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Tumor, or not?

Decision-making and categorization (outline)

One-dimensional evidence, binary decision: 
Signal detection theory (SDT) 
Discriminability: Fisher Information 

N-dimensional evidence, binary decision: 
Linear discriminant analysis (LDA) 
Quadratic discriminant analysis (QDA) 

N-dimensional evidence, more than 2 categories: 
Labeled data: ML or MAP extension of QDA 
Unlabeled data: K-means or soft K-means clustering



P(x|N) P(x|S)

Signal Detection Theory (or, Statistical Decision Theory)

x  (measurement)

Stimulus is either “signal” (S) or “noise” (N).

P(x | S) and P(x | N) specify distributions of possible 
measurement x, conditioned on stimulus value.

After x is measured, an ideal observer uses these as 
“likelihood functions” of the stimuli value (S or N).

Likelihood of SLikelihood of N

P(x|N) P(x|S)

The Maximum likelihood (ML) decision rule

x
“S” 

(signal)
“N” 

(noise)Decision:

Measurement:

Say “S” if p(x |S) > p(x |N)
“N” otherwise.

P(x|N) P(x|S)

x
“S” 

(signal)
“N” 

(noise)Decision:

Measurement:

Say “S” if x >
μS + μN

2
= c

“N” otherwise.

(assuming 
equal-shaped 
symmetric 
unimodal
distributions)

Maximum likelihood (ML) decision rule



More generally, ML decision rule 
can have multiple thresholds:

P(x|N)

P(x|S)

“S”“N” “N”
x

P(x|N)

P(x|S)

“S”“N”
x

“N” “S”

Reminder: posterior via Bayes’ Rule

Posterior
PriorLikelihood

normalizing term

P(S |x) =
p(x |S)P(S)

p(x)

⇒ Say “S” if p(x |S)P(S)
p(x)

>
p(x |N)P(N)

p(x)
“N” otherwise.

⇒ Say "S” if p(x |S)P(S) > p(x |N)P(N)
“N” otherwise.

The Maximum a posteriori (MAP) decision rule

Say “S” if P(S |x) > P(N |x)
“N” otherwise.



The MAP decision rule
maximizes proportion of correct answers, taking 
prior probability into account.

x

Compared to ML threshold, the MAP threshold 
moves away from higher-probability option.

“S”“N”

p(x|N)p(N)

p(x|S)p(S)

cML

Ratio form of MAP decision rule

“Posterior odds” “Likelihood ratio” “Prior odds”

Say "S” if  P(S |x)
P(N |x)

> 1

“N” otherwise, where
P(S |x)
P(N |x)

= ( p(x |S)
p(x |N) ) ( P(S)

P(N) )
I find this confusing.  

why not write it in terms of LR, 
saying that it’s now about 
comparing LR to PO?

Then when you do the Bayes 
version, it’s comparing LR to PO 
times VO…

decision
threshold

p(x|N) p(x|S)

p(x|N) p(x|S)

x

Tumor 
present

Tumor
absent

Doctor responds
“yes”

Doctor responds
“no”

correct 
reject

false
alarm

hitmiss

For threshold t, cumulatives C()
 P(miss) = C(t |S)
 P(hit) = 1-C(t |S)
 P(correct reject) = C(t |N)
 P(false alarm) = 1-C(t |N)

x

Signal Detection Theory: Potential outcomes

From here one,  switch “yes” 
and  “no” to “S” and “N”



Bayesian decision rule 
     (“maximum expected gain” or “minimum Bayes risk”) 

Incorporate values for the 4 possible outcomes:

“Payoff Matrix” YesNo

S

N

Response

S
tim

ul
us

VYes
S

VYes
N

VNo
S

VNo
N

posterior odds

𝔼(Yes |x) = VYes
S P(S |x) + VYes

N P(N |x)

𝔼(No |x) = VNo
S P(S |x) + VNo

N P(N |x)

Say “yes” if 

Say “yes” if  

𝔼(Yes |x) ≥ 𝔼(No |x)

P(S |x)
P(N |x)

≥
VNo

N − VYes
N

VYes
S − VNo

S
=

V(Correct |N)
V(Correct |S)

Bayes Optimal Criterion
YesNo

S

N

Response

S
tim

ul
us VYes

S

VYes
N

VNo
S

VNo
N

Apply Bayes’ Rule

Posterior odds Likelihood ratio
Prior odds

P(S |x) =
p(x |S)P(S)

p(x)

P(N |x) =
p(x |N)P(N)

p(x)

P(S |x)
P(N |x)

= ( p(x |S)
p(x |N) ) ( P(S)

P(N) )

This slide unnecessary, if we 
rework the others to be more 
consistent….




