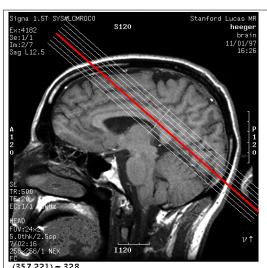
Mathematical Tools for Neural and Cognitive Science

Fall semester, 2025

Section 6a:

Decision-making Categorization



Tumor, or not?

Decision-making and categorization

One-dimensional evidence and binary decision:

Signal-detection theory
Discriminability: Fisher Information

N-dimensional evidence and binary decision:

Linear discriminant

QDA

N-dimensional evidence and more than 2 categories Labeled data: ML or MAP extension of QDA

Unlabeled data: K-means or soft K-means clustering

Decision-making and categorization

One-dimensional evidence and binary decision:

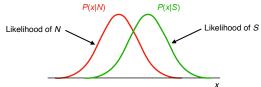
Signal-detection theory

Discriminability: Fisher Information

N-dimensional evidence and binary decision: Linear discriminant QDA

N-dimensional evidence and more than 2 categories Labeled data: ML or MAP extension of QDA Unlabeled data: K-means or soft K-means clustering

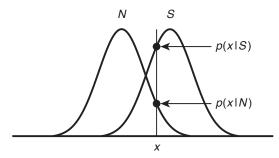
Signal Detection Theory



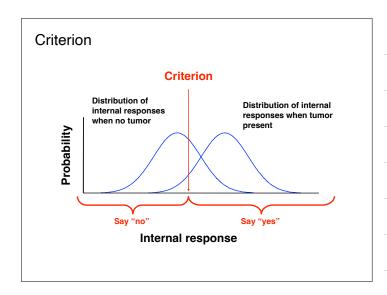
Before the trial starts $P(x \mid S)$ and $P(x \mid N)$ are functions of x, the "measurement distribution".

After the stimulus is presented, from the observer's perspective $P(x \mid S)$ and $P(x \mid N)$ are functions of the second variable (S or N) and are now called the "likelihood function".

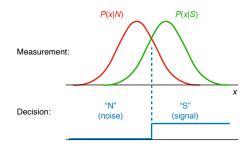
Signal Detection Theory



After stimulus presentation, the observer has measurement x and thus can infer the likelihoods $P(x \mid N)$ and $P(x \mid S)$ and use their values to inform a decision.

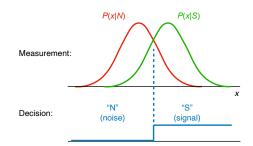


Signal Detection Theory

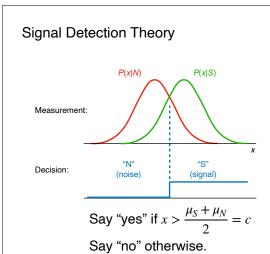


For equal-shape, unimodal, symmetric distributions, the maximum-likelihood (ML) decision rule is a *threshold* function.

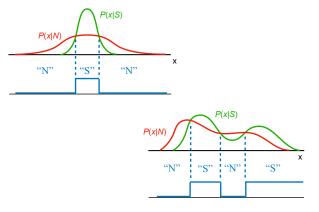
Signal Detection Theory



Say "yes" if p(x|S) > p(x|N)Say "no" otherwise.



More generally, an ML decision rule can have multiple thresholds:



Decision rules

Maximum likelihood (ML):

Say "yes" if $P(x \mid S) > P(x \mid N)$

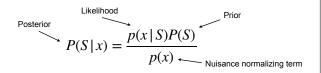
Say "no" otherwise.

Maximum a posteriori (MAP):

Say "yes" if P(S|x) > P(N|x)

Say "no" otherwise.

Apply Bayes' Rule



Decision rules

Maximum a posteriori (MAP):

Say "yes" if P(S|x) > P(N|x)Say "no" otherwise.

Decision rules

Maximum a posteriori (MAP):

Say "yes" if P(S|x) > P(N|x)

Say "no" otherwise.

Say "yes" if $\frac{p(x \mid S)P(S)}{p(x)} > \frac{p(x \mid N)P(N)}{p(x)}$

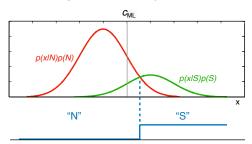
Say "no" otherwise.

Say "yes" if p(x | S)P(S) > p(x | N)P(N)

Say "no" otherwise.

MAP decision rule

MAP solution maximizes proportion of correct answers, *taking prior probability into account*.



Compared to ML threshold, the MAP threshold moves *away* from higher-probability option.

