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Tumor, or not?

Decision-making and categorization

One-dimensional evidence and binary decision:
Signal-detection theory
Discriminability: Fisher Information

N-dimensional evidence and binary decision:
Linear discriminant
QDA

N-dimensional evidence and more than 2 categories
Labeled data: ML or MAP extension of QDA
Unlabeled data: K-means or soft K-means clustering



Decision-making and categorization

One-dimensional evidence and binary decision:
Signal-detection theory
Discriminability: Fisher Information

N-dimensional evidence and binary decision:
Linear discriminant
QDA

N-dimensional evidence and more than 2 categories
Labeled data: ML or MAP extension of QDA
Unlabeled data: K-means or soft K-means clustering

P(x|N) P(x|S)

Signal Detection Theory

x
Before the trial starts P(x | S) and P(x | N) are functions 
of x, the “measurement distribution”.

After the stimulus is presented, from the observer’s 
perspective P(x | S) and P(x | N) are functions of the 
second variable (S or N) and are now called the 
“likelihood function”.

Likelihood of SLikelihood of N

Signal Detection Theory

N S

x

p(x |S )

p(x |N )

After stimulus presentation, the observer has measurement 
x and thus can infer the likelihoods P(x | N) and P(x | S) 
and use their values to inform a decision.
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Distribution of 
internal responses 
when no tumor

Distribution of internal 
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present

P(x|N) P(x|S)

Signal Detection Theory

x

For equal-shape, unimodal, symmetric distributions, 
the maximum-likelihood (ML) decision rule is a 
threshold function.

“S” 
(signal)

“N” 
(noise)Decision:

Measurement:

P(x|N) P(x|S)

Signal Detection Theory

x
“S” 

(signal)
“N” 

(noise)Decision:

Measurement:

Say “yes” if p(x |S) > p(x |N)
Say “no” otherwise.



P(x|N) P(x|S)

Signal Detection Theory

x
“S” 

(signal)
“N” 

(noise)Decision:

Measurement:

Say “yes” if x >
μS + μN

2
= c

Say “no” otherwise.

More generally, an ML decision rule can have 
multiple thresholds:

P(x|N)

P(x|S)

“S”“N” “N”
x

P(x|N)

P(x|S)

“S”“N”
x

“N” “S”

Decision rules

Maximum likelihood (ML):

Maximum a posteriori (MAP):

Say “yes” if P(x |S) > P(x |N)
Say “no” otherwise.

Say “yes” if P(S |x) > P(N |x)
Say “no” otherwise.



Apply Bayes’ Rule

Posterior
PriorLikelihood

Nuisance normalizing term

P(S |x) =
p(x |S)P(S)

p(x)

Decision rules

Maximum a posteriori (MAP):

Say “yes” if P(S |x) > P(N |x)
Say “no” otherwise.

Decision rules

Maximum a posteriori (MAP):

Say “yes” if P(S |x) > P(N |x)
Say “no” otherwise.

Say “yes” if p(x |S)P(S)
p(x)

>
p(x |N)P(N)

p(x)
Say “no” otherwise.

Say “yes” if p(x |S)P(S) > p(x |N)P(N)
Say “no” otherwise.



MAP decision rule
MAP solution maximizes proportion of correct 
answers, taking prior probability into account.

x

Compared to ML threshold, the MAP threshold 
moves away from higher-probability option.

“S”“N”

p(x|N)p(N)

p(x|S)p(S)

cML

Ratio form

Posterior odds
Likelihood ratio Prior odds

Say “yes” if  P(S |x)
P(N |x)

> 1

Say “no” otherwise, where
P(S |x)
P(N |x)

= ( p(x |S)
p(x |N) ) ( P(S)

P(N) )

Signal Detection Theory: Potential outcomes

N S
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HitsCorrect
rejects
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HitsCorrect
rejects
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c Decision variable x

HitsMisses

N S

c Decision variable x

False
alarms

Correct
rejects

Decision variable x Decision variable x



decision
threshold

p(x|N) p(x|S)

p(x|N) p(x|S)

x

Tumor 
present

Tumor
absent

Doctor responds
“yes”

Doctor responds
“no”

correct 
reject

false
alarm

hitmiss

For threshold t, cumulatives c()
c(t |S) = P(miss)
1-c(t |S) = P(hit)
c(t |N) = P(correct reject)
1-c(t |N) = P(false alarm)

x

Signal Detection Theory: Potential outcomes

Bayes decision rule (maximum expected gain
or minimum Bayes risk) 
Incorporate values for the four possible outcomes:

Payoff Matrix YesNo

S

N

Response

S
tim

ul
us

VYes
S

VYes
N

VNo
S

VNo
N

Bayes Optimal Criterion

𝔼(Yes |x) = VYes
S P(S |x) + VYes

N P(N |x)
𝔼(No |x) = VNo

S P(S |x) + VNo
N P(N |x)

Say yes if 𝔼(Yes |x) ≥ 𝔼(No |x)