Example, if equal priors and equal payoffs, say yes if the 
likelihood ratio is greater than one (ML rule):

SN

Say “yes” if 

i.e., if 

P(S |x)
P(N |x)

≥
V(Correct |N)
V(Correct |S)

p(x |S)
p(x |N)

≥
P(N)
P(S)

V(Correct |N)
V(Correct |S)

= βopt

Bayes Optimal Criterion

Summary: Statistically optimal decision rules 
(analogous to continuous estimation - see slides in previous section) 

ML:  

MAP: 

MEG: 

The likelihood ratio is a “sufficient statistic”.

Say “yes” if 
p(x |S)
p(x |N)

≥ 1

Say “yes” if 
p(x |S)
p(x |N)

≥
P(N)
P(S)

Say “yes” if 
p(x |S)
p(x |N)

≥
P(N)
P(S)

V(Correct |N)
V(Correct |S)

Standardized SDT
Derivations of ML/MAP/MEG decision rules hold for 
any distributions, including different signal/noise 
distributions, discrete distributions (e.g., Poisson), and 
multi-dimensional distributions.

However, the standard SDT model that is most often 
used assumes equal-variance Gaussians in 1-D:

p(x |N) =
1

2πσ
exp (−

(x − μN)2

2σ2 )
p(x |S) =

1

2πσ
exp (−

(x − μS)2

2σ2 )



  and  

Let ,

 

Then:

  and  

p(x |N) =
1

2πσ
exp (−

(x − μN)2

2σ2 ) p(x |S) =
1

2πσ
exp (−

(x − μS)2

2σ2 )

y =
x − μN

σ

d′￼ =
separation

width
=

μS − μN

σ

p(y |N) =
1

2π
exp

−y2

2
p(y |S) =

1

2π
exp

−(y − d′￼)2

2

Standardized SDT

0 Decision variable y

  =1

d’N S

Standardized SDT

Discriminability ( )d′￼



Likelihood ratio for  is:
 

y = c

p(c |S)
p(c |N)

=
exp [− (c − d′￼)2

2 ]
exp [− c2

2 ]
= exp [cd′￼−

d′￼
2

2 ]

Standardized SDT

Li
ke

lih
oo

d 
ra

tio

Decision
variable x

copt

would be nicer to show log LR, 
no?  That’s where you’re 
heading in a  few slides….


Standardized SDT

Likelihood ratio for  is:
 

y = c

βopt =
p(copt |S)
p(copt |N)

=

exp [−
(copt − d′￼)2

2 ]
exp [−

c2
opt
2 ]

= exp [coptd′￼−
d′￼

2

2 ]

log βopt = coptd′￼−
d′￼

2

2

copt =
d′￼

2
+

log βopt
d′￼

=
d′￼

2
+

1
d′￼ [log

P(N)
P(S)

+ log
V(Correct |N)
V(Correct |S) ]

Standardized SDT



Optimal criterion is the ML criterion, shifted by a term that 
is a function of the prior odds plus a term that is a function 
of the payoff ratio. 

Note: additivity of the effects of priors and payoffs is not 
seen in human behavior:

Locke, S. M., Gaffin-Cahn, E., Hosseinizaveh, N.,
Mamassian, P. & Landy, M. S. (2020). Attention, 
Perception, & Psychophysics, 82, 3158-3175.  

copt =
d′￼

2
+

1
d′￼ [log

P(N)
P(S)

+ log
V(Correct |N)
V(Correct |S) ]

Standardized SDT

Signal Detection Theory: Criterion 
=1d′￼

N S

“criterion”

Internal response

Pr
ob

ab
ili

ty

Say “yes”Say “no”