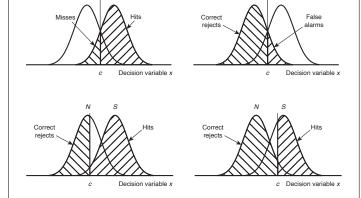
Ratio form

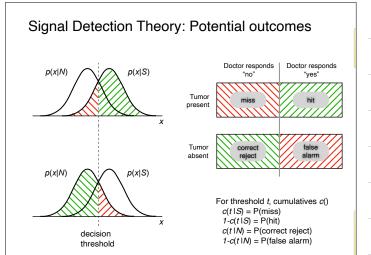
Say "yes" if
$$\frac{P(S|x)}{P(N|x)} > 1$$

Say "no" otherwise, where

$$\frac{P(S \mid x)}{P(N \mid x)} = \left(\frac{p(x \mid S)}{p(x \mid N)}\right) \left(\frac{P(S)}{P(N)}\right)$$
Posterior odds

Signal Detection Theory: Potential outcomes





Bayes decision rule (maximum expected gain or minimum Bayes risk)

Incorporate values for the four possible outcomes:

Payoff

Matrix		Response		
		No	Yes	
Stimulus	S	V_S^{No}	V_S^{Yes}	
	N	V_N^{No}	V_N^{Yes}	

Bayes Optimal Criterion

Response No Yes

$$\begin{split} \mathbb{E}(Yes \,|\, x) &= V_S^{Yes} P(S \,|\, x) + V_N^{Yes} P(N \,|\, x) \\ \mathbb{E}(No \,|\, x) &= V_S^{No} P(S \,|\, x) + V_N^{No} P(N \,|\, x) \end{split}$$

Say yes if $\mathbb{E}(Yes \mid x) \ge \mathbb{E}(No \mid x)$

Optimal Criterion

$$\begin{split} \mathbb{E}(Yes \,|\, x) &= V_S^{Yes} P(S \,|\, x) + V_N^{Yes} P(N \,|\, x) \\ \mathbb{E}(No \,|\, x) &= V_S^{No} P(S \,|\, x) + V_N^{No} P(N \,|\, x) \end{split}$$

Say yes if $\mathbb{E}(Yes \mid x) \ge \mathbb{E}(No \mid x)$

$$\text{Say yes if } \frac{P(S \,|\, x)}{P(N \,|\, x)} \geq \frac{V_N^{No} - V_N^{Yes}}{V_S^{Yes} - V_S^{No}} = \frac{V(\operatorname{Correct} |\, N)}{V(\operatorname{Correct} |\, S)}$$

Posterior odds

Apply Bayes' Rule

$$P(S \mid x) = \frac{p(x \mid S)P(S)}{p(x)}$$

$$P(N \mid x) = \frac{p(x \mid N)P(N)}{p(x)}$$

$$\frac{P(S \mid x)}{P(N \mid x)} = \left(\frac{p(x \mid S)}{p(x \mid N)}\right) \left(\frac{P(S)}{P(N)}\right)$$
odds
Likelihood ratio

Posterior odds

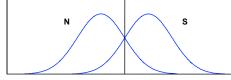
`Prior odds

Optimal Criterion

Say yes if
$$\frac{P(S|x)}{P(N|x)} \ge \frac{V(\operatorname{Correct}|N)}{V(\operatorname{Correct}|S)}$$

i.e., if
$$\frac{p(x \mid S)}{p(x \mid N)} \ge \frac{P(N)}{P(S)} \frac{V(\operatorname{Correct} \mid N)}{V(\operatorname{Correct} \mid S)} = \beta_{\operatorname{opt}}$$

Example, if equal priors and equal payoffs, say yes if the likelihood ratio is greater than one (ML rule):



Summary

ML: Say "yes" if
$$\frac{p(x \mid S)}{p(x \mid N)} \ge 1$$

MAP: Say "yes" if
$$\frac{p(x \mid S)}{p(x \mid N)} \ge \frac{P(N)}{P(S)}$$

MEG: Say "yes" if
$$\frac{p(x \mid S)}{p(x \mid N)} \ge \frac{P(N)}{P(S)} \frac{V(\operatorname{Correct} \mid N)}{V(\operatorname{Correct} \mid S)}$$

The likelihood ratio is a "sufficient statistic".

Standardized SDT

None of the derivations so far made any assumptions about the signal and noise distributions (even though the graphs looked Gaussian). Thus, all statements I've made about ML/MAP/MEG are true for *any* distributions: discrete (such as Poisson) vs. continuous, unequal signal vs. noise distributions, univariate vs. multivariate. The likelihood principle still holds.

However, the standard SDT model that is most often used assumes equal-variance Gaussians:

$$p(x \mid N) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x-\mu_N)^2}{2\sigma^2}\right) \text{ and } p(x \mid S) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x-\mu_S)^2}{2\sigma^2}\right)$$

Standardized SDT

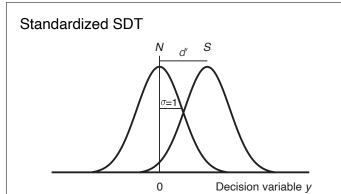
$$p(x \mid N) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x - \mu_N)^2}{2\sigma^2}\right) \text{ and } p(x \mid S) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x - \mu_S)^2}{2\sigma^2}\right)$$

Change of variables: Let
$$y = \frac{x - \mu_N}{\sigma}$$
, $d' = \frac{\mu_S - \mu_N}{\sigma}$