YesNo

S

N

Response
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tim
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S
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N



Optimal Criterion

Posterior odds

𝔼(Yes |x) = VYes
S P(S |x) + VYes

N P(N |x)

𝔼(No |x) = VNo
S P(S |x) + VNo

N P(N |x)

Say yes if 

Say yes if  

𝔼(Yes |x) ≥ 𝔼(No |x)

P(S |x)
P(N |x)

≥
VNo

N − VYes
N

VYes
S − VNo

S
=

V(Correct |N)
V(Correct |S)

Apply Bayes’ Rule

Posterior odds Likelihood ratio
Prior odds

P(S |x) =
p(x |S)P(S)

p(x)

P(N |x) =
p(x |N)P(N)

p(x)

P(S |x)
P(N |x)

= ( p(x |S)
p(x |N) ) ( P(S)

P(N) )

Optimal Criterion

Example, if equal priors and equal payoffs, say yes if the 
likelihood ratio is greater than one (ML rule):

SN

Say yes if 

i.e., if 

P(S |x)
P(N |x)

≥
V(Correct |N)
V(Correct |S)

p(x |S)
p(x |N)

≥
P(N)
P(S)

V(Correct |N)
V(Correct |S)

= βopt



Summary

ML:  

MAP: 

MEG: 

The likelihood ratio is a “sufficient statistic”.

Say “yes” if 
p(x |S)
p(x |N)

≥ 1

Say “yes” if 
p(x |S)
p(x |N)

≥
P(N)
P(S)

Say “yes” if 
p(x |S)
p(x |N)

≥
P(N)
P(S)

V(Correct |N)
V(Correct |S)

Standardized SDT

None of the derivations so far made any assumptions 
about the signal and noise distributions (even though the 
graphs looked Gaussian). Thus, all statements I’ve made 
about ML/MAP/MEG are true for any distributions: discrete 
(such as Poisson) vs. continuous, unequal signal vs. noise 
distributions, univariate vs. multivariate. The likelihood 
principle still holds.

However, the standard SDT model that is most often used 
assumes equal-variance Gaussians:

  and  p(x |N ) =
1

2πσ
exp (−

(x − μN)2

2σ2 ) p(x |S) =
1

2πσ
exp (−

(x − μS)2

2σ2 )

Standardized SDT

  and  

Change of variables: Let , 

Then:

  and  

p(x |N ) =
1

2πσ
exp (−

(x − μN)2

2σ2 ) p(x |S) =
1

2πσ
exp (−

(x − μS)2

2σ2 )

y =
x − μN

σ
d′￼ =

μS − μN

σ

d′￼ =
separation

width

p(y |N) =
1

2π
exp

−y2

2
p(y |S) =

1

2π
exp

−(y − d′￼)2

2



Standardized SDT

0 Decision variable y

  =1

d’N S

Signal Detection Theory: discriminability ( )d′￼

Standardized SDT

Likelihood ratio for  is:
 

y = c

p(c |S)
p(c |N)

=
exp [− (c − d′￼)2

2 ]
exp [− c2

2 ]
= exp [cd′￼−

d′￼
2

2 ]



Standardized SDT
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Decision
variable x

copt

Standardized SDT

Likelihood ratio for  is:
 

y = c

βopt =
p(copt |S)
p(copt |N)

=

exp [−
(copt − d′￼)2

2 ]
exp [−

c2
opt
2 ]

= exp [coptd′￼−
d′￼

2

2 ]

log βopt = coptd′￼−
d′￼

2

2

copt =
d′￼

2
+

log βopt
d′￼

=
d′￼

2
+

1
d′￼ [log

P(N)
P(S)

+ log
V(Correct |N)
V(Correct |S) ]

Standardized SDT

and thus the optimal criterion is the ML criterion shifted by 
a term that is a function of the prior odds plus a term that is 
a function of the payoff ratio. Note that this additivity of the 
effects of priors and payoffs is not seen in human 
behavior.

Locke, S. M., Gaffin-Cahn, E., Hosseiniaveh, N.,
Mamassian, P. & Landy, M. S. (2020). Attention, 
Perception, & Psychophysics, 82, 3158-3175.  

copt =
d′￼

2
+

1
d′￼ [log

P(N)
P(S)

+ log
V(Correct |N)
V(Correct |S) ]



Signal Detection Theory: Criterion 

=1d′￼

N S

“criterion”

Internal response
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ty

Say “yes”Say “no”

• Vision
• Detection (something vs. nothing)
• Discrimination (lower vs greater level of: intensity, contrast, depth, slant, 

size, frequency, loudness, ...
• Memory (internal response = trace strength = familiarity)
• Neurometric function/discrimination by neurons (internal  

    response = spike count)

Example applications of SDT

From experimental measurements, assuming Gaussian 
distributions, can we determine the underlying values of  
and criterion?