• Vision
• Detection (something vs. nothing)
• Discrimination (lower vs greater level of: intensity, contrast, depth, slant, 

size, frequency, loudness, ...
• Memory (internal response = trace strength = familiarity)
• Neurometric function/discrimination by neurons (internal  

    response = spike count)

Example applications of SDT

From experimental measurements, assuming Gaussian 
distributions, can we determine the underlying values of  
and “criterion” (threshold)?

d′￼



SDT: Estimating  and d′￼ c

N S

x

Pr
ob

ab
ili

ty

0 ′dc

z[p(CR)] z[p(H)]

d′￼= z[P(Hit)] + z[P(Correct Reject)]
= z[P(Hit)] − z[P(False Alarm)]

c = z[P(Correct Reject)],  where

z(P) = Φ−1(P), where Φ(z) = ∫
z

−∞

1

2π
exp

z2

2
dz

SDT: Estimating  and d′￼ c

d′￼= z[P(Hit)] + z[P(Correct Reject)]
= z[P(Hit)] − z[P(False Alarm)]

c = z[P(Correct Reject)]

YesNo

S

N

Response

S
tim

ul
us

nHit

nFA

nMiss

nCR

̂PHit = nHit/(nHit + nMiss)
̂PFA = nFA/(nFA + nCR)

SDT: Estimating  and d′￼ c

d′￼= z[P(Hit)] + z[P(Correct Reject)]
= z[P(Hit)] − z[P(False Alarm)]

c = z[P(Correct Reject)]

YesNo

S

N

Response

S
tim

ul
us

nHit + 0.5

nFA + 0.5

nMiss + 0.5

nCR + 0.5

̂PHit = (nHit + 0.5)/(nHit + nMiss + 1)
̂PFA = (nFA + 0.5)/(nFA + nCR + 1)

Hautus, M. J. (1995). Corrections for extreme proportions and the biasing effects on estimated values of 
d’. Behavior Research Methods, Instruments, & Computers, 27, 46-51.



SDT: Psychometric function

Signal strength

Pe
rfo

rm
an

ce
 (

)
d′

￼

Note: 4 hit rates and one, shared, false-alarm rate

Internal response

Pr
ob

ab
ili

ty

p(False Alarm)

p(
H

its
)

0 1

1

0

ROC (Receiver Operating Characteristic) curve

Criterion #1

Plot anti-cumulatives:
1 - C(t | N)  vs. 1-C(t |S)
as threshold t varies

Internal response
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ob
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ty

0 1

1

0

Criterion #2

p(False Alarm)

p(
H

its
)

ROC (Receiver Operating Characteristic) curve



Internal response

Pr
ob
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ty

0 1

1

0

Criterion #3

p(False Alarm)

p(
H

its
)

ROC (Receiver Operating Characteristic) curve

Internal response

Pr
ob
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ty

0 1

1

0

Criterion #4

p(False Alarm)

p(
H

its
)

ROC (Receiver Operating Characteristic) curve

 (lots of overlap)d′￼= 1  (less overlap)d′￼= 3
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0 0.5 1
0

0.5

1

c = “2”

c = “3”
c = “4”

c = “5”

False-alarm rate

H
it 

ra
te

Or do a ML fit: Dorfman, D. D., & Alf, J., E. (1969). Maximum likelihood estimation of parameters of signal 
detection theory and determination of confidence intervals: rating-method data. Journal of Mathematical 
Psychology, 6, 487-496.
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z(False alarm)

ROC (Receiver Operating Characteristic) curve

what’s up w/ plot on right??

0 0.5 1
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1

False-alarm rate

H
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te

Achievable performance 

ROC (Receiver Operating Characteristic)

SDT and 2AFC

First interval x1

d’FC

Se
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rv

al
 x

2

d’YN

Yeshurun, Y., Carrasco, M., & Maloney, L. T. (2008). Bias and sensitivity in two-interval forced choice 
procedures: Tests of the difference model. Vision Research, 48, 1837-1851.



Area under curve = %correct in a 2AFC task!

