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Decision-making and categorization

One-dimensional evidence and binary decision:
Signal-detection theory
Discriminability: Fisher Information

N-dimensional evidence and binary decision:
Linear discriminant
QDA

N-dimensional evidence and more than 2 categories
Labeled data: ML or MAP extension of QDA
Unlabeled data: K-means or soft K-means clustering
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Signal Detection Theory

P(xIN) P(x1S)

Likelihood of N \ /

Likelihood of S

X
Before the trial starts P(x| S) and P(x | N) are functions
of x, the “measurement distribution”.

After the stimulus is presented, from the observer’s
perspective P(x| S) and P(x | N) are functions of the
second variable (S or N) and are now called the
“likelihood function”.

Signal Detection Theory
N S

p(x1S)

p(xIN)

X
After stimulus presentation, the observer has measurement
x and thus can infer the likelihoods P(x | N) and P(x| S)
and use their values to inform a decision.
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Internal response

Signal Detection Theory

P(xIN) P(xS)

Measurement:

Decision: (noise)

For equal-shape, unimodal, symmetric distributions,
the maximume-likelihood (ML) decision rule is a
threshold function.

Signal Detection Theory

P(xIN) P(xS)

Measurement:

Decision: (noise)

Say “yes” if p(x|S) > p(x|N)
Say “no” otherwise.




Signal Detection Theory

P(xIN) P(xS)

Measurement:

) . N “S“
Decision: (noise) » (signal)
i, ” /l + M
Say “yes Ifx>% =c

Say “no” otherwise.

More generally, an ML decision rule can have
multiple thresholds:

P(x1S)

P(xIN)

Decision rules

Maximum likelihood (ML):

Say “yes” if P(x|S) > P(x|N)
Say “no” otherwise.

Maximum a posteriori (MAP):

Say “yes” if P(S|x) > P(N|x)
Say “no” otherwise.




Apply Bayes’ Rule

Likelihood Prior

Posterior

—
s < PEIPS)

p(.X) “— Nuisance normalizing term

Decision rules

Maximum a posteriori (MAP):

Say “yes” if P(S|x) > P(N|x)
Say “no” otherwise.

Decision rules

Maximum a posteriori (MAP):
Say “yes” if P(S|x) > P(N|x)
Say “no” otherwise.
¢ px|S)P(S) S px|N)P(N)

px) p(x)
Say “no” otherwise.

Say “yes” i

Say “yes” if p(x| S)P(S) > p(x|N)P(N)
Say “no” otherwise.




MAP decision rule

MAP solution maximizes proportion of correct
answers, faking prior probability into account.

Cu
p(xIN)p(N)
>\D( xIS)p(S)
5 X
‘@ : “gr

Compared to ML threshold, the MAP threshold
moves away from higher-probability option.

Ratio form

.. P(S|x)
S 12 ” f 1
ay “yes” i ) >

Say “no” otherwise, where
P(S|x) _ (p(XIS)> (P(S)>
P(N|x) p(x|N) P(N)

Posterioroﬁv / \

Likelihood ratio Prior odds

Signal Detection Theory: Potential outcomes

N S N )

Misses Hits Correct False
rejects alarms

c Decision variable x c

Decision variable x

Correct Hits

Correct Hits
rejects

rejects

c Decision variable x ¢ Decision variable x




Signal Detection Theory: Potential outcomes

P(xIN)

Tumor
present

Tumor
absent

decision
threshold

Doctor responds

“no”

Doctor responds
“yes®

miss

hit

correct
reject

false
alarm

For threshold t, cumulatives ¢()

c(t1S) = P(miss)
1-¢(t1S) = P(hit)

c(tIN) = P(correct reject)
1-c(tIN) = P(false alarm)

Bayes decision rule (maximum expected gain

or minimum Bayes risk)

Incorporate values for the four possible outcomes:

Response
Payoff Matrix No Yes
No Yo
w S VS VS es
=
>
£
n
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N VN() VNES