d′￼

SDT: Estimating  and d′￼ c

N S

x
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0 ′dc

z[p(CR)] z[p(H)]

d′￼= z[P(Hit)] + z[P(Correct Reject)]
= z[P(Hit)] − z[P(False Alarm)]

c = z[P(Correct Reject)],  where

z(P) = Φ−1(P), where Φ(z) = ∫
z

−∞

1

2π
exp

z2

2
dz



SDT: Estimating  and d′￼ c
d′￼= z[P(Hit)] + z[P(Correct Reject)]

= z[P(Hit)] − z[P(False Alarm)]
c = z[P(Correct Reject)]

YesNo

S

N

Response

S
tim

ul
us

nHit

nFA

nMiss

nCR

̂PHit = nHit/(nHit + nMiss)
̂PFA = nFA/(nFA + nCR)

SDT: Estimating  and d′￼ c
d′￼= z[P(Hit)] + z[P(Correct Reject)]

= z[P(Hit)] − z[P(False Alarm)]
c = z[P(Correct Reject)]

YesNo

S

N

Response

S
tim

ul
us

nHit + 0.5

nFA + 0.5

nMiss + 0.5

nCR + 0.5

̂PHit = (nHit + 0.5)/(nHit + nMiss + 1)
̂PFA = (nFA + 0.5)/(nFA + nCR + 1)

Hautus, M. J. (1995). Corrections for extreme proportions and the biasing effects on estimated values of 
d’. Behavior Research Methods, Instruments, & Computers, 27, 46-51.

SDT: Psychometric function

Signal strength

Pe
rfo

rm
an

ce
 (

)
d′

￼

Note: 4 hit rates and one, shared, false-alarm rate



Internal response
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False Alarms
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ROC (Receiver Operating Characteristic)

Criterion #1

Plot anti-cumulatives:
1 - c(t | N)  vs. 1-c(t |S)
as threshold t varies
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Criterion #2

ROC (Receiver Operating Characteristic)

Internal response
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Criterion #3

ROC (Receiver Operating Characteristic)



Internal response
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False Alarms
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Criterion #4

ROC (Receiver Operating Characteristic)

ROC (Receiver Operating Characteristic)

 (lots of overlap)d′￼= 1  (less overlap)d′￼= 3
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Or do a ML fit: Dorfman, D. D., & Alf, J., E. (1969). Maximum likelihood estimation of parameters of signal 
detection theory and determination of confidence intervals: rating-method data. Journal of Mathematical 
Psychology, 6, 487-496.



ROC (Receiver Operating Characteristic)
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Yeshurun, Y., Carrasco, M., & Maloney, L. T. (2008). Bias and sensitivity in two-interval forced choice 
procedures: Tests of the difference model. Vision Research, 48, 1837-1851.

Area under the ROC
Area under curve = %correct in a 2AFC task
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A B
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P(CR | c)

dP
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s1 s2

  dc  

P(c | S
)

x

Area under the ROC
Area under curve = %correct in a 2AFC task

AUROC = ∫
1

0
P(Correct reject |criterion c)dP(Hit |criterion c)

A B
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P(CR | c)

dP
(H
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s1 s2

  dc  

P(c | S
)

x

Area under the ROC
Area under curve = %correct in a 2AFC task

Slope of the ROC = likelihood ratio!

Area under the ROC
Area under curve = %correct in a 2AFC task

AUROC = ∫
1

0
P(Correct reject |criterion c)dP(Hit |criterion c)

= ∫
∞

−∞
p(x < c |N)p(measurement is c |S)dc

= ∫
∞

−∞ ∫
c

−∞
p(x |N)p(measurement is c |S)dxdc

= ∫
∞

−∞
p(measurement is c |S)∫

c

−∞
p(x |N)dxdc

= PFC .



SDT with unequal variances
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SDT with a discrete (Poisson) distribution
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Decision variable x (counts)
c

Area under the ROC - Poisson case or with data: 
Neurometric function and choice probability
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Britten, K. H., Shadlen, M. N., Newsome, W. T., & Movshon, J. A. (1992). The analysis of visual motion: a 
comparison of neuronal and psychophysical performance. Journal of Neuroscience, 12, 4745-4765. 

Britten, K. H., Newsome, W. T., Shadlen, M. N., Celebrini, S. & Movshon, J. A. (1996). A relationship between 
behavioral choice and the visual responses of neurons in macaque MT. Visual Neuroscience, 13, 87-100.