0 0.5 1
0

0.5

1

False-alarm rate

H
it 

ra
te

Area under the ROC curve

A B

0 0.5 1
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0.5

1

False-alarm rate

H
it 

ra
te

P(CR | c)
dP

(H
it)

s1 s2

  dc  

P(c | S
)

x

Area under curve = %correct in a 2AFC task

AUROC = ∫
1

0
P(Correct reject |criterion c)dP(Hit |criterion c)

Area under the ROC curve

A B

0 0.5 1
0

0.5

1

False-alarm rate

H
it 

ra
te

P(CR | c)

dP
(H

it)

s1 s2

  dc  

P(c | S
)

x

Area under curve = %correct in a 2AFC task

Slope of the ROC = likelihood ratio!

Area under the ROC curve



Area under curve = %correct in a 2AFC task

AUROC = ∫
1

0
P(Correct reject |criterion c)dP(Hit |criterion c)

= ∫
∞

−∞
p(x < c |N)p(measurement is c |S)dc

= ∫
∞

−∞ ∫
c

−∞
p(x |N)p(measurement is c |S)dxdc

= ∫
∞

−∞
p(measurement is c |S)∫

c

−∞
p(x |N)dxdc

= PFC .

Area under the ROC curve

SDT with unequal variances
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SDT with unequal variances
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SDT with unequal variances

SDT with a discrete (Poisson) distribution

0 1 2 3 4 5 6 7 8 9 10

N

S

Decision variable x (counts)
c

Area under the ROC - Poisson case or with data: 
Neurometric function and choice probability

0 2 4 6 8 10 12 14

Null

Preferred

Spike count
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Britten, K. H., Shadlen, M. N., Newsome, W. T., & Movshon, J. A. (1992). The analysis of visual motion: a 
comparison of neuronal and psychophysical performance. Journal of Neuroscience, 12, 4745-4765. 

Britten, K. H., Newsome, W. T., Shadlen, M. N., Celebrini, S. & Movshon, J. A. (1996). A relationship between 
behavioral choice and the visual responses of neurons in macaque MT. Visual Neuroscience, 13, 87-100.



Decision-making and categorization (outline)

One-dimensional evidence, binary decision: 
Signal detection theory (SDT) 
Discriminability: Fisher Information 

N-dimensional evidence, binary decision: 
Linear discriminant analysis (LDA) 
Quadratic discriminant analysis (QDA) 

N-dimensional evidence, more than 2 categories: 
Labeled data: ML or MAP extension of QDA 
Unlabeled data: K-means or soft K-means clustering

Fisher Information

 • Provides a bound on “precision” of unbiased estimators: 
(the “Cramér-Rao bound”)

�2(s) � 1

I(s)

• Perceptually, provides a bound on discriminability: 
(Series et. al. 2009)

I(s) = �E

@2 log p(r|s)

@s2

�
• Second-order expansion of the (expected) negative log likelihood:

Gaussian case:

Poisson case:

• Examples:  with mean stimulus response
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I(s) = [µ0(s)]2/µ(s)

Example: Weber’s law  

Assuming                      what internal representation can explain this?  Many!I(s) / 1

s2

[Fechner, 1860]
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[Weber, 1834]

[Zhou, et al, 2024]

For many perceptual 
attributes,  



S.S. Stevens. “To Honor 
Fechner and Repeal His 
Law: A power function, not 
a log function, describes the 
operating characteristic of a 
sensory system” (1961) 

Three examples with different 
power-law mean response, 
each consistent with Weber’s 
law discriminability. 

[Zhou, et al, 2024]

Decision-making and categorization (outline)

One-dimensional evidence, binary decision: 
Signal detection theory (SDT) 
Discriminability: Fisher Information 

N-dimensional evidence, binary decision: 
Linear discriminant analysis (LDA) 
Quadratic discriminant analysis (QDA) 

N-dimensional evidence, more than 2 categories: 
Labeled data: ML or MAP extension of QDA 
Unlabeled data: K-means or soft K-means clustering

Decision/classification in multiple dimensions
• Data-driven linear classifiers: 

• Prototype Classifier - minimize distance to class mean 
• Fisher Linear Discriminant (FLD) - maximize d’ 
• Support Vector Machine (SVM) - maximize margin 

• Statistical: 
• ML/MAP/Bayes under a probabilistic model 
• e.g.: Gaussian, identity covariance (same as Prototype) 
• e.g.: Gaussian, equal covariance (same as FLD) 
• e.g.: Gaussian, general case  (Quadratic Discriminator) 

