“Prior odds”

Say "S” if

“Posterior odds” atio”

Signal Detection Theory: Potential outcomes

H Doctor responds Doctor responds
p(xIN) by p(x|S) “no” “yes”

Tumor miss hit
present

H From here one, switch “yes”
and “no” to *S” and *N”

\ correct false
- m reject alarm

For threshold ¢, cumulatives C()
P(miss) = C(t1S)

T X P(hit) = 1-C(t1S)
decision P(correct reject) = C(tIN)
threshold P(false alarm) = 1-C(tIN)




Bayesian decision rule

(“maximum expected gain” or “minimum Bayes risk™)

Incorporate values for the 4 possible outcomes:

Response
“Payoff Matrix” No Yes

N ;
s | we | ve

Stimulus

N Ye
N VNO VNes

Bayes Optimal Criterion Response

No Yes

E(Yes|x) = V{*P(S|x) + Vi*P(N|x) g s | w | v
=]
E(No|x) = VY°P(S|x) + V§°P(N | x) E
(]

N | owe

Say “yes” if E(Yes | x) > E(No|x)

P(S|x) _ VN°—=Vi®  V(Correct|N)
P(N|x) = VYes— Vo V(Correct|S)

Say “yes” if

/

posterior odds

Apply Bayes’ Rule

P(S|x) = p(x[S)P(S)
px)

P N ") This slide unnecessary, if we )
X ) reworktheotherstobemore

consistent....

PS1) _ <p(x|s>> (P(S))
PN~ \paIN) ) \P0V)

Posterior odds Likelihood ratio

Prior odds




Bayes Optimal Criterion

P(S|x) S V(Correct| N)

P(N|x) =~ V(Correct|S)

_px|S) S P(N) V(Correct|N)
px|N) — P(S) V(Correct|S)

Say “yes” if

i.e

= ﬂopt

Example, if equal priors and equal payoffs, say yes if the
likelihood ratio is greater than one (ML rule):

N S

Summary: Statistically optimal decision rules

(analogous to continuous estimation - see slides in previous section)

S
ML: Say “yes” if p(x—l) >1
p(x[N)
S P(N
MAP: Say “yes” if px|S) > W)
px|N) — P(S)

px|S) S P(N) V(Correct|N)

MEG: Say “yes” if

p(x|N) — P(S) V(Correct]|S)

The likelihood ratio is a “sufficient statistic”.

Standardized SDT

Derivations of ML/MAP/MEG decision rules hold for
any distributions, including different signal/noise
distributions, discrete distributions (e.g., Poisson), and
multi-dimensional distributions.

However, the standard SDT model that is most often
used assumes equal-variance Gaussians in 1-D:

_ 1 _(X_HN)z
p(xIN)—\/ZmeXP< oy >

1 (x— ﬂs)z
exp| —
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px|8) =




Standardized SDT

1 (= py)? 1 (x — pg)?
p(x'N)_\/zanp( 2 )a""p(x's)‘\/zgexp< 2

¥ —
Lety = 'MN,
c

J = separation _ Hs— Hy

width o
Then:
2 —(v=d 2
POIN) = ——exp L and p(y]$) = —— exp — 2
1 2 2r 2
Standardized SDT
N d! S
=1
g

0 Decision variable y

Discriminability (d")
High noise,

lots of overlap

Low noise,
not much overlap




Standardized SDT

Likelihood ratio for y = c is:
exp [— -
pelS) _ 2
p(c|N) _e
exp 3

] d/z
=exp |cd ——

2

Standardized SDT
Q.
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Standardized SDT

Likelihood ratio for y = c is:
(copt =7
exp | —
P(copt] S) :
= =
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exp | —
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log flopt = coptd’ — 2
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P(S)
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Standardized SDT

d 1 P(N) V(Correct| N)
copt=75+—; |log——+log————
2 d P(S) V(Correct|S)

Optimal criterion is the ML criterion, shifted by a term that
is a function of the prior odds plus a term that is a function
of the payoff ratio.

Note: additivity of the effects of priors and payoffs is not
seen in human behavior:

Locke, S. M., Gaffin-Cahn, E., Hosseinizaveh, N.,
Mamassian, P. & Landy, M. S. (2020). Attention,
Perception, & Psychophysics, 82, 3158-3175.