Decision-making and categorization

One-dimensional evidence and binary decision:
Signal-detection theory
Discriminability: Fisher Information

N-dimensional evidence and binary decision:
Linear discriminant
QDA

N-dimensional evidence and more than 2 categories
Labeled data: ML or MAP extension of QDA
Unlabeled data: K-means or soft K-means clustering



Fisher Information

 • Provides a bound on “precision” of unbiased estimators: 
(the “Cramér-Rao bound”)

�2(s) � 1

I(s)

• Perceptually, provides a bound on discriminability: 
(Series et. al. 2009)

I(s) = �E

@2 log p(r|s)

@s2

�
• Second-order expansion of the (expected) negative log likelihood:

Gaussian case:

Poisson case:

• Examples:  with mean stimulus response
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D(s) 
p

I(s)
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I(s) = [µ0(s)]2/�2
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Example: Weber’s law  

Assuming                      what internal representation can explain this?  Many!I(s) / 1

s2

[Fechner, 1860]

entirely due to 
response mean

additive Gaussian 
noise, with mean

stimulus, s

p(
r|s

), 
w

ith
 m

ea
n 

= 
f(s

)

<latexit sha1_base64="kbrZejyy0uL0kIfb0UyLOGoODRM=">AAAB/XicdVDLSsNAFJ3UV62v+Ni5GSxCRShJLH0slIIblxXsA5pQJtNJO3TyYGYi1FD8FTcuFHHrf7jzb5y0EVT0wIXDOfdy7z1uxKiQhvGh5ZaWV1bX8uuFjc2t7R19d68jwphj0sYhC3nPRYIwGpC2pJKRXsQJ8l1Guu7kMvW7t4QLGgY3choRx0ejgHoUI6mkgX5g+3FJnMBzaLNwlLJTiAd60Sg36lXrrAGNsjFHSqyaValBM1OKIENroL/bwxDHPgkkZkiIvmlE0kkQlxQzMivYsSARwhM0In1FA+QT4STz62fwWClD6IVcVSDhXP0+kSBfiKnvqk4fybH47aXiX14/ll7dSWgQxZIEeLHIixmUIUyjgEPKCZZsqgjCnKpbIR4jjrBUgRVUCF+fwv9Jxyqb1bJ5XSk2L7I48uAQHIESMEENNMEVaIE2wOAOPIAn8Kzda4/ai/a6aM1p2cw++AHt7ROVcZNf</latexit>

µ(s) = log(s) + c

re
sp

on
se

, p
(r|

s)

<latexit sha1_base64="sdD72QbBLeBJgS43Ta96vzuKjQs=">AAACE3icbVC7TsMwFHV4lvIKMLJYVEiFoUoQAsYKGGArEn1ITVQ5rtNadezUdpCqKP/Awq+wMIAQKwsbf4PbZoCWI1k6OudeXZ8TxIwq7Tjf1sLi0vLKamGtuL6xubVt7+w2lEgkJnUsmJCtACnCKCd1TTUjrVgSFAWMNIPB1dhvPhCpqOD3ehQTP0I9TkOKkTZSxz6+Lqsj6MVSxFpAL5QIp26WqgweeowMoaeGUqe3Zijr2CWn4kwA54mbkxLIUevYX15X4CQiXGOGlGq7Tqz9FElNMSNZ0UsUiREeoB5pG8pRRJSfTjKZ80bpwlBI87iGE/X3RooipUZRYCYjpPtq1huL/3ntRIcXfkp5nGjC8fRQmDBo4o8Lgl0qCdZsZAjCkpq/QtxHphdtaiyaEtzZyPOkcVJxzyru3WmpepnXUQD74ACUgQvOQRXcgBqoAwwewTN4BW/Wk/VivVsf09EFK9/ZA39gff4AifedVw==</latexit>

D(s) / 1

s

(discrimination thresholds 
proportional to stimulus strength)

Poisson noise, 
with mean

discrete representation, 
depends on both mean 

and variance

stimulus, s

m
ea

n 
re

sp
on

se
, f

(s
)

p(
r|s

), 
w

ith
 m

ea
n 

= 
f(s

)

<latexit sha1_base64="lAcfXfU3u+BUeoImrX4sgYnFZjQ=">AAACAXicdVDLSsNAFJ3UV62vqBvBzWARKkJJYuljoRTcuKxgayGJZTKdtkNnkjAzEUqpG3/FjQtF3PoX7vwbJ20FFT1w4XDOvdx7TxAzKpVlfRiZhcWl5ZXsam5tfWNzy9zeackoEZg0ccQi0Q6QJIyGpKmoYqQdC4J4wMh1MDxP/etbIiSNwis1ionPUT+kPYqR0lLH3PN4UpBH8BS6Hov6KT2G2L9xOmbeKtaqZeekBq2iNUVKnIpTqkB7ruTBHI2O+e51I5xwEirMkJSubcXKHyOhKGZkkvMSSWKEh6hPXE1DxIn0x9MPJvBQK13Yi4SuUMGp+n1ijLiUIx7oTo7UQP72UvEvz01Ur+qPaRgnioR4tqiXMKgimMYBu1QQrNhIE4QF1bdCPEACYaVDy+kQvj6F/5OWU7TLRfuylK+fzePIgn1wAArABhVQBxegAZoAgzvwAJ7As3FvPBovxuusNWPMZ3bBDxhvnzUMlM8=</latexit>