• Some Examples: 
• Face classification 
• Neural population decoding



Linear Classifier

{ŵT ⃗xn}

Find unit vector (“discriminant”) that best separates the distributionsŵ

class A class B

ŵ · ~x

Decision 
boundary

class A

class B

ŵ

Decision boundary

Simplest linear discriminant: the Prototype Classifier

ŵ =
~µA � ~µB

k~µA � ~µBk

Fisher Linear 
Discriminant

(note: this is d-prime, squared!)

optimum:  , where ŵ = C−1( ⃗uA − ⃗uB) C =
1
2

(CA + CB)

max
ŵ

[ŵT( ⃗uA − ⃗uB)]2

[ŵTCAŵ + ŵTCBŵ]



Support Vector Machine (SVM) 
(widely used in machine learning, but no closed form solution)

find largest m, and {ŵ, b} s.t. ci(ŵ
T~xi � b) � m, 8 i

ŵ

ci = 1

ci = �1

Maximize the “margin” (gap between data sets):

mean:  [0.2, 0.8]
cov:  [1.0 -0.3;

 -0.3  0.4]

Reminder: Multi-D Gaussian densities

ML (or MAP) classifier for two Gaussians2294 M. Pagan, E. Simoncelli, and N. Rust

Figure 1: The nQDA framework. (a) Optimal quadratic discrimination bound-
aries (black lines) for four example pairs of population response distributions.
Hypothetical class distributions are each multivariate gaussian (indicated by
red and gray elliptical regions), with means µ1 and µ2 and covariances !1 and
!2. Top left: A scenario in which the means of the two classes differ and the
covariances are matched. In this special case, the optimal classifier is linear.
Top right: A scenario in which the means of the two classes are similar and a
linear classifier alone is an ineffective decision boundary. Instead, the optimal
classifier uses a pair of parabolic boundaries. Bottom left: An example with dif-
fering mean and covariance, yielding a single parabolic boundary. Bottom right:
An example yielding an elliptical boundary. (b) Depiction of the nQDA model,
which implements the optimal quadratic classifier (equations 2.3 and 2.4) as an
LN-LN model (see equation 2.6). The first LN transformation is achieved with
a bank of linear filters, with all but the first followed by a squaring nonlinearity.
The outputs of these individual LN units are combined via a weighted sum,
followed by a threshold function that determines the class membership.

where Q is an N-by-N symmetric matrix. As with the linear classifier, the
class assignment is determined by the sign of this function. Similar to linear
classifiers, multiple methods exist for fitting the parameters of a quadratic
classifier (Kendall, 1966; Hofmann, Schölkopf, & Smola, 2008). When the
population responses are gaussian distributed the maximum likelihood
solution (known as quadratic discriminant analysis, QDA; Kendall 1966)
corresponds to

Q = 1
2

·
(
!−1

2 − !−1
1

)
; m = !−1

1 µ1 − !−1
2 µ2,

k =−1
2

(
log

∣∣!1

∣∣ − log
∣∣!2

∣∣ + µT
1 !−1

1 µ1 − µT
2 !−1

2 µ2
)
. (2.4)

The incorporation of the quadratic term creates a more pow-
erful classifier, which exploits differences in covariance, generally

[figure: Pagan et al. 2016]

Decision boundary is quadratic, with four possible geometries:  

[on board]

Simplest case:
equal 

covariances

2294 M. Pagan, E. Simoncelli, and N. Rust

Figure 1: The nQDA framework. (a) Optimal quadratic discrimination bound-
aries (black lines) for four example pairs of population response distributions.
Hypothetical class distributions are each multivariate gaussian (indicated by
red and gray elliptical regions), with means µ1 and µ2 and covariances !1 and
!2. Top left: A scenario in which the means of the two classes differ and the
covariances are matched. In this special case, the optimal classifier is linear.
Top right: A scenario in which the means of the two classes are similar and a
linear classifier alone is an ineffective decision boundary. Instead, the optimal
classifier uses a pair of parabolic boundaries. Bottom left: An example with dif-
fering mean and covariance, yielding a single parabolic boundary. Bottom right:
An example yielding an elliptical boundary. (b) Depiction of the nQDA model,
which implements the optimal quadratic classifier (equations 2.3 and 2.4) as an
LN-LN model (see equation 2.6). The first LN transformation is achieved with
a bank of linear filters, with all but the first followed by a squaring nonlinearity.
The outputs of these individual LN units are combined via a weighted sum,
followed by a threshold function that determines the class membership.