Signal Detection Theory: Criterion
d'=1

Hits = 97.5%
False alarms = 84%

Hits = 84%
False alarms = 50%

Hits = 50%
False alarms = 16%

Example applications of SDT

+ Vision
« Detection (something vs. nothing)
« Discrimination (lower vs greater level of: intensity, contrast, depth, slant,
size, frequency, loudness, ...

» Memory (internal response = trace strength = familiarity)
+ Neurometric function/discrimination by neurons (internal
response = spike count)
From experimental measurements, assuming Gaussian
distributions, can we determine the underlying values of d’
and “criterion” (threshold)?

“criterion”
>
= N S
3
E]
a
2
a
. A
Y Y
Say “no” Say “yes”

Internal response




SDT: Estimating d" and ¢

Zp(CR)]  Zp(H)]

Probability

0 c d x

d’ = z[P(Hit)] + z[P(Correct Reject)]
= z[P(Hit)] — z[ P(False Alarm)]

¢ = z[ P(Correct Reject)], where
2

exp Z?dz

Z2(P) = ®~(P), where ®(z) = J
—00 27[

SDT: Estimating d" and ¢

d’' = z[P(Hit)] + z[ P(Correct Reject)]
= z[P(Hit)] — z[P(False Alarm)]
¢ = z[P(Correct Reject)]

Response
No Yes

S | nmiss | MHit Pri = nit/ (MHit + "Miss)
Ppp = npal(npa + nop)

Stimulus

N nCcR nEA

SDT: Estimating d" and ¢

d’' = z[P(Hit)] + z[ P(Correct Reject)]
= z[P(Hit)] — z[P(False Alarm)]
¢ = z[P(Correct Reject)]

Response
No Yes

S npiss + 0.5 npit+ 0.5 .
Pt = (it + 0.5)/ (nyit + nvtiss + 1)

Pra = (npp + 0.5)/(npp + ngr + 1)

Stimulus

N ncr+0.5 nga +0.5

Hautus, M. J. (1995). Corrections for extreme proportions and the biasing effects on estimated values of
d'. Behavior Research Methods, Instruments, & Computers, 27, 46-51.




SDT: Psychometric function

Performance (d’)

v

Signal strength

Note: 4 hit rates and one, shared, false-alarm rate

ROC (Receiver Operating Characteristic) curve

Criterion #1

Probability

Internakresponse

Plot anti-cumulatives:
1-C(tIN) vs. 1-C(t1S)
as threshold t varies

p(Hits)

0 p(False Alarm) !

ROC (Receiver Operating Characteristic) curve

Criterion #2

Probability

Internal response

p(Hits)

0 p(False Alarm) 1




ROC (Receiver Operating Characteristic) curve

Probability

! Criterion #3

AN

Internal r¢gsponse

p(Hits)

0 p(False Alarm) 1

ROC (Receiver Operating Characteristic) curve

Probability

! Criterion #4

XN

Internal respons:

p(Hits)

0 p(False Alarm) !

ROC (Receiver Operating Characteristic) curve

VA AGN

=1 (lots of overlap) = 3 (less overlap)

1

0.5

p(Hits)

0 0.5 1
p(False Alarm)




ROC (Receiver Operating Characteristic) curve
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Sosp, what's up w/ plot on right?? .
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o 0.023 2
0 05 1 2 4 0 1
False-alarm rate 2(False alarm)
0.023 0.16 0.5 0.84 0.977

P(False alarm)

Or do a ML fit: Dorfman, D. D., & Alf, J., E. (1969). Maximum likelihood estimation of parameters of signal

detection theory and determination
Psychology, 6, 487-496.

of confidence intervals: rating-method data. Journal of Mathematical

ROC (Receiver Operating Characteristic)
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Yeshurun, Y., Carrasco, M., & Malol

ney, L. T. (2008). Bias and sensitivity in two-interval forced choice

procedures: Tests of the difference model. Vision Research, 48, 1837-1851.