µ(s) = [log(s) + c]2

re
sp

on
se

, p
(r|

s)

multiplicative Gaussian 
noise, with mean

entirely due to 
response variance

stimulus, s

m
ea

n 
re

sp
on

se
, f

(s
)

p(
r|s

), 
w

ith
 m

ea
n 

= 
f(s

)

<latexit sha1_base64="QmP+77iQ6wEq/h/VsJm7QNQBQCE=">AAAB+nicdVDLSsNAFJ3UV62vVJduBotQNyGJpY+FUnDjsoJthSaUyXTSDp08mJkoJfZT3LhQxK1f4s6/cdJGUNEDFw7n3Mu993gxo0Ka5odWWFldW98obpa2tnd29/Tyfk9ECcekiyMW8RsPCcJoSLqSSkZuYk5Q4DHS96YXmd+/JVzQKLyWs5i4ARqH1KcYSSUN9bITJFVxAs+gg1g8QVAM9YpptJp1+7QFTcNcICN2w641oJUrFZCjM9TfnVGEk4CEEjMkxMAyY+mmiEuKGZmXnESQGOEpGpOBoiEKiHDTxelzeKyUEfQjriqUcKF+n0hRIMQs8FRngORE/PYy8S9vkEi/6aY0jBNJQrxc5CcMyghmOcAR5QRLNlMEYU7VrRBPEEdYqrRKKoSvT+H/pGcbVt2wrmqV9nkeRxEcgiNQBRZogDa4BB3QBRjcgQfwBJ61e+1Re9Fel60FLZ85AD+gvX0CvXSTBg==</latexit>

µ(s) = ↵s

re
sp

on
se

, p
(r|

s)

[Weber, 1834]

S.S. Stevens. “To Honor 
Fechner and Repeal His 
Law: A power function, not 
a log function, describes the 
operating characteristic of a 
sensory system” (1961) 

Three examples with different 
power-law mean response, 
each consistent with Weber’s 
law discriminability. 

[Zhou, Duong & EPS, 2022]



Decision-making and categorization

One-dimensional evidence and binary decision:
Signal-detection theory
Discriminability: Fisher Information

N-dimensional evidence and binary decision:
Linear discriminant
QDA

N-dimensional evidence and more than 2 categories
Labeled data: ML or MAP extension of QDA
Unlabeled data: K-means or soft K-means clustering

Decision/classification in multiple dimensions
• Data-driven linear classifiers: 

• Prototype Classifier - minimize distance to class mean 
• Fisher Linear Discriminant (FLD) - maximize d’ 
• Support Vector Machine (SVM) - maximize margin 

• Statistical: 
• ML/MAP/Bayes under a probabilistic model 
• e.g.: Gaussian, identity covariance (same as Prototype) 
• e.g.: Gaussian, equal covariance (same as FLD) 
• e.g.: Gaussian, general case  (Quadratic Discriminator) 

• Some Examples: 
• Visual gender classification 
• Neural population decoding

Linear Classifier

{ŵT ⃗xn}

Find unit vector (“discriminant”) that best separates the distributionsŵ

class A class B

ŵ · ~x

Decision 
boundary

class A

class B

ŵ

Decision boundary



Simplest linear discriminant: the Prototype Classifier

ŵ =
~µA � ~µB

k~µA � ~µBk

Fisher Linear 
Discriminant

(note: this is d’  squared!)

optimum:  , where ŵ = C−1( ⃗uA − ⃗uB) C =
1
2

(CA + CB)

max
ŵ

[ŵT( ⃗uA − ⃗uB)]2

[ŵTCAŵ + ŵTCBŵ]

Support Vector Machine (SVM) 
(widely used in machine learning, but no closed form solution)

find largest m, and {ŵ, b} s.t. ci(ŵ
T~xi � b) � m, 8 i

ŵ

ci = 1

ci = �1

Maximize the “margin” (gap between data sets):



mean:  [0.2, 0.8]
cov:  [1.0 -0.3;

 -0.3  0.4]

Reminder: Multi-D Gaussian densities

ML (or MAP) classifier for two Gaussians2294 M. Pagan, E. Simoncelli, and N. Rust

Figure 1: The nQDA framework. (a) Optimal quadratic discrimination bound-
aries (black lines) for four example pairs of population response distributions.
Hypothetical class distributions are each multivariate gaussian (indicated by
red and gray elliptical regions), with means µ1 and µ2 and covariances !1 and
!2. Top left: A scenario in which the means of the two classes differ and the
covariances are matched. In this special case, the optimal classifier is linear.
Top right: A scenario in which the means of the two classes are similar and a
linear classifier alone is an ineffective decision boundary. Instead, the optimal
classifier uses a pair of parabolic boundaries. Bottom left: An example with dif-
fering mean and covariance, yielding a single parabolic boundary. Bottom right:
An example yielding an elliptical boundary. (b) Depiction of the nQDA model,
which implements the optimal quadratic classifier (equations 2.3 and 2.4) as an
LN-LN model (see equation 2.6). The first LN transformation is achieved with
a bank of linear filters, with all but the first followed by a squaring nonlinearity.
The outputs of these individual LN units are combined via a weighted sum,
followed by a threshold function that determines the class membership.