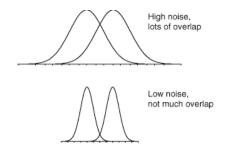
$$d' = \frac{\text{separation}}{\text{width}}$$

Then:

$$p(y \,|\, N) = \frac{1}{\sqrt{2\pi}} \exp{\frac{-y^2}{2}} \text{ and } p(y \,|\, S) = \frac{1}{\sqrt{2\pi}} \exp{\frac{-(y-d')^2}{2}}$$



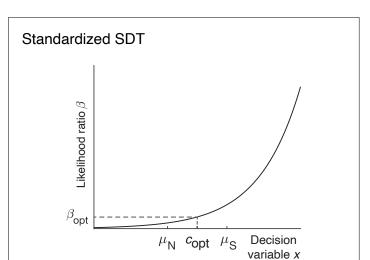
Signal Detection Theory: discriminability (d')



Standardized SDT

Likelihood ratio for y = c is:

$$\frac{p(c\mid S)}{p(c\mid N)} = \frac{\exp\left[-\frac{(c-d')^2}{2}\right]}{\exp\left[-\frac{c^2}{2}\right]} = \exp\left[cd' - \frac{d'^2}{2}\right]$$



Standardized SDT

Likelihood ratio for y = c is:

$$\beta_{\mathsf{opt}} = \frac{p(c_{\mathsf{opt}} \mid S)}{p(c_{\mathsf{opt}} \mid N)} = \frac{\exp\left[-\frac{(c_{\mathsf{opt}} - d')^2}{2}\right]}{\exp\left[-\frac{c_{\mathsf{opt}}^2}{2}\right]} = \exp\left[c_{\mathsf{opt}} d' - \frac{d'^2}{2}\right]$$

$$\log \beta_{\text{opt}} = c_{\text{opt}} d' - \frac{d'^2}{2}$$

$$\begin{aligned} c_{\mathsf{opt}} &= \frac{d'}{2} + \frac{\log \beta_{\mathsf{opt}}}{d'} \\ &= \frac{d'}{2} + \frac{1}{d'} \left[\log \frac{P(N)}{P(S)} + \log \frac{V(\mathsf{Correct} \,|\, N)}{V(\mathsf{Correct} \,|\, S)} \right] \end{aligned}$$

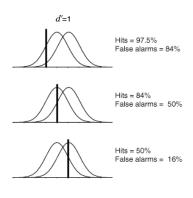
Standardized SDT

$$c_{\mathsf{opt}} = \frac{d'}{2} + \frac{1}{d'} \left[\log \frac{P(N)}{P(S)} + \log \frac{V(\mathsf{Correct} \mid N)}{V(\mathsf{Correct} \mid S)} \right]$$

and thus the optimal criterion is the ML criterion shifted by a term that is a function of the prior odds plus a term that is a function of the payoff ratio. Note that this additivity of the effects of priors and payoffs is *not* seen in human behavior.

Locke, S. M., Gaffin-Cahn, E., Hosseiniaveh, N., Mamassian, P. & Landy, M. S. (2020). *Attention, Perception, & Psychophysics, 82*, 3158-3175.

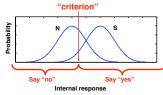
Signal Detection Theory: Criterion



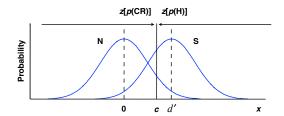
Example applications of SDT

- Vision
- · Detection (something vs. nothing)
- Discrimination (lower vs greater level of: intensity, contrast, depth, slant, size, frequency, loudness, \dots
- Memory (internal response = trace strength = familiarity)
- Neurometric function/discrimination by neurons (internal response = spike count)

From experimental measurements, assuming Gaussian distributions, can we determine the underlying values of d^\prime and criterion?



SDT: Estimating d^\prime and c



$$\begin{split} d' &= z[P(\mathsf{Hit})] + z[P(\mathsf{Correct Reject})] \\ &= z[P(\mathsf{Hit})] - z[P(\mathsf{False Alarm})] \end{split}$$

c = z[P(Correct Reject)], where

 $z(P) = \Phi^{-1}(P)$, where $\Phi(z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} \exp{\frac{z^2}{2}} dz$

SDT: Estimating d^\prime and c

$$\begin{split} d' &= z[P(\mathsf{Hit})] + z[P(\mathsf{Correct Reject})] \\ &= z[P(\mathsf{Hit})] - z[P(\mathsf{False Alarm})] \\ c &= z[P(\mathsf{Correct Reject})] \end{split}$$

Response

Yes

 n_{FA}

Stimulus	S	ⁿ Miss	ⁿ Hit
Stim			

 n_{CR}

No

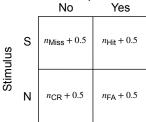
$$\hat{P}_{\mathsf{Hit}} = n_{\mathsf{Hit}}/(n_{\mathsf{Hit}} + n_{\mathsf{Miss}})$$