Bayes Optimal Criterion

Response
No Yes
8 8| w Ve
=]
£
[7p] N Ve vies

E(Yes|x) = VI¢P(S|x) + VISP(N | x)
E(No | x) = VY°P(S| x) + Vi°P(N|x)

Say yes if E(Yes | x) > E(No|x)




Optimal Criterion

E(Yes|x) = VI¢P(S|x) + VY*P(N|x)
E(No | x) = VY°P(S|x) + V§°P(N | x)

Say yes if E(Yes | x) > E(No | x)

P(S|x) S Vi’ = Vi V(Correct|N)
P(N|x) = VYes — Vo~ V(Correct|S)

/

Posterior odds

Say yes if

Apply Bayes’ Rule

P(S|x) = px|S)P(S)
px)

P(N|x) = px|N)P(N)
px)

PSIx) _ <p(x|S>> <P(S>>
PINIX) — \p&IN) ) \P(OV)

Likelihood ratio

Posterior odds Prior odds

Optimal Criterion
P(S|x) S V(Correct|N)
P(N|x) — V(Correct|S)

Say yes if

_px]S) S P(N) V(Correct|N)
"D|N) = P(S) V(Correct|S)

Example, if equal priors and equal payoffs, say yes if the
likelihood ratio is greater than one (ML rule):

L]

= ,Bopt

N S




Summary

S
ML: Say “yes” if & > 1
p(x|N)
S P(N
MAP: Say “yes” if Px15) > W)

p(x|N) — P(S)

px|S) S P(N) V(Correct|N)
px|N) — P(S) V(Correct|S)

MEG: Say “yes” if

The likelihood ratio is a “sufficient statistic”.

Standardized SDT

None of the derivations so far made any assumptions
about the signal and noise distributions (even though the
graphs looked Gaussian). Thus, all statements I've made
about ML/MAP/MEG are true for any distributions: discrete
(such as Poisson) vs. continuous, unequal signal vs. noise
distributions, univariate vs. multivariate. The likelihood
principle still holds.

However, the standard SDT model that is most often used
assumes equal-variance Gaussians:

6=y ) 1 (= py)?
exp <— and p(x|S) = exp| —
202 \/ 276 202

p(x|N) =

1
N

Standardized SDT

p|N) =

)2
exp <—(X #x) > and p(x|S) =

Lo emms?
202 N P 202

2n0

. x = . Hs—H
Change of variables: Let y = ﬂN, d="""x
o c
, separation
~ width

Then:

2 1 _( o d/)2
POIN) = eXpTy and p(y|S) = exp—— L

4 2 2




Standardized SDT

=1

0 Decision variable y

Signal Detection Theory: discriminability (d")

High noise,
lots of overlap

Low noise,
not much overlap

Standardized SDT

Likelihood ratio for y = c is:

(c=dP?

p(c]$) exp[ 2] l d/zl
= = exp

= cd' — —

2




Standardized SDT

Likelihood ratio 3

o

ko]
=

KN Copt Mg Decision
variable x

Standardized SDT

Likelihood ratio for y = c is:
(copt =7
exp | ————
pleopt|S) :
= =
P pleopt| V) [ cgpt]
exp | —

2

log flopt = coptd’ — 2

d log ﬁopt
Copt =5 F
d 1 P(N) V(Correct| N)
—+— |log—— +log————
P(S) V(Correct|S)

2 d

Standardized SDT

d 1 P(N) V(Correct| N)
Copt =7+ |log —— +log ————
2 d P(S) V(Correct|S)

and thus the optimal criterion is the ML criterion shifted by
a term that is a function of the prior odds plus a term that is
a function of the payoff ratio. Note that this additivity of the
effects of priors and payoffs is not seen in human
behavior.

Locke, S. M., Gaffin-Cahn, E., Hosseiniaveh, N.,
Mamassian, P. & Landy, M. S. (2020). Attention,
Perception, & Psychophysics, 82, 3158-3175.