where Q is an N-by-N symmetric matrix. As with the linear classifier, the
class assignment is determined by the sign of this function. Similar to linear
classifiers, multiple methods exist for fitting the parameters of a quadratic
classifier (Kendall, 1966; Hofmann, Schölkopf, & Smola, 2008). When the
population responses are gaussian distributed the maximum likelihood
solution (known as quadratic discriminant analysis, QDA; Kendall 1966)
corresponds to

Q = 1
2

·
(
!−1

2 − !−1
1

)
; m = !−1

1 µ1 − !−1
2 µ2,

k =−1
2

(
log

∣∣!1

∣∣ − log
∣∣!2

∣∣ + µT
1 !−1

1 µ1 − µT
2 !−1

2 µ2
)
. (2.4)

The incorporation of the quadratic term creates a more pow-
erful classifier, which exploits differences in covariance, generally

[figure: Pagan et al. 2016]

Decision boundary is quadratic, with four possible geometries:  

[on board]

Simplest case:
equal covariances

2294 M. Pagan, E. Simoncelli, and N. Rust

Figure 1: The nQDA framework. (a) Optimal quadratic discrimination bound-
aries (black lines) for four example pairs of population response distributions.
Hypothetical class distributions are each multivariate gaussian (indicated by
red and gray elliptical regions), with means µ1 and µ2 and covariances !1 and
!2. Top left: A scenario in which the means of the two classes differ and the
covariances are matched. In this special case, the optimal classifier is linear.
Top right: A scenario in which the means of the two classes are similar and a
linear classifier alone is an ineffective decision boundary. Instead, the optimal
classifier uses a pair of parabolic boundaries. Bottom left: An example with dif-
fering mean and covariance, yielding a single parabolic boundary. Bottom right:
An example yielding an elliptical boundary. (b) Depiction of the nQDA model,
which implements the optimal quadratic classifier (equations 2.3 and 2.4) as an
LN-LN model (see equation 2.6). The first LN transformation is achieved with
a bank of linear filters, with all but the first followed by a squaring nonlinearity.
The outputs of these individual LN units are combined via a weighted sum,
followed by a threshold function that determines the class membership.

where Q is an N-by-N symmetric matrix. As with the linear classifier, the
class assignment is determined by the sign of this function. Similar to linear
classifiers, multiple methods exist for fitting the parameters of a quadratic
classifier (Kendall, 1966; Hofmann, Schölkopf, & Smola, 2008). When the
population responses are gaussian distributed the maximum likelihood
solution (known as quadratic discriminant analysis, QDA; Kendall 1966)
corresponds to

Q = 1
2

·
(
!−1

2 − !−1
1

)
; m = !−1

1 µ1 − !−1
2 µ2,

k =−1
2

(
log
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∣∣ − log
∣∣!2

∣∣ + µT
1 !−1

1 µ1 − µT
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)
. (2.4)

The incorporation of the quadratic term creates a more pow-
erful classifier, which exploits differences in covariance, generally

•200 face images (100 male, 100 female)
•Adjusted for position, size, intensity/contrast
•Labeled by 27 human subjects

[Graf & Wichmann, NIPS*03] 

A perceptual example: Biological gender 
identification (XX vs. XY)



Linear classifiers

SVM RVM Prot FLD trained
on

→
W

true
data

→
W

subj
dataw

w

SVM RVM Prot FLD

Four linear classifiers, trained on human data

Model validation/testing

• Cross-validation:  Subject responses 
[% correct, reaction time, confidence] 
are explained 
- very well by SVM 
- moderately well by RVM / FLD
- not so well by Prot

• Do these decision “models”make 
testable predictions?  Synthesize 
optimally discriminable faces...

ε=−21 ε=−14 ε=−7 ε=0 ε=7 ε=14 ε=21

SVM

RVM

Prot

FLD

Add classifierSubtract classifier

[Wichmann, et. al; NIPS*04] 



50

100

%
C
or
re
ct

Amount of classifier image added/subtracted
(arbitrary units)

1.0 2.0 4.0 8.00.50.25

SVM
RVM
Proto
FLD

[Wichmann, et. al; NIPS*04] 

Decision-making and categorization

One-dimensional evidence and binary decision:
Signal-detection theory
Discriminability: Fisher Information

N-dimensional evidence and binary decision:
Linear discriminant
QDA

N-dimensional evidence and more than 2 categories
Labeled data: ML or MAP extension of QDA
Unlabeled data: K-means or soft K-means clustering

More than two categories, labeled data

Soap bubbles:Voronoi tessellation

Given cluster centers, we identify
each point to its nearest center.
This defines a Voronoi tessellation
of Rp
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Given c1, . . . cK 2 Rp, we define the Voronoi sets

Vk = {x 2 Rp : kx� ckk22  kx� cjk22, j = 1, . . .K}, k = 1, . . .K

These are convex polyhedra (we’ll see them again when we study
classification)

12

Voronoi regions:

If means and covariances are known, and the covariances are 
circular and identical across categories, this reduces to selecting 
the nearest neighbor: 



More two categories, labeled data, Gaussian 
distributions, but not necessarily circular nor equal 
across categories. 