 $\hat{P}_{\mathsf{FA}} = n_{\mathsf{FA}}/(n_{\mathsf{FA}} + n_{\mathsf{CR}})$

SDT: Estimating d^\prime and c

$$\begin{split} d' &= z[P(\mathsf{Hit})] + z[P(\mathsf{Correct Reject})] \\ &= z[P(\mathsf{Hit})] - z[P(\mathsf{False Alarm})] \\ c &= z[P(\mathsf{Correct Reject})] \end{split}$$

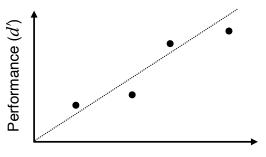
Response



$$\begin{split} \hat{P}_{\text{Hit}} &= (n_{\text{Hit}} + 0.5) / (n_{\text{Hit}} + n_{\text{Miss}} + 1) \\ \hat{P}_{\text{FA}} &= (n_{\text{FA}} + 0.5) / (n_{\text{FA}} + n_{\text{CR}} + 1) \end{split}$$

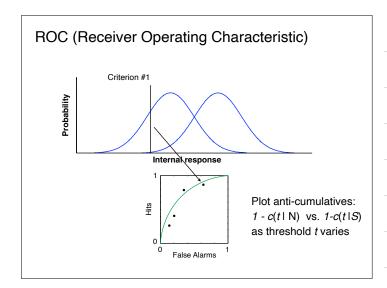
Hautus, M. J. (1995). Corrections for extreme proportions and the biasing effects on estimated values of d'. Behavior Research Methods, Instruments, & Computers, 27, 46-51.

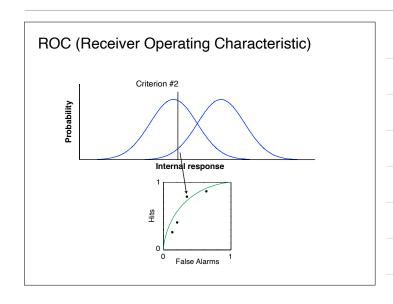
SDT: Psychometric function

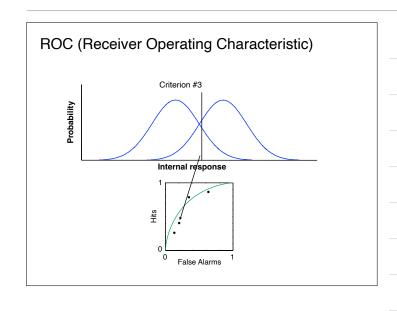


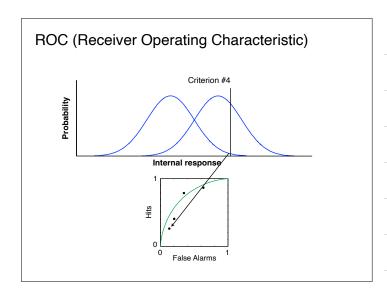
Signal strength

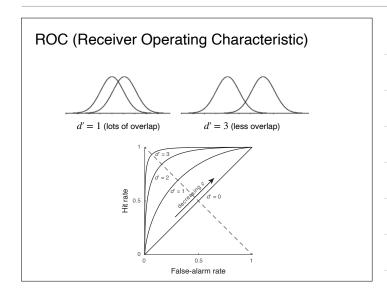
Note: 4 hit rates and one, shared, false-alarm rate

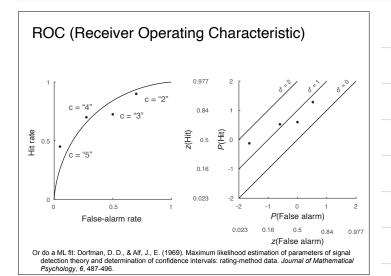


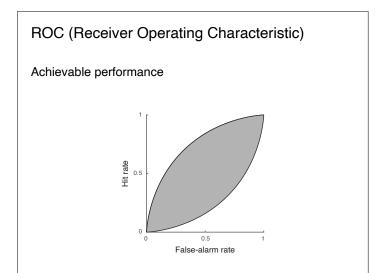


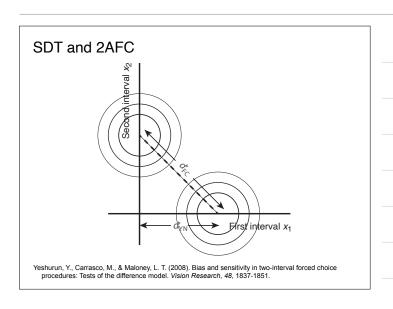


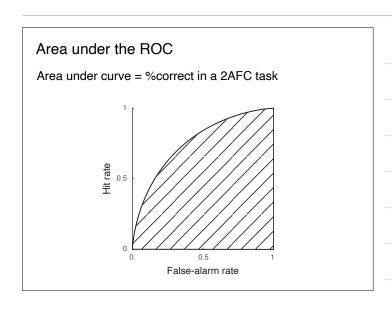






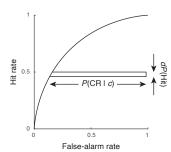






Area under the ROC

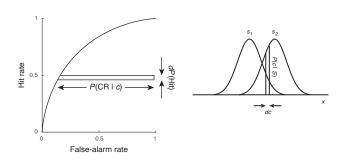
Area under curve = %correct in a 2AFC task



$$\mathsf{AUROC} = \int_0^1 P(\mathsf{Correct reject} \, | \, \mathsf{criterion} \, c) dP(\mathsf{Hit} \, | \, \mathsf{criterion} \, c)$$