Signal Detection Theory: Criterion
d=1

Hits = 97.5%
False alarms = 84%

Hits = 84%
False alarms = 50%

Hits = 50%
False alarms = 16%

Example applications of SDT

+ Vision
« Detection (something vs. nothing)
« Discrimination (lower vs greater level of: intensity, contrast, depth, slant,
size, frequency, loudness, ...
» Memory (internal response = trace strength = familiarity)
+ Neurometric function/discrimination by neurons (internal
response = spike count)
From experimental measurements, assuming Gaussian
distributions, can we determine the underlying values of d’

and criterion?
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Say “no” Say “yes”

Internal response

SDT: Estimating d’ and ¢

Zp(CR)]  Zp(H)]

Probability

0 c d x

d’ = z[P(Hit)] + z[P(Correct Reject)]
= z[P(Hit)] — z[ P(False Alarm)]

¢ = z[ P(Correct Reject)], where
2
b4
exp —dz
)

Z2(P) = ®~(P), where ®(z) = r

2




SDT: Estimating d’ and ¢

d’' = z[P(Hit)] + z[ P(Correct Reject)]
= z[P(Hit)] — z[P(False Alarm)]
¢ = z[P(Correct Reject)]

Response
No Yes
S | nmiss | MHit Phjit = nhit/ (it + nviss)

Stimulus

N nCR nEA

Pea = npa/(np + ncR)

SDT: Estimating d’ and ¢

d’' = z[P(Hit)] + z[ P(Correct Reject)]
= z[P(Hit)] — z[P(False Alarm)]
¢ = z[P(Correct Reject)]

Response
No Yes

S | 7Miss + 0.5 npit+ 0.5

Stimulus

N ncr+0.5 nga +0.5

Prjiy = (npit + 0.5)/(npit + npiss + 1)
Prp = (npa + 0.5)/(npa + ncr + 1)

Hautus, M. J. (1995). Corrections for extreme proportions and the biasing effects on estimated values of

d'. Behavior Research Methods, Instruments, & Computers, 27, 46-51.

SDT: Psychometric function

Performance (d’)

v

Signal strength

Note: 4 hit rates and one, shared, false-alarm rate




ROC (Receiver Operating Characteristic)

~ Criterion #1

Internakresponse

Probability

Plot anti-cumulatives:
1-c(tIN) vs. 1-c(t1S)
as threshold t varies

Hits

False Alarms !

ROC (Receiver Operating Characteristic)

Probability

~ Criterion #2

N

Internal response

Hits

False Alarms !

ROC (Receiver Operating Characteristic)

Probability

~ Criterion #3

AN

Internal r¢gsponse

Hits

False Alarms !




ROC (Receiver Operating Characteristic)

Criterion #4

XN

Internal respons:

Probability

Hits

False Alarms

ROC (Receiver Operating Characteristic)

VA AGN

= 3 (less overlap)

=1 (lots of overlap)

1

0.5

Hit rate

0 0.5 1
False-alarm rate

ROC (Receiver Operating Characteristic)
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False-alarm rate P(False alarm)
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z(False alarm)

Or do a ML fit: Dorfman, D. D., & Alf, J., E. (1969). Maximum likelihood estimation of parameters of signal
detection theory and determination of confidence intervals: rating-method data. Journal of Mathematical

Psychology, 6, 487-496.




ROC (Receiver Operating Characteristic)

Achievable performance

0.5

Hit rate

0 0.5 1
False-alarm rate

SDT and 2AFC

o
=
c
Q
=
O
[0
%)
A Y
\,

M o

{ o

Ve

N

A Y
~

A

< QN‘E ?rsii erval Xy

Yeshurun, Y., Carrasco, M., & Maloney, L. T. (2008). Bias and sensitivity in two-interval forced choice
procedures: Tests of the difference model. Vision Research, 48, 1837-1851.

Area under the ROC

Area under curve = %correct in a 2AFC task

7

0 0.5 1
False-alarm rate

0.