ML (or MAP) classifier generalizes QDA:

[figure: Pagan et al. 2016]
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Figure 1: The nQDA framework. (a) Optimal quadratic discrimination bound-
aries (black lines) for four example pairs of population response distributions.
Hypothetical class distributions are each multivariate gaussian (indicated by
red and gray elliptical regions), with means µ1 and µ2 and covariances !1 and
!2. Top left: A scenario in which the means of the two classes differ and the
covariances are matched. In this special case, the optimal classifier is linear.
Top right: A scenario in which the means of the two classes are similar and a
linear classifier alone is an ineffective decision boundary. Instead, the optimal
classifier uses a pair of parabolic boundaries. Bottom left: An example with dif-
fering mean and covariance, yielding a single parabolic boundary. Bottom right:
An example yielding an elliptical boundary. (b) Depiction of the nQDA model,
which implements the optimal quadratic classifier (equations 2.3 and 2.4) as an
LN-LN model (see equation 2.6). The first LN transformation is achieved with
a bank of linear filters, with all but the first followed by a squaring nonlinearity.
The outputs of these individual LN units are combined via a weighted sum,
followed by a threshold function that determines the class membership.

where Q is an N-by-N symmetric matrix. As with the linear classifier, the
class assignment is determined by the sign of this function. Similar to linear
classifiers, multiple methods exist for fitting the parameters of a quadratic
classifier (Kendall, 1966; Hofmann, Schölkopf, & Smola, 2008). When the
population responses are gaussian distributed the maximum likelihood
solution (known as quadratic discriminant analysis, QDA; Kendall 1966)
corresponds to

Q = 1
2

·
(
!−1

2 − !−1
1

)
; m = !−1

1 µ1 − !−1
2 µ2,

k =−1
2

(
log

∣∣!1

∣∣ − log
∣∣!2

∣∣ + µT
1 !−1

1 µ1 − µT
2 !−1

2 µ2
)
. (2.4)

The incorporation of the quadratic term creates a more pow-
erful classifier, which exploits differences in covariance, generally

• K-Means (Lloyd, 1957)

Unlabeled data: Clustering

• “Soft-assignment” version of K-means 
    (a form of Expectation-Maximization - EM)

• In general, alternate between: 
1) Estimating cluster assignments (classification) 
2) Estimating cluster parameters 

• Coordinate descent: converges to (possibly local) minimum 

• Need to choose K (number of clusters) - cross-validation!

1. Estimate cluster assignments: given class centers, 
assign each point to closest one:

2. Estimating cluster parameters: given assignments, re-
estimate the centroid of each cluster.

K-Means clustering algorithm

Soap bubbles:Voronoi tessellation

Given cluster centers, we identify
each point to its nearest center.
This defines a Voronoi tessellation
of Rp

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●
● ●

●

●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

● ●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●
●

●

●

●

●
●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

●

●
●
●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

0.0 0.5 1.0 1.5

−0
.5

0.
0

0.
5

1.
0

1.
5

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●
● ●

●

●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

● ●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●
●

●

●

●

●
●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

●

●
●
●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

Given c1, . . . cK 2 Rp, we define the Voronoi sets

Vk = {x 2 Rp : kx� ckk22  kx� cjk22, j = 1, . . .K}, k = 1, . . .K

These are convex polyhedra (we’ll see them again when we study
classification)
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Voronoi regions:

Alternate between two steps:



K-means example

Here Xi 2 R2, n = 300, and K = 3
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[from R. Tibshirani, 2013]

N

K-means example, multiple runs

Here Xi 2 R2, n = 250, and K = 4, the points are not as
well-separated

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●
● ●

●

●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

● ●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●
●

●

●

●

●
●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

●

●
●
●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

0.0 0.5 1.0 1.5

−0
.5

0.
0

0.
5

1.
0

1.
5

WCV = 25.9

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●
● ●

●

●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

● ●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●
●

●

●

●

●
●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

●

●
●
●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

0.0 0.5 1.0 1.5

−0
.5

0.
0

0.
5

1.
0

1.
5

WCV = 18.1

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●
● ●

●

●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

● ●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●
●

●

●

●

●
●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

●

●
●
●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

0.0 0.5 1.0 1.5

−0
.5

0.
0

0.
5

1.
0

1.
5

WCV = 24.3

●

●

●

●

●

●

●

●

These are results of result of running the K-means algorithm with
di↵erent initial centers (chosen randomly over the range of the
Xi’s). We choose the second collection of centers because it yields
the smallest within-cluster variation

14

Initialization matters (due to local minima) … 
Three solutions obtained with different random starting points:

[from R. Tibshirani, 2013]

K-means optimization failures

K -means Limitations Illustrated

Non-convex/non-round-shaped clusters: Standard K -means fails!