Area under the ROC curve

Area under curve = %correct in a 2AFC task!

y

0 0.5 1
False-alarm rate

Hit rate

Area under the ROC curve

Area under curve = %correct in a 2AFC task

0.5 ]

P(CR 1 ¢)

Hit rate
(H)dP

—>

0 0.5 1
False-alarm rate

1
AUROC = J P(Correct reject | criterion ¢)dP(Hit | criterion ¢)
0

Area under the ROC curve

Area under curve = %correct in a 2AFC task

1

(s 19)d

bs

ju

0.5 ]
< P(CR 1 ¢) > T E

Hit rate

de

0 05 1
False-alarm rate

Slope of the ROC = likelihood ratio!




Area under the ROC curve

Area under curve = %correct in a 2AFC task
-1

AUROC = | P(Correct reject | criterion ¢)dP(Hit | criterion ¢)

J0

r 00

= p(x < ¢|N)p(measurement is ¢ | S)dc

J—o0

o c
= J p(x| N)p(measurement is ¢ | S)dxdc

r 00

= p(measurement is ¢ | S) J p(x | N)dxdc

J—o0

= Prc-

SDT with unequal variances

c ch Decision variable x

SDT with unequal variances

Hit rate
o
o

— " 0
c Decision variable x 0 0.5 1

False-alarm rate




SDT with unequal variances

1
0.977 2
[0) 0.84 1
S o5
T = =
L o5 L0
Q N
0.16 1
0
0 0.5 1
False-alarm rate 0.023 -2
2 -1 0 1 2
z(False alarm)
0.023 0.16 0.5 0.84 0.977

P(False alarm)

SDT with a discrete (Poisson) distribution

N
S
0o 1A2 3 4 5 6 7 8 9 10
Decision variable x (counts)

c

Area under the ROC - Poisson case or with data:
Neurometric function and choice probability

S
e

Spike count False-alarm rate

Hit rate

Lo

"
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© o8 “Right"
o]
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s ) a0 o T 6 8 0 12 oW

05
o 0 2 0 B
Motion coherence: Spike count

Britten, K. H., Shadlen, M. N., Newsome, W. T., & Movshon, J. A. (1992). The analysis of visual motion: a
comparison of neuronal and psychophysical performance. Journal of Neuroscience, 12, 4745-4765.

Britten, K. H., Newsome, W. T., Shadlen, M. N., Celebrini, S. & Movshon, J. A. (1996). A relationship between
behavioral choice and the visual responses of neurons in macaque MT. Visual Neuroscience, 13, 87-100.




Decision-making and categorization (outline)

One-dimensional evidence, binary decision:
Signal detection theory (SDT)
Discriminability: Fisher Information

N-dimensional evidence, binary decision:
Linear discriminant analysis (LDA)
Quadratic discriminant analysis (QDA)

N-dimensional evidence, more than 2 categories:
Labeled data: ML or MAP extension of QDA
Unlabeled data: K-means or soft K-means clustering

Fisher Information

* Second-order expansion of the (expected) negative log likelihood:

1(s) = —E {32 1o§§(r|s)}

* Provides a bound on “precision” of unbiased estimators: 02( ) > 1
(the “Cramér-Rao bound”) -

1(s)

* Perceptually, provides a bound on discriminability: -
(Series et. al. 2009) D(s) < v1(s)

» Examples: with mean stimulus response u(s)

Gaussian case:  p(r|s) ~ N (u(s), 02) I(s) = [/ (s)]* /o

Poisson case:  p(r|s) ~ Poiss(u(s))  1(s) = [/ (s)]*/u(s)

Example: Weber’s law  [Weber, 1834]

For many perceptual D(s) 1 (discrimination thresholds
attributes, s proportional to stimulus strength)

. 1 . . o
Assuming I(s) o< — what internal representation can explain this? Many!
S

additive Gaussian Poisson noise, multiplicative Gaussian
noise, with mean with mean noise, with mean
u(s) =log(s)+c u(s) = [log(s) + cJ? p(s) = as

a3
&
b
]
2
S
a2
>
o

response, p(rls)

s
k-1
@
3
2
S
a
3
e

stimulus, s

stimulus, s stimulus, s
entirely due to discrete representation, entirely due to
response mean depends on both mean response variance

[Fechner, 1860] and variance

[Zhou, et al, 2024]




expansive: u(s) o 57

S.S. Stevens. “To Honor
Fechner and Repeal His g
Law: A power function, not
a log function, describes the
operating characteristic of a
sensory system” (1961)