Area under the ROC

Area under curve = %correct in a 2AFC task

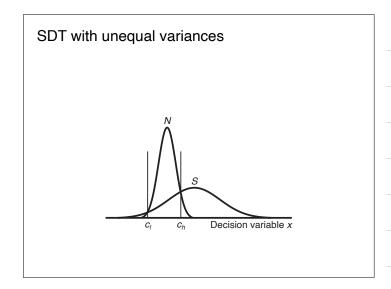


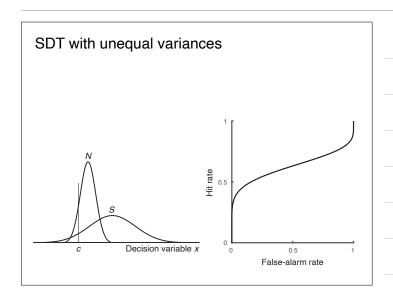
Slope of the ROC = likelihood ratio!

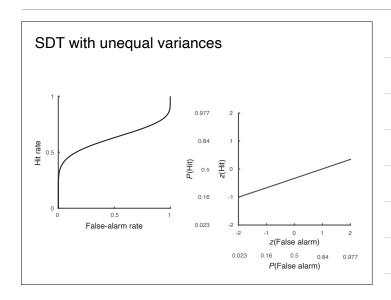
Area under the ROC

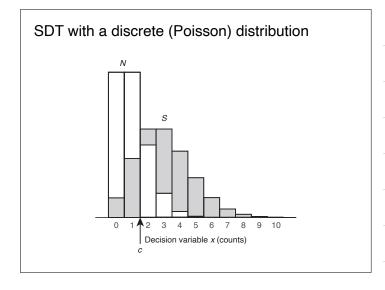
Area under curve = %correct in a 2AFC task

$$\begin{aligned} \mathsf{AUROC} &= \int_0^1 P(\mathsf{Correct\ reject\ |\ criterion\ } c) dP(\mathsf{Hit\ |\ criterion\ } c) \\ &= \int_{-\infty}^\infty p(x < c\ |\ N) p(\mathsf{measurement\ is\ } c\ |\ S) dc \\ &= \int_{-\infty}^\infty \int_{-\infty}^c p(x\ |\ N) p(\mathsf{measurement\ is\ } c\ |\ S) dx dc \\ &= \int_{-\infty}^\infty p(\mathsf{measurement\ is\ } c\ |\ S) \int_{-\infty}^c p(x\ |\ N) dx dc \\ &= P_{\mathsf{FC}\ }. \end{aligned}$$

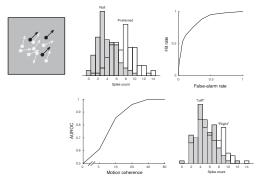








Area under the ROC - Poisson case or with data: Neurometric function and choice probability



Britten, K. H., Shadlen, M. N., Newsome, W. T., & Movshon, J. A. (1992). The analysis of visual motion: a comparison of neuronal and psychophysical performance. *Journal of Neuroscience*, *12*, 4745-4765. Britten, K. H., Newsome, W. T., Shadlen, M. N., Celebrini, S. & Movshon, J. A. (1996). A relationship between behavioral choice and the visual responses of neurons in macaque MT. *Visual Neuroscience*, *13*, 87-100.

Decision-making and categorization

One-dimensional evidence and binary decision: Signal-detection theory

Discriminability: Fisher Information

N-dimensional evidence and binary decision: Linear discriminant QDA

N-dimensional evidence and more than 2 categories Labeled data: ML or MAP extension of QDA Unlabeled data: K-means or soft K-means clustering

Fisher Information

• Second-order expansion of the (expected) negative log likelihood:

$$I(s) = -\mathbb{E}\left[\frac{\partial^2 \log p(r|s)}{\partial s^2}\right]$$

- Provides a bound on "precision" of unbiased estimators: (the "Cramér-Rao bound")
- Perceptually, provides a bound on **discriminability**: (Series et. al. 2009) $D(s) \leq \sqrt{I(s)}$
- Examples: with mean stimulus response $\mu(s)$

Gaussian case: $p(r|s) \sim \mathcal{N}(\mu(s), \sigma^2)$

 $I(s) = [\mu'(s)]^2/\sigma^2$

 $\sigma^2(s) \ge \frac{1}{I(s)}$

Poisson case: $p(r|s) \sim \text{Poiss}(\mu(s))$ $I(s) = \frac{1}{2} \int_{-\infty}^{\infty} p(s) \, ds$

 $I(s) = [\mu'(s)]^2/\mu(s)$

Example: Weber's law

[Weber, 1834]

$$D(s) \propto rac{1}{s}$$
 (discrimination thresholds proportional to stimulus strength)