Hit rate
(4]




Area under the ROC

Area under curve = %correct in a 2AFC task

s
05 , ¥ 3
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Hit rate

0 0.5 1
False-alarm rate

1

AUROC = J P(Correct reject | criterion ¢)dP(Hit | criterion ¢)
0

Area under the ROC
Area under curve = %correct in a 2AFC task

1

l X

5
o R
05 , Y ©

I
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Hit rate

0 0.5 1
False-alarm rate

Slope of the ROC = likelihood ratio!

Area under the ROC

Area under curve = %correct in a 2AFC task

ol

AUROC = | P(Correct reject | criterion ¢)dP(Hit | criterion ¢)
J0

00

= p(x < ¢|N)p(measurement is ¢ | S)dc

r 00 c
= J p(x| N)p(measurement is ¢ | S)dxdc
J—00 J -0

= p(measurement is ¢ | S) J p(x | N)dxdc

J—o0

= Prc-




SDT with unequal variances

c ch Decision variable x

SDT with unequal variances

Hit rate
o
o

.. . 0
c Decision variable x 0 0.5
False-alarm rate

SDT with unequal variances

0.977 2

Hit rate
°
P(Hit)
5 &
z(Hit)
4 o

0 0.5 1

False-alarm rate 0.023 -2
2 -1 0 1 2
z(False alarm)
0.023 0.16 0.5 0.84 0.977

P(False alarm)




SDT with a discrete (Poisson) distribution

N

o 1A2 3 4 5 6 7 8 9 10

Decision variable x (counts)

c

Area under the ROC - Poisson case or with data:
Neurometric function and choice probability

Nt

Hit rate

AUROC

O
Spike count

Motion cohs;v;nce
Britten, K. H., Shadlen, M. N., Newsome, W. T., & Movshon, J. A. (1992). The analysis of visual motion: a
comparison of neuronal and psychophysical performance. Journal of Neuroscience, 12, 4745-4765.
Britten, K. H., Newsome, W. T., Shadlen, M. N., Celebrini, S. & Movshon, J. A. (1996). A relationship between
behavioral choice and the visual responses of neurons in macaque MT. Visual Neuroscience, 13, 87-100.

Decision-making and categorization

One-dimensional evidence and binary decision:

Signal-detection theory
Discriminability: Fisher Information

N-dimensional evidence and binary decision:
Linear discriminant
QDA

N-dimensional evidence and more than 2 categories
Labeled data: ML or MAP extension of QDA
Unlabeled data: K-means or soft K-means clustering




Fisher Information

* Second-order expansion of the (expected) negative log likelihood:

1(s) = —E {32 1o§§(r|s)}

* Provides a bound on “precision” of unbiased estimators: ;2 (s) > 1
(the “Cramér-Rao bound”) — I(s)
* Perceptually, provides a bound on discriminability:
(Series et. al. 2009) D(s) < v1(s)
» Examples: with mean stimulus response u(s)
Gaussian case:  p(r|s) ~ N (u(s), 02) I(s) = [/ (s)]* /o

Poisson case:  p(r|s) ~ Poiss(u(s))  I(s) = ['(s)]*/u(s)

Example: Weber’s law [Weber, 1834]

1 (discrimination thresholds

D (s ) x s proportional to stimulus strength)

. 1 . . o
Assuming  I(s) o< — what internal representation can explain this? Many!
S

additive Gaussian Poisson noise, multiplicative Gaussian
noise, with mean with mean noise, with mean
u(s) =log(s)+c u(s) = [log(s) + cJ? p(s) = as

2 I3
& g
8 g
s c
I <]
2 o
2 @
g g

response, p(rls)

stimulus, s stimulus, s stimulus, s
entirely due to discrete representation, entirely due to
response mean depends on both mean response variance

[Fechner, 1860] and variance

expansive: u(s) o 57

S.S. Stevens. “To Honor
Fechner and Repeal His g
Law: A power function, not -
a log function, describes the

operating characteristic of a
sensory system” (1961)

o(s) & p(s)

linear: j(s) o s

o(s) o p(s)

k4

8(s) x 1/s

compressive: #(s) o 5%

Three examples with different
power-law mean response, o(s) < ()
each consistent with Weber’s
law discriminability.