Clusters with different densities

Picture courtesy: Christof Monz (Queen Mary, Univ. of London)

(CS5350/6350) Data Clustering October 4, 2011 21 / 24

K-means systematic failures



ML for discrete mixture of Gaussians: soft K-means

= assignment probability

= mean/covariance of class k

Intuition: alternate between maximizing these two sets of variables 
(“coordinate descent”) 

Essentially, a version of K-means with “soft” (i.e., continuous, as 
opposed to binary) assignments!

p(~xn|ank, ~µk,⇤k) /
X

k

ankp
|⇤k|

e�(~xn�~µk)
T⇤�1

k (~xn�~µk)/2

ank

{~µk,⇤k}

[wikipedia]

Standard solution:
1. Threshold to find segments containing  spikes
2. Reduce dimensionality of segments using PCA
3. Identify spikes using clustering (e.g., K-means)

Note: Fails for overlapping spikes!

Application to neural “spike  sorting”
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Failures of clustering for near-synchronous spikes

[Pillow et. al. 2013]

“Decoding” neural populations?

• Connecting neural response to behavior

• Engineering: Brain-Computer Interfaces

• Test/compare encoding models
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Encoding determines discriminability
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Probabilistic encoding model 
determines discriminability

Discriminability (d’) is (approximately) slope/stdev

p(r|s)

Two neurons

r1

r2

Same fundamental issues as 1D case: 
• Probabilistic encoding determines discriminability 

• Intuitively, overlap is distance/spread 

• For linear decoding: project onto discrimination axis 

I. Simple/intuitive population decoding

• Population vector [Georgopoulos et.al., 1986]

• Winner-take-all

(simple, but discontinuous and noise-susceptible)

(also simple, more robust)

• Linear?  ŝ(~r) =
X

n

rnsn

(simple, but usually doesn’t work well)



II. Statistically optimal decoding

• Maximum likelihood (ML)

• Maximum a posteriori (MAP)

• Minimum Mean Squared Error (MMSE),  
a.k.a.  Bayes Least Squares (BLS)

ŝ(~r) = E(s|~r)

[Ma, Beck, Latham, Pouget, 2006;  Jazayeri & Movshon, 2006]

ML decoding for a Poisson-spiking neural population

If is constant (i.e., tuning curves “tile”), just 
minimize the response-weighted sum of log tuning curves.

Special cases allow closed-form solutions:

  • Gaussian tuning curves
  • von Mises tuning curves

[Ma, Beck, Latham & Pouget, 06]
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Population Decoding

[Graf, Kohn, Jazayeri & Movshon, 11]

The data: tuning curves fi
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1) The ML decoder, assuming independent Poisson responses (the PID):

log L(θ) = log (
N

∏
i=1

p(ri |θ)) =
N

∑
i=1

log ( fi(θ)ri

ri!
exp(−fi(θ)))

[Graf, Kohn, Jazayeri & Movshon, 11]

=
N

∑
i=1

log( fi(θ))ri −
N

∑
i=1

fi(θ) −
N

∑
i=1

log(ri!) =
N

∑
i=1

Wi(θ)ri + B(θ)

For discrimination between two values, likelihood ratio is linear function of responses:

log LR(θ1, θ2) = log ( L(θ1)
L(θ2) ) = log L(θ1) − log L(θ2)

=
N

∑
i=1

[Wi(θ1) − Wi(θ2)]ri + [B(θ1) − B(θ2)]

=
N

∑
i=1

wi(θ1, θ2)ri + b(θ1, θ2)

Comparing population decoders

2) Alternatively, compute an SVM on the measured response vectors for each 
orientation, the empirical linear decoder (ELD):

[Graf, Kohn, Jazayeri & Movshon, 11]

y(θ1, θ2) =
N

∑
i=1

wi(θ1, θ2)ri + b(θ1, θ2) ≡ log LR(θ1, θ2)

3) For each neuron and orientation, shuffle the responses across trials and 
train a new SVM, the correlation-blind empirical linear decoder (CB-ELD).

Comparing population decoders
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• Linear algebra / linear systems 
- Ex: Trichromacy 

• Least squares 
• regression / PCA 

• Linear shift-invariant systems 
• convolution / Fourier transforms 
• Ex: Auditory filtering 

• Summary statistics - dispersion, central tendency 
• Statistical inference 

• estimation, bias, variance, convergence 
• maximum likelihood estimator (MLE), MAP, Bayes 
• Ex: signal detection theory 
• Classification, clustering 

• Model fitting 
• model comparison, overfitting, regularization, cross-validation 
• Ex: fitting an LNP model 
• Ex: population decoding

Where we’ve been…
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