where Q is an N-by-N symmetric matrix. As with the linear classifier, the
class assignment is determined by the sign of this function. Similar to linear
classifiers, multiple methods exist for fitting the parameters of a quadratic
classifier (Kendall, 1966; Hofmann, Schölkopf, & Smola, 2008). When the
population responses are gaussian distributed the maximum likelihood
solution (known as quadratic discriminant analysis, QDA; Kendall 1966)
corresponds to

Q = 1
2

·
(
!−1

2 − !−1
1

)
; m = !−1

1 µ1 − !−1
2 µ2,

k =−1
2

(
log

∣∣!1

∣∣ − log
∣∣!2

∣∣ + µT
1 !−1

1 µ1 − µT
2 !−1

2 µ2
)
. (2.4)

The incorporation of the quadratic term creates a more pow-
erful classifier, which exploits differences in covariance, generally



•200 face images (100 male, 100 female)
•Adjusted for position, size, intensity/contrast
•Labeled by 27 human subjects

[Graf & Wichmann, NIPS*03] 

A perceptual example: Biological gender 
identification (XX vs. XY)

Linear classifiers

SVM RVM Prot FLD trained
on

→
W

true
data

→
W

subj
dataw

w

SVM RVM Prot FLD

Four linear classifiers, trained on human data

Model validation/testing

• Cross-validation:  Subject responses 
[% correct, reaction time, confidence] 
are explained 
- very well by SVM 
- moderately well by RVM / FLD
- not so well by Prot

• Do these decision “models”make 
testable predictions?  Synthesize 
optimally discriminable faces...



ε=−21 ε=−14 ε=−7 ε=0 ε=7 ε=14 ε=21

SVM

RVM

Prot

FLD

Add classifierSubtract classifier

[Wichmann, et. al; NIPS*04] 

50

100

%
C
or
re
ct

Amount of classifier image added/subtracted
(arbitrary units)

1.0 2.0 4.0 8.00.50.25

SVM
RVM
Proto
FLD

[Wichmann, et. al; NIPS*04] 

Decision-making and categorization (outline)

One-dimensional evidence, binary decision: 
Signal detection theory (SDT) 
Discriminability: Fisher Information 

N-dimensional evidence, binary decision: 
Linear discriminant analysis (LDA) 
Quadratic discriminant analysis (QDA) 

N-dimensional evidence, more than 2 categories: 
Labeled data: ML or MAP extension of QDA 
Unlabeled data: K-means or soft K-means clustering



More than two categories, labeled data

Soap bubbles:Voronoi tessellation

Given cluster centers, we identify
each point to its nearest center.
This defines a Voronoi tessellation
of Rp
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Given c1, . . . cK 2 Rp, we define the Voronoi sets

Vk = {x 2 Rp : kx� ckk22  kx� cjk22, j = 1, . . .K}, k = 1, . . .K

These are convex polyhedra (we’ll see them again when we study
classification)

12

Voronoi regions:

If means and covariances are known, and the covariances are 
circular and identical across categories, this reduces to selecting 
the nearest neighbor: 

Reminder: More than two categories, labeled data, 
Gaussian distributions (but not necessarily circular 
nor equal across categories). 

ML (or MAP) classifier generalizes QDA:

[figure: Pagan et al. 2016]
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Figure 1: The nQDA framework. (a) Optimal quadratic discrimination bound-
aries (black lines) for four example pairs of population response distributions.
Hypothetical class distributions are each multivariate gaussian (indicated by
red and gray elliptical regions), with means µ1 and µ2 and covariances !1 and
!2. Top left: A scenario in which the means of the two classes differ and the
covariances are matched. In this special case, the optimal classifier is linear.
Top right: A scenario in which the means of the two classes are similar and a
linear classifier alone is an ineffective decision boundary. Instead, the optimal
classifier uses a pair of parabolic boundaries. Bottom left: An example with dif-
fering mean and covariance, yielding a single parabolic boundary. Bottom right:
An example yielding an elliptical boundary. (b) Depiction of the nQDA model,
which implements the optimal quadratic classifier (equations 2.3 and 2.4) as an
LN-LN model (see equation 2.6). The first LN transformation is achieved with
a bank of linear filters, with all but the first followed by a squaring nonlinearity.
The outputs of these individual LN units are combined via a weighted sum,
followed by a threshold function that determines the class membership.