LOEYO)

p(ris)

linear: 4(s) o s

o(s) o u(s),

8(s) x 1/s

compressive: #(s) o 5%

Three examples with different
power-law mean response,

o(s) o p(s)
each consistent with Weber’s /
law discriminability. -

1s)

Pl

stimulus, s
[Zhou, et al, 2024]

Decision-making and categorization (outline)

One-dimensional evidence, binary decision:
Signal detection theory (SDT)
Discriminability: Fisher Information

N-dimensional evidence, binary decision:
Linear discriminant analysis (LDA)
Quadratic discriminant analysis (QDA)

N-dimensional evidence, more than 2 categories:
Labeled data: ML or MAP extension of QDA
Unlabeled data: K-means or soft K-means clustering

Decision/classification in multiple dimensions

® Data-driven linear classifiers:
® Prototype Classifier - minimize distance to class mean
® Fisher Linear Discriminant (FLD) - maximize d’
® Support Vector Machine (SVM) - maximize margin
e Statistical:
ML/MAP/Bayes under a probabilistic model
e.g.: Gaussian, identity covariance (same as Prototype)
e.g.: Gaussian, equal covariance (same as FLD)
e.g.: Gaussian, general case (Quadratic Discriminator)

e o 0 o n

e Some Examples:
® Face classification
® Neural population decoding




Linear Classifier

Find unit vector w (“discriminant”) that best separates the distributions

’

.
* e class A S Decision boundary
~ ~ ~ ® o ’
o o .
°e ~'\o N
o ® L ’ l[
° e
° e® o °
. »*,%e classB
S ool .‘.: .
g e® o %o
. et e S
S . ~ .
.
class A Decision class B

boundary

VAN YAN

histogram of projected values 1 - &

Simplest linear discriminant: the Prototype Classifier

A —fip

W=
fia = fis]

Fisher Linear
Discriminant

Fisher

AT =12
Wiy —u . .
maxM (note: this is d-prime, squared!)
w I:WTCAW + WTCBW]

1
optimum: W = C~!(ii, — iiy), where C = E(CA + Cp)




Support Vector Machine (SVM)

(widely used in machine learning, but no closed form solution)

Maximize the “margin” (gap between data sets):

find largest m, and {0, b} s.t.

X,

Vi

ci(wla; —

b) >

Reminder: Multi-D Gaussian densities

( ) 1 _ (== /;)2
pl\r) = e 20
V2no?
1
p(%) = e~ @
VN[O

“Y@-)/2 ‘

mean: [0.2,0.8]
cov: [1.0-0.3;
-0.3 04]

ML (or MAP) classifier for two Gaussians

Decision boundary is quadratic, with four possible geometries:

Simplest case:
equal
covariances

Neuron 2

Neuron 2

Class1 5 Class 1
i o[ OClass2
/ o
. - <
Hp Z S
3
Class 2 2
Neuron 1 Neuron 1
_Class 1)
Class2_~ D,
o /,w' g /
c ,,’/ yd
\ S ?
N\ Bl >
Class 1\ 23 [on board]
Neuron 1 Neuron 1

[figure: Pagan et al. 2016]




A perceptual example: Biological gender
identification (XX vs. XY)

0200 face images (100 male, 100 female)
® Adjusted for position, size, intensity/contrast
e[ abeled by 27 human subjects

[Graf & Wichmann, NIPS*03]

Linear classifiers

SVM RVM Prot FLD

Four linear classifiers, trained on human data

Model validation/testing

® Cross-validation: Subject responses
[% correct, reaction time, confidence]
are explained

- very well by SVM
- moderately well by RVM / FLD
- not so well by Prot

® Do these decision “models”’make
testable predictions? Synthesize
optimally discriminable faces...




Subtract classifier Add classifier

SVM

RVM

Prot

FLD

[Wichmann, et. al; NIPS*04]

100

50 rl I I I I I I

0.25 0.5 1.0 20 40 8.0

Amount of classifier image added/subtracted
(arbitrary units)

[Wichmann, et. al; NIPS*04]

Decision-making and categorization (outline)

One-dimensional evidence, binary decision:
Signal detection theory (SDT)
Discriminability: Fisher Information

N-dimensional evidence, binary decision:
Linear discriminant analysis (LDA)
Quadratic discriminant analysis (QDA)

N-dimensional evidence, more than 2 categories:
Labeled data: ML or MAP extension of QDA
Unlabeled data: K-means or soft K-means clustering




More than two categories, labeled data

If means and covariances are known, and the covariances are
circular and identical across categories, this reduces to selecting
the nearest neighbor:

‘Voronoi regions: Soap bubbles:

-05

Reminder: More than two categories, labeled data,
Gaussian distributions (but not necessarily circular
nor equal across categories).