\

p(ts)

stimulus, s
[Zhou, Duong & EPS, 2022]




Decision-making and categorization

One-dimensional evidence and binary decision:
Signal-detection theory
Discriminability: Fisher Information

N-dimensional evidence and binary decision:
Linear discriminant
QDA

N-dimensional evidence and more than 2 categories
Labeled data: ML or MAP extension of QDA
Unlabeled data: K-means or soft K-means clustering

Decision/classification in multiple dimensions

® Data-driven linear classifiers:
® Prototype Classifier - minimize distance to class mean
® Fisher Linear Discriminant (FLD) - maximize d’
® Support Vector Machine (SVM) - maximize margin
e Statistical:
ML/MAP/Bayes under a probabilistic model
e.g.: Gaussian, identity covariance (same as Prototype)
e.g.: Gaussian, equal covariance (same as FLD)
e.g.: Gaussian, general case (Quadratic Discriminator)

e o 0 o n

e Some Examples:
® Visual gender classification
® Neural population decoding

Linear Classifier

Find unit vector w (“discriminant™) that best separates the distributions

’
.
* e class A + Decision boundary
~ . ’
S0, K
Q
LR o ]
. eoN \.

o ® . y
. . u
..:N °

class A Decision
boundary

VAN IANS

histogram of projected values 1 - &

class B




Simplest linear discriminant: the Prototype Classifier

A —fip

W=
fia = fis]

Fisher Linear
Discriminant

Fisher

[ G, — i)’ .
max ——— (note: this is d’ squared!)
W [WTCyW + WTCpib ]

1
optimum: W = C~!(ii, — iiy), where C = E(CA + Cp)

Support Vector Machine (SVM)

(widely used in machine learning, but no closed form solution)

Maximize the “margin” (gap between data sets):

find largest m, and {w,b} s.t. c¢;(@w7 % —b) >m, Vi

X,




Reminder: Multi-D Gaussian densities

(@) 1 _(= @2
plr) = e
V2no?
— 1 _(m DTN E-i)/2 '
p(#) = prete
(27r)N|C| mean: [0.2,0.8]
cov: [1.0-0.3;
-0.3 04]

ML (or MAP) classifier for two Gaussians
Decision boundary is quadratic, with four possible geometries:
Class1 3, Clas/§\1

Simplest case:
equal covariances

Neuron 2
=
M

Neuron 2

Class 2

Neuron 1 Neuron 1

Class 1
Class 2 ﬁ

Neuron 2
Neuron 2

L/z [on board]

Class 1 \
-/ 2

Neuron 1 Neuron 1

[figure: Pagan et al. 2016]

A perceptual example: Biological gender
identification (XX vs. XY)

0200 face images (100 male, 100 female)
® Adjusted for position, size, intensity/contrast
e[ abeled by 27 human subjects

[Graf & Wichmann, NIPS*03]




Linear classifiers

SVM RVM Prot FLD

Four linear classifiers, trained on human data

Model validation/testing

® Cross-validation: Subject responses
[% correct, reaction time, confidence]
are explained

- very well by SVM
- moderately well by RVM / FLD
- not so well by Prot

® Do these decision “models”’make
testable predictions? Synthesize
optimally discriminable faces...

Subtract classifier Add classifier

SVM

RVM

Prot

FLD

[Wichmann, et. al; NIPS*04]




100

50 rl I I I I I I

0.25 0.5 1.0 20 40 8.0

Amount of classifier image added/subtracted
(arbitrary units)

[Wichmann, et. al; NIPS*04]

Decision-making and categorization

One-dimensional evidence and binary decision:
Signal-detection theory
Discriminability: Fisher Information

N-dimensional evidence and binary decision:
Linear discriminant
QDA

N-dimensional evidence and more than 2 categories
Labeled data: ML or MAP extension of QDA
Unlabeled data: K-means or soft K-means clustering

More than two categories, labeled data

If means and covariances are known, and the covariances are
circular and identical across categories, this reduces to selecting
the nearest neighbor:

‘Voronoi regions: Soap bubbles:

-05




More two categories, labeled data, Gaussian
distributions, but not necessarily circular nor equal
across categories.