where Q is an N-by-N symmetric matrix. As with the linear classifier, the
class assignment is determined by the sign of this function. Similar to linear
classifiers, multiple methods exist for fitting the parameters of a quadratic
classifier (Kendall, 1966; Hofmann, Schölkopf, & Smola, 2008). When the
population responses are gaussian distributed the maximum likelihood
solution (known as quadratic discriminant analysis, QDA; Kendall 1966)
corresponds to

Q = 1
2

·
(
!−1

2 − !−1
1

)
; m = !−1

1 µ1 − !−1
2 µ2,

k =−1
2

(
log

∣∣!1

∣∣ − log
∣∣!2

∣∣ + µT
1 !−1

1 µ1 − µT
2 !−1

2 µ2
)
. (2.4)

The incorporation of the quadratic term creates a more pow-
erful classifier, which exploits differences in covariance, generally

• K-Means (Lloyd, 1957)

Unlabeled data: Clustering

• “Soft-assignment” version of K-means 
    (a form of Expectation-Maximization - EM)

• In general, alternate between: 
1) Estimating cluster assignments (classification) 
2) Estimating cluster parameters 

• Coordinate descent: converges to (possibly local) minimum 

• Need to choose K (number of clusters) - cross-validation!



1. Estimate cluster assignments: given class centers, 
assign each point to closest one:

2. Estimating cluster parameters: given assignments, re-
estimate the centroid of each cluster.

K-Means clustering algorithm

Soap bubbles:Voronoi tessellation

Given cluster centers, we identify
each point to its nearest center.
This defines a Voronoi tessellation
of Rp
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Given c1, . . . cK 2 Rp, we define the Voronoi sets

Vk = {x 2 Rp : kx� ckk22  kx� cjk22, j = 1, . . .K}, k = 1, . . .K

These are convex polyhedra (we’ll see them again when we study
classification)
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Voronoi regions:

Alternate between two steps:

K-means example

Here Xi 2 R2, n = 300, and K = 3
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[from R. Tibshirani, 2013]

N

K-means example, multiple runs

Here Xi 2 R2, n = 250, and K = 4, the points are not as
well-separated
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These are results of result of running the K-means algorithm with
di↵erent initial centers (chosen randomly over the range of the
Xi’s). We choose the second collection of centers because it yields
the smallest within-cluster variation

14

Initialization matters (due to local minima) … 
Three solutions obtained with different random starting points:

[from R. Tibshirani, 2013]

K-means optimization failures



K -means Limitations Illustrated

Non-convex/non-round-shaped clusters: Standard K -means fails!

Clusters with different densities

Picture courtesy: Christof Monz (Queen Mary, Univ. of London)

(CS5350/6350) Data Clustering October 4, 2011 21 / 24

K-means systematic failures

ML for discrete mixture of Gaussians: soft K-means

= assignment probability

= mean/covariance of class k

Intuition: alternate between maximizing these two sets of variables 
(“coordinate descent”) 

Essentially, a version of K-means with “soft” (i.e., continuous, as 
opposed to binary) assignments!

p(~xn|ank, ~µk,⇤k) /
X

k

ankp
|⇤k|

e�(~xn�~µk)
T⇤�1

k (~xn�~µk)/2

ank

{~µk,⇤k}

[wikipedia]



Standard solution:
1. Threshold to find segments containing  spikes
2. Reduce dimensionality of segments using PCA
3. Identify spikes using clustering (e.g., K-means)

Note: Fails for overlapping spikes!

Application to neural “spike  sorting”

A

synchronous spiking superposition for various time shifts
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Failures of clustering for near-synchronous spikes

[Pillow et. al. 2013]



“Decoding” neural populations?