Assuming $I(s) \propto \frac{1}{s^2}$ what internal representation can explain this? Many!

additive Gaussian noise, with mean

hoise, with mean $\mu(s) = \log(s) + c$

entirely due to response mean [Fechner, 1860] Poisson noise, with mean

 $\mu(s) = [\log(s) + c]^2$

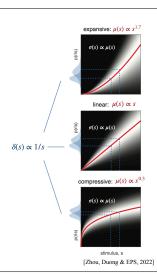
discrete representation, depends on both mean and variance multiplicative Gaussian noise, with mean

$$\mu(s) = \alpha s$$

entirely due to response variance

S.S. Stevens. "To Honor Fechner and Repeal His Law: A power function, not a log function, describes the operating characteristic of a sensory system" (1961)

Three examples with different power-law mean response, each consistent with Weber's law discriminability.



Decision-making and categorization

One-dimensional evidence and binary decision: Signal-detection theory Discriminability: Fisher Information

N-dimensional evidence and binary decision:

Linear discriminant QDA

N-dimensional evidence and more than 2 categories Labeled data: ML or MAP extension of QDA Unlabeled data: K-means or soft K-means clustering

Decision/classification in multiple dimensions

- Data-driven linear classifiers:
 - Prototype Classifier minimize distance to class mean
 - Fisher Linear Discriminant (FLD) maximize d'
 - Support Vector Machine (SVM) maximize margin
- Statistical:
 - ML/MAP/Bayes under a probabilistic model
 - e.g.: Gaussian, identity covariance (same as Prototype)
 - e.g.: Gaussian, equal covariance (same as FLD)
 - e.g.: Gaussian, general case (Quadratic Discriminator)
- Some Examples:
 - Visual gender classification
 - Neural population decoding

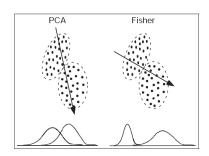
Linear Classifier Find unit vector \hat{w} ("discriminant") that best separates the distributions class A Decision boundary class B

histogram of projected values $\hat{w}\cdot\vec{x}$

Simplest linear discriminant: the Prototype Classifier

$$\hat{w} = \frac{\vec{\mu}_A - \vec{\mu}_B}{\|\vec{\mu}_A - \vec{\mu}_B\|}$$

Fisher Linear Discriminant



$$\max_{\hat{w}} \frac{\left[\hat{w}^T (\vec{u}_A - \vec{u}_B)\right]^2}{\left[\hat{w}^T C_A \hat{w} + \hat{w}^T C_B \hat{w}\right]}$$
 (note: this is d' squared!)

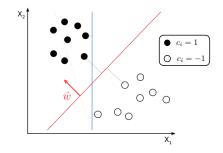
optimum: $\hat{w} = C^{-1}(\vec{u}_A - \vec{u}_B)$, where $C = \frac{1}{2}(C_A + C_B)$

Support Vector Machine (SVM)

(widely used in machine learning, but no closed form solution)

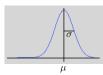
Maximize the "margin" (gap between data sets):

find largest m, and $\{\hat{w}, b\}$ s.t. $c_i(\hat{w}^T \vec{x}_i - b) \geq m, \quad \forall i$



Reminder: Multi-D Gaussian densities

$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

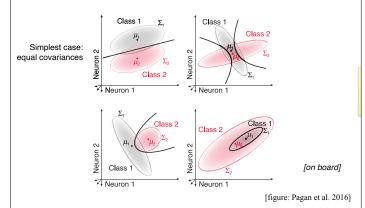


$$p(\vec{x}) = \frac{1}{\sqrt{(2\pi)^N |C|}} e^{-(\vec{x} - \vec{\mu})^T C^{-1} (\vec{x} - \vec{\mu})/2}$$

mean: [0.2, 0.8] cov: [1.0 -0.3; -0.3 0.4]

ML (or MAP) classifier for two Gaussians

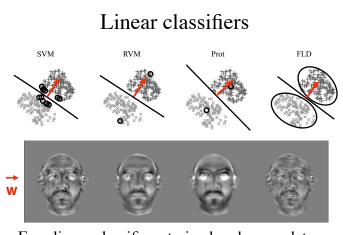
Decision boundary is *quadratic*, with four possible geometries:



A perceptual example: Biological gender identification (XX vs. XY)

- •200 face images (100 male, 100 female)
- Adjusted for position, size, intensity/contrast
- •Labeled by 27 human subjects

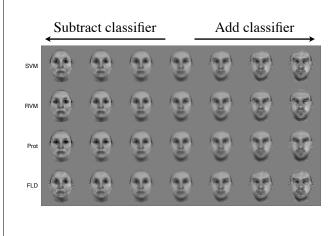
[Graf & Wichmann, NIPS*03]



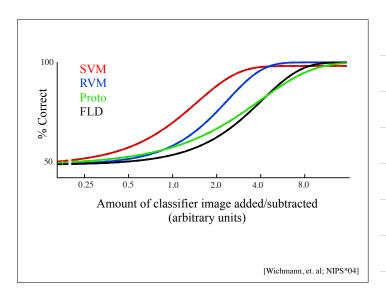
Four linear classifiers, trained on human data

Model validation/testing

- Cross-validation: Subject responses [% correct, reaction time, confidence] are explained
 - very well by SVM
 - moderately well by RVM / FLD
 - not so well by Prot
- Do these decision "models" make testable predictions? Synthesize optimally discriminable faces...