ML (or MAP) classifier generalizes QDA:

Class 1 z, Class 1

Class 2

Class 2

Neuron 2
™
Neuron 2

¥+ Neuron 1 Neuron 1

=
it N Class 2 Class 1)
\ Class 2// s,
~ A 7 ~ o
< \ — c| /
s \ sl/ ’
e\ - P
2| Class1 | 2
Neuron 1 Neuron 1

[figure: Pagan et al. 2016]

Unlabeled data: Clustering

» K-Means (Lloyd, 1957)

* “Soft-assignment” version of K-means
(a form of Expectation-Maximization - EM)

* In general, alternate between:
1) Estimating cluster assignments (classification)
2) Estimating cluster parameters

* Coordinate descent: converges to (possibly local) minimum

* Need to choose K (number of clusters) - cross-validation!

K-Means clustering algorithm
Alternate between two steps:

1. Estimate cluster assignments: given class centers,
assign each point to closest one:

Voronoi regions:

Soap bubbles:
d[p-— e

2. Estimating cluster parameters: given assignments, re-
estimate the centroid of each cluster.




K-means example
N =300, and K =3

Initial centers Heration 1

Heration 3 Heration

[from R. Tibshirani, 2013]

K-means optimization failures

Initialization matters (due to local minima) ...
Three solutions obtained with different random

starting points:

LR o . LR o o ER o o
g0 & g% * §% ¢
. . fmdea | o e dems | o Beg g
=] o o Sooip °2 -7 o o Soop ° 8 =7 o o ‘o 02
8o 2w o 0% ‘Bﬁgﬂn Boo o o 0% %5‘;%0 B0 2 o 0% ‘\é’gi%b
00 o %0 ° - o %0 ° . P e° o °
EIR R # 7 3 g o0 S 3 g4 00 TgES® s
% Lo oe 5% ol 3% Yol
P @ B © o oo @00 © ° oo, @ 2w © o
ERBE R 275 % ERBE A jg?"o& o | 8 ey B3 2% o
[0 CEA T 4 wo 88 % b AT S
T T T T T T T T T 9 T T T
00 05 1o s 00 0s o s 00 os 1o s

[from R. Tibshirani, 2013]

K-means systematic failures

Non-convex/non-round-shaped clusters

Clusters with different densities

=

Picture courtesy: Christof Monz (Queen Mary, Univ. of London)




ML for discrete mixture of Gaussians: soft K-means

P(@nans i, Ar) oc Y — e (B =) AL i) 2

k V |Ak|

Ak = assignment probability
{fk, Ak} =mean/covariance of class k
Intuition: alternate between maximizing these two sets of variables

(“coordinate descent”)

Essentially, a version of K-means with “soft” (i.e., continuous, as
opposed to binary) assignments!

Different cluster analysis results on "mouse" data set:
Original Data k-Means Clustering EM Clustering

o1 01 01
0 01 02 03 04 0506070809 1 0 01020304 050607 0809 1 0 01 0203 040506 07 0808 1

[wikipedia]

Application to neural “spike sorting”

Standard solution:

1. Threshold to find segments containing spikes
2. Reduce dimensionality of segments using PCA
3. Identify spikes using clustering (e.g., K-means)

Note: Fails for overlapping spikes!




Failures of clustering for near-synchronous spikes

synchronous spiking

Al —]_[K

— |

PC 1 projection

[Pillow et. al. 2013]

“Decoding” neural populations?