ML (or MAP) classifier generalizes QDA:

Class 1 z, Class 1

H

th %,
Class 2

Neuron 2
Neuron 2
P

¥+ Neuron 1 Neuron 1

Neuron 2
Neuron 2

\
Class 17 )

Neuron 1 Neuron 1

[figure: Pagan et al. 2016]

Unlabeled data: Clustering

» K-Means (Lloyd, 1957)

* “Soft-assignment” version of K-means
(a form of Expectation-Maximization - EM)

* In general, alternate between:
1) Estimating cluster assignments (classification)
2) Estimating cluster parameters

* Coordinate descent: converges to (possibly local) minimum

* Need to choose K (number of clusters) - cross-validation!




K-Means clustering algorithm
Alternate between two steps:

1. Estimate cluster assignments: given class centers,
assign each point to closest one:

Voronoi regions:

2. Estimating cluster parameters: given assignments, re-
estimate the centroid of each cluster.

K-means example
N =300, and K =3

Initial centers Heration 1 Heration 2

Heration 3 Heration 9

[from R. Tibshirani, 2013]

K-means optimization failures

Initialization matters (due to local minima) ...
Three solutions obtained with different random starting points:

2 4 o . Ep o ER o .
8% Fo0 8% %50 §% Foo
g S0 oy el 82 gt
1. o o s B0 | 7T o o T e | T % o ‘}éﬂ ° ¢
8o 2w o 0% ‘Bﬁgﬂn Boo o o 0% %5‘;%0 B0 2 o 0% ‘\é’gi%b
. o @ . o5 @ % i @00 @
w o o 3 “ s o P “ w o Pap P °
24 Lo ‘?@m_ﬁ’ 2 24 L. g‘gs;% .8 24 Lo 3“3’%% 2
oo, @ S0m 0 0 ® o o0, o o ° g ® o oo, @ 80w © 7 ® o
o 1o %00 w502 | o loBEee o et | aloBiiee o ge s
ER B B BN AL & v | 3 <o B¢ &P
woaos® w0 ©°0 % >, I SCA T o
§ T T T § : T T ;g T T T
00 05 10 15 00 0s 10 1s 00 os 10 1s

[from R. Tibshirani, 2013]




K-means systematic failures

Non-convex/non-round-shaped clusters

gne
b

Clusters with different densities

Picture courtesy: Christof Monz (Queen Mary, Univ. of London)

ML for discrete mixture of Gaussians: soft K-means

Pl i Ar) ox 3 e (oA /2

—
Y% |Ak‘|
Ak = assignment probability
{fk, Ak} =mean/covariance of class k

Intuition: alternate between maximizing these two sets of variables
(“coordinate descent”)

Essentially, a version of K-means with “soft” (i.e., continuous, as
opposed to binary) assignments!

Different cluster analysis results on "mouse" data set:
Original Data k-Means Clustering EM Clustering

o 01 01
0 01 02 03 04 0506070809 1 0 01020304 050607 0809 1 0 01 0203 04 0506 07 08 09

[wikipedia]




Application to neural “spike sorting”

Standard solution:

1. Threshold to find segments containing spikes
2. Reduce dimensionality of segments using PCA

3. Identify spikes using clustering (e.g., K-means)

Note: Fails for overlapping spikes!

Failures of clustering for near-synchronous spikes

synchronous spiking

Al —]_[K

— |

PC 1 projection

[Pillow et. al. 2013]




“Decoding” neural populations?