[Wichmann, et. al; NIPS*04]



Decision-making and categorization

One-dimensional evidence and binary decision: Signal-detection theory Discriminability: Fisher Information

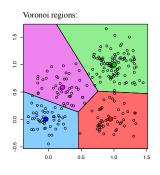
N-dimensional evidence and binary decision: Linear discriminant QDA

N-dimensional evidence and more than 2 categories

Labeled data: ML or MAP extension of QDA Unlabeled data: K-means or soft K-means clustering

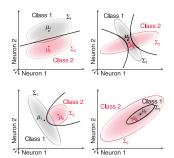
More than two categories, labeled data

If means and covariances are known, and the covariances are circular and identical across categories, this reduces to selecting the nearest neighbor:



More two categories, labeled data, Gaussian distributions, but not necessarily circular nor equal across categories.

ML (or MAP) classifier generalizes QDA:



[figure: Pagan et al. 2016]

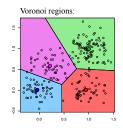
Unlabeled data: Clustering

- K-Means (Lloyd, 1957)
- "Soft-assignment" version of K-means (a form of Expectation-Maximization EM)
- In general, alternate between:
- 1) Estimating cluster assignments (classification)
- 2) Estimating cluster parameters
- Coordinate descent: converges to (possibly local) minimum
- Need to choose K (number of clusters) cross-validation!

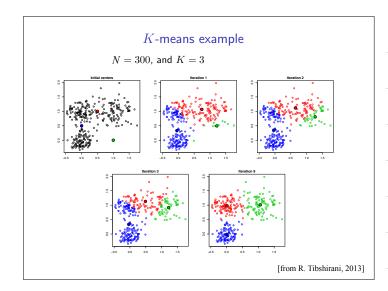
K-Means clustering algorithm

Alternate between two steps:

1. Estimate cluster assignments: given class centers, assign each point to closest one:

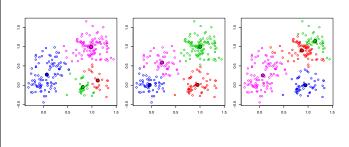


2. Estimating cluster parameters: given assignments, reestimate the centroid of each cluster.



K-means optimization failures

Initialization matters (due to local minima) ... Three solutions obtained with different random starting points:



[from R. Tibshirani, 2013]

K-means systematic failures Non-convex/non-round-shaped clusters Clusters with different densities

Picture courtesy: Christof Monz (Queen Mary, Univ. of London)

ML for discrete mixture of Gaussians: soft K-means

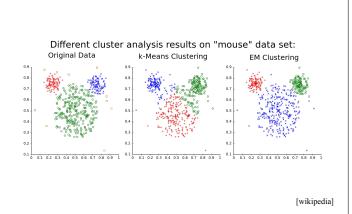
$$p(\vec{x}_n|a_{nk}, \vec{\mu}_k, \Lambda_k) \propto \sum_k \frac{a_{nk}}{\sqrt{|\Lambda_k|}} e^{-(\vec{x}_n - \vec{\mu}_k)^T \Lambda_k^{-1} (\vec{x}_n - \vec{\mu}_k)/2}$$

 a_{nk} = assignment *probability*

 $\{\vec{\mu}_k, \Lambda_k\}$ = mean/covariance of class k

Intuition: alternate between maximizing these two sets of variables ("coordinate descent")

Essentially, a version of K-means with "soft" (i.e., continuous, as opposed to binary) assignments!

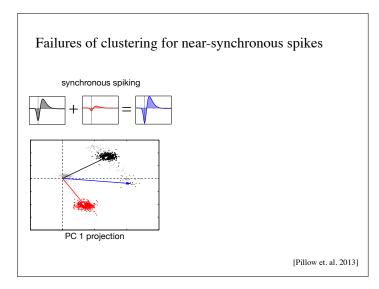


Application to neural "spike sorting"

Standard solution:

- 1. Threshold to find segments containing spikes
- 2. Reduce dimensionality of segments using PCA
- 3. Identify spikes using clustering (e.g., K-means)

Note: Fails for overlapping spikes!

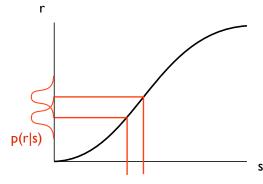


"Decoding" neural populations?