® Connecting neural response to behavior
® Engineering: Brain-Computer Interfaces

® Test/compare encoding models

Encoding determines discriminability




Probabilistic encoding model
determines discriminability

p(rls)

S

Discriminability (d”) is (approximately) slope/stdev

n
Two neurons

I

Same fundamental issues as 1D case:
® Probabilistic encoding determines discriminability
e Intuitively, overlap is distance/spread
® For linear decoding: project onto discrimination axis

I. Simple/intuitive population decoding
eLinear?  3(7) =) rusa

(simple, but usually doesn’t work well)
« Winner-take-all ~ 8(") = sm,  m = argmax{r,}
(simple, but discontinuous and noise-susceptible)

_ 2 nTndn
Zn Tn

d POpulation VECTOT [Georgopoulos et.al., 1986] §(F)

(also simple, more robust)




IT. Statistically optimal decoding

« Maximum likelihood (ML) 8(r) = arg max p(7]s)
* Maximum a posteriori (MAP) 5(F) = arg msax p(7ls) - p(s)

* Minimum Mean Squared Error (MMSE), 5(7) = E(s|7)
ak.a. Bayes Least Squares (BLS)

ML decoding for a Poisson-spiking neural population

[Ma, Beck, Latham, Pouget, 2006; Jazayeri & Movshon, 2006]
N
R (5)7" e~ hn(s)

p(rts) = T

n=1

log (p(71s)) = Y _ rn10g(hn(s)) = hn(s) — log(rs!)

N . . . . .
If anl hn(s) is constant (i.e., tuning curves “tile”), just

minimize the response-weighted sum of log tuning curves.

Special cases allow closed-form solutions:
» Gaussian tuning curves  h,(s) = exp (—(s — s,)*/207)

* von Mises tuning curves  h,,(s) = exp (kcos(s — sy,))

Bayesian
decoder

45 90 135
Stimulus
25
20
£15 Bayesian
§ 10 g decoder
5 )
U APTRETAS Al % 45 o0 1

Preferred stimulus Stimulus
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[Ma, Beck, Latham & Pouget, 06]




Population Decoding

The data: tuning curves f;
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[Graf, Kohn, Jazayeri & Movshon, 11]

Comparing population decoders

1) The ML decoder, assuming independent Poisson responses (the PID):

N N 9y
log L(0) = log (Hp(ﬂb’)) = log <ﬁ(r_‘) exp(—f,(é')))
i=1 L

i=1

N N N N
= D log(fO)r; = X f(0) = D log(r) = Y W(O)r; + B©)
i=1 i=1 i=1 i=1
For discrimination between two values, likelihood ratio is linear function of responses:
L)

log LR(9,,6,) = log (m) =log L(6,) — log L(6,)
2

N
= Y [W0) = W(Olr; + [BO) - BO]

i=1

N
= w6, 0+ b6, 6)

i=1

[Graf, Kohn, Jazayeri & Movshon, 11]

Comparing population decoders
2) Alternatively, compute an SVM on the measured response vectors for each

orientation, the empirical linear decoder (ELD):

N
¥(0,,6,) = Z wi(6,,0,)r; + b(6,, 6,)

i=1

3) For each neuron and orientation, shuffle the responses across trials and
train a new SVM, the correlation-blind empirical linear decoder (CB-ELD).
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[Graf, Kohn, Jazayeri & Movshon, 11]




Where we’ve been...

Optimization

. . Linear Data Linear systems /
* Linear algebra / linear systems algebra analysis  Sourieranalysis

- Ex: Trichromacy &
* Least squares o ‘mddmg
* regression / PCA CE::IEC'ZS A Statistics
« Linear shift-invariant systems
* convolution / Fourier transforms
» Ex: Auditory filtering
« Summary statistics - dispersion, central tendency
« Statistical inference
* estimation, bias, variance, convergence
» maximum likelihood estimator (MLE), MAP, Bayes
» Ex: signal detection theory
* Classification, clustering
* Model fitting
» model comparison, overfitting, regularization, cross-validation
+ Ex: fitting an LNP model
« Ex: population decoding

—
mathematical manipulation