® Test/compare encoding models
® Connect neural response to behavior

® Build brain-computer interfaces

Encoding determines discriminability

r

-

Probabilistic encoding model
determines discriminability

p(rls)

S

Discriminability (d”) is (approximately) slope/stdev




n
Two neurons

I
Same fundamental issues as 1D case:
® Probabilistic encoding determines discriminability
® Intuitively, overlap is distance/spread
® More precisely: estimate Fisher Information [on board]
I. Simple/intuitive population decoding
e Linear? $(7) =) wyr, =7
n
(simple, but usually doesn’t work well)
« Winner-take-all ()= s, m = argmax{r,)

(simple, but discontinuous and noise-susceptible)

_ 2 nTndn
Zn Tn

d POpulation VECTOT [Georgopoulos et.al., 1986] §(F)

(also simple, more robust)

“population vector”
[Kalaska, Caminiti
Georgopoulous, 1983]

A sum of vectors,
weighted by
firing rate of
motor neurons,
predicts arm
movement...




II. Statistically optimal decoding

« Maximum likelihood (ML) 8(r) = arg max p(7]s)

* Maximum a posteriori (MAP) 5(F) = arg msax p(7ls) - p(s)

* Minimum Mean Squared Error (MMSE), 5(7) = E(s|7)
ak.a. Bayes Least Squares (BLS)

Gaussian response noise?

Not a great model for neural noise, and
ML estimation is nonlinear regression :(

Poisson response noise?

Rk e amat] Ty m T Ty

[Goris etal, 2014]
Better model for neural responses, and

ML estimation is much nicer...

ML decoding for a Poisson-spiking neural population
[Ma, Beck, Latham, Pouget, 2006; Jazayeri & Movshon, 2006; Zhang et al, 1998]

N

p(its) = ]

n=1

hn(S)T" e—h”(s)

7!
log (p(71s)) = Y _ rn10g(hn(s)) = hn(s) — log(rs!)

N ) ) ) ) .
If Y. ,—1hn(s) is constant (i.e., tuning curves “tile”), just

minimize the response-weighted sum of log tuning curves.

Special cases allow closed-form solutions:
» Gaussian tuning curves  h,(s) = exp (—(s — s,)*/207)

* von Mises tuning curves  h,,(s) = exp (k cos(s — sy,))




25
20 0.04
E 15 Bayesian =
£ 0
210 decoder T 002
5
R 5 0
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Population decoding

The data: tuning curves f;

Response (impulses)

0 0 0 0 0 0 0 0
018 018 018 018 0180 0180 0180 0 180 0 180
Orientation (degrees)

[Graf, Kohn, Jazayeri & Movshon, 11]

Comparing population decoders

1) The ML decoder, assuming independent Poisson responses (the “PID”):

N N 9y
log L(0) = log (Hp(ﬂb’)) = log <ﬁ(r_‘) exp(—f,(é')))
i=1 L

i=1

N N N N
= D log(fO)r; = X f(0) = D log(r)) = Y W(O)r; + B©)
i=1 i=1 i=1 i=1
For discrimination between two values, likelihood ratio is a linear function of responses:
L)

log LR(9,,6,) = log (m) =log L(6,) — log L(6,)
2

N
= Y [W0) — W(Olr; + (BO) - BO]

i=1
N

= w6, 0+ b6, 6)
i=1

[Graf, Kohn, Jazayeri & Movshon, 11]




Comparing population decoders

2) Alternatively, compute an SVM on the measured response vectors for each
orientation, the empirical linear decoder (“ELD”):

N
¥(0,,6,) = Z w0y, 6,)r; + b(0,,6,)
i=1

3) For each neuron and orientation, shuffle the responses across trials and
train a new SVM, the correlation-blind empirical linear decoder (CB-ELD).
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[Graf, Kohn, Jazayeri & Movshon, 11]

Where we’ve been...

Linear
algebra

Linear systems /
Fourier analysi

Data
analysis
&

* Linear algebra / linear systems
- Ex: Trichromacy
« Least squares

Optimization

Modeling

Machine

* regression / TLS regression
Linear shift-invariant systems

Statistics lear

rning & pattern

recognition

* convolution / Fourier transforms
» Ex: Auditory filtering
Summary statistics - dispersion, central tendency, PCA
Statistical inference & estimation
* estimation: bias, variance, convergence
« optimal estimation: ML, MAP, Bayes
* model comparison, overfitting, regularization, cross-validation
« Ex: fitting an LNP model
Decision-making and categorization
« Signal detection theory, Fisher information
« classification, clustering
* Ex: population decoding

Keep climbing!

mathematical reasoning