- Connecting neural response to behavior
- Engineering: Brain-Computer Interfaces
- Test/compare encoding models

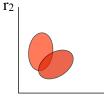
Encoding determines discriminability r p(r|s) s

Probabilistic encoding model determines discriminability



Discriminability (d') is (approximately) slope/stdev

Two neurons



 \mathbf{r}_1

Same fundamental issues as 1D case:

- Probabilistic encoding determines discriminability
- Intuitively, overlap is distance/spread
- For linear decoding: project onto discrimination axis

I. Simple/intuitive population decoding

- Linear? $\hat{s}(\vec{r}) = \sum_n r_n s_n$ (simple, but usually doesn't work well)
- Winner-take-all $\hat{s}(\vec{r}) = s_m, \qquad m = \arg\max_n \{r_n\}$ (simple, but discontinuous and noise-susceptible)

II. Statistically optimal decoding

- Maximum likelihood (ML) $\hat{s}(\vec{r}) = \arg\max_{s} p(\vec{r}|s)$
- Maximum a posteriori (MAP) $\hat{s}(\vec{r}) = \arg\max_{s} \; p(\vec{r}|s) \cdot p(s)$
- Minimum Mean Squared Error (MMSE), $\hat{s}(\vec{r}) = \mathbf{E}(s|\vec{r})$ a.k.a. Bayes Least Squares (BLS)

ML decoding for a Poisson-spiking neural population

[Ma, Beck, Latham, Pouget, 2006; Jazayeri & Movshon, 2006]

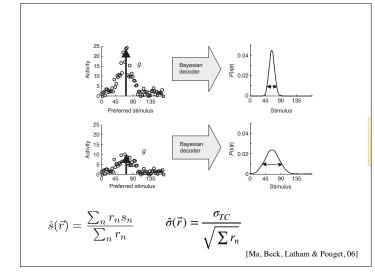
$$p(\vec{r}|s) = \prod_{n=1}^{N} \frac{h_n(s)^{r_n} e^{-h_n(s)}}{r_n!}$$

$$\log(p(\vec{r}|s)) = \sum_{n=1}^{N} r_n \log(h_n(s)) - h_n(s) - \log(r_n!)$$

If $\sum_{n=1}^{N} h_n(s)$ is constant (i.e., tuning curves "tile"), just minimize the response-weighted sum of log tuning curves.

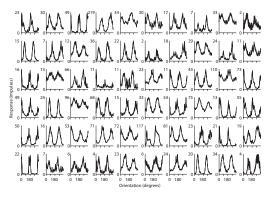
Special cases allow closed-form solutions:

- Gaussian tuning curves $h_n(s) = \exp\left(-(s-s_n)^2/2\sigma^2\right)$
- von Mises tuning curves $h_n(s) = \exp(\kappa \cos(s s_n))$



Population Decoding

The data: tuning curves fi



[Graf, Kohn, Jazayeri & Movshon, 11]

Comparing population decoders

1) The ML decoder, assuming independent Poisson responses (the PID):

$$\begin{split} \log L(\theta) &= \log \left(\prod_{i=1}^N p(r_i \mid \theta) \right) = \sum_{i=1}^N \log \left(\frac{f_i(\theta)^{r_i}}{r_i!} \exp(-f_i(\theta)) \right) \\ &= \sum_{i=1}^N \log(f_i(\theta)) r_i - \sum_{i=1}^N f_i(\theta) - \sum_{i=1}^N \log(r_i!) = \sum_{i=1}^N W_i(\theta) r_i + B(\theta) \end{split}$$

For discrimination between two values, likelihood ratio is linear function of responses:

$$\begin{split} \log LR(\theta_1,\theta_2) &= \log \left(\frac{L(\theta_1)}{L(\theta_2)}\right) = \log L(\theta_1) - \log L(\theta_2) \\ &= \sum_{i=1}^N \left[W_i(\theta_1) - W_i(\theta_2)\right] r_i + \left[B(\theta_1) - B(\theta_2)\right] \\ &= \sum_{i=1}^N w_i(\theta_1,\theta_2) r_i + b(\theta_1,\theta_2) \end{split}$$

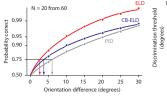
[Graf, Kohn, Jazayeri & Movshon, 11]

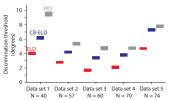
Comparing population decoders

2) Alternatively, compute an SVM on the measured response vectors for each orientation, the empirical linear decoder (ELD):

$$y(\theta_1,\theta_2) = \sum_{i=1}^N w_i(\theta_1,\theta_2) r_i + b(\theta_1,\theta_2)$$

3) For each neuron and orientation, shuffle the responses across trials and train a new SVM, the correlation-blind empirical linear decoder (CB-ELD).





[Graf, Kohn, Jazayeri & Movshon, 11]

Where we've been...

- Linear algebra / linear systems Ex: Trichromacy
- · Least squares
- regression / PCA
 Linear shift-invariant systems
 convolution / Fourier transforms
 Ex: Auditory filtering
- Summary statistics dispersion, central tendency
- · Statistical inference

 - estimation, bias, variance, convergence
 maximum likelihood estimator (MLE), MAP, Bayes
 - Ex: signal detection theory
- · Classification, clustering
- Model fitting
 model comparison, overfitting, regularization, cross-validation
 Ex: fitting an LNP model
 Ex: population decoding