• Test/compare encoding models

• Connect neural response to behavior

• Build brain-computer interfaces
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Encoding determines discriminability
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Probabilistic encoding model 
determines discriminability

Discriminability (d’) is (approximately) slope/stdev

p(r|s)



Two neurons

r1

r2

Same fundamental issues as 1D case: 
• Probabilistic encoding determines discriminability 

• Intuitively, overlap is distance/spread 

• More precisely: estimate Fisher Information [on board]

I. Simple/intuitive population decoding

• Population vector [Georgopoulos et.al., 1986]

• Winner-take-all

(simple, but discontinuous and noise-susceptible)

(also simple, more robust)

• Linear?  

(simple, but usually doesn’t work well)

“population vector”  
[Kalaska, Caminiti 

Georgopoulous, 1983]

A sum of vectors, 
weighted by 
firing rate of 
motor neurons, 
predicts arm 
movement... 



II. Statistically optimal decoding

• Maximum likelihood (ML)

• Maximum a posteriori (MAP)

• Minimum Mean Squared Error (MMSE),  
a.k.a.  Bayes Least Squares (BLS)

ŝ(~r) = E(s|~r)

[Goris etal, 2014]

Poisson response noise?

Gaussian response noise?

Not a great model for neural noise, and 
ML estimation is nonlinear regression :(

Better model for neural responses, and  
ML estimation is much nicer…

[Ma, Beck, Latham, Pouget, 2006;  Jazayeri & Movshon, 2006;  Zhang et al, 1998]

ML decoding for a Poisson-spiking neural population 

If is constant (i.e., tuning curves “tile”), just 
minimize the response-weighted sum of log tuning curves.

Special cases allow closed-form solutions:

  • Gaussian tuning curves
  • von Mises tuning curves



[Ma, Beck, Latham & Pouget, 06]
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[Graf, Kohn, Jazayeri & Movshon, 11]

The data: tuning curves fi
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1) The ML decoder, assuming independent Poisson responses (the “PID”):

log L(θ) = log (
N

∏
i=1

p(ri |θ)) =
N

∑
i=1

log ( fi(θ)ri

ri!
exp(−fi(θ)))

[Graf, Kohn, Jazayeri & Movshon, 11]

=
N

∑
i=1

log( fi(θ))ri −
N

∑
i=1

fi(θ) −
N

∑
i=1

log(ri!) =
N

∑
i=1

Wi(θ)ri + B(θ)

For discrimination between two values, likelihood ratio is a linear function of responses:

log LR(θ1, θ2) = log ( L(θ1)
L(θ2) ) = log L(θ1) − log L(θ2)

=
N

∑
i=1

[Wi(θ1) − Wi(θ2)]ri + [B(θ1) − B(θ2)]

=
N

∑
i=1

wi(θ1, θ2)ri + b(θ1, θ2)

Comparing population decoders



2) Alternatively, compute an SVM on the measured response vectors for each 
orientation, the empirical linear decoder (“ELD”):

[Graf, Kohn, Jazayeri & Movshon, 11]

y(θ1, θ2) =
N

∑
i=1

wi(θ1, θ2)ri + b(θ1, θ2) ≡ log LR(θ1, θ2)

3) For each neuron and orientation, shuffle the responses across trials and 
train a new SVM, the correlation-blind empirical linear decoder (CB-ELD).

Comparing population decoders
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• Linear algebra / linear systems 
- Ex: Trichromacy 

• Least squares 
• regression / TLS regression 

• Linear shift-invariant systems 
• convolution / Fourier transforms 
• Ex: Auditory filtering 

• Summary statistics - dispersion, central tendency, PCA 
• Statistical inference & estimation 

• estimation: bias, variance, convergence 
• optimal estimation: ML, MAP, Bayes 
• model comparison, overfitting, regularization, cross-validation 
• Ex: fitting an LNP model 

• Decision-making and categorization 
• Signal detection theory, Fisher information 
• classification, clustering 
• Ex: population decoding

Where we’ve been…
Linear systems /
Fourier analysis

Linear 
algebra

Machine 
learning & pattern 

recognition
Statistics

OptimizationData 
analysis

&
Modeling

mathematical reasoning

ge
om

etr
ic 

re
aso

nin
g algorithmic reasoning

Keep climbing!


