NEURL-GA 3042.005 – Spring, 2014 [cross-listed as: MATH-GA 2855, CSCI-GA 2715, PSYCH-GA 3405.005] Representation and Analysis of Visual Images

Instructor:	Eero Simoncelli
Info:	Time: Tuesday/Thursday, 10-11:50 Location: Room 851, Meyer Hall, 4 Washington Place Web: http://www.cns.nyu.edu/≈eero/imrep-course/
Brief Description:	A graduate-level lecture course on theory and tools for representing, manipulating and analyzing visual images on digital computers.
Prerequisites:	Linear algebra and vector calculus, linear systems theory, basic probability and statistics. Matlab programming experience is also expected.
Text:	There is no textbookbook for the course. I'll provide some handouts (notes, articles, book chapters, etc) throughout the semester. For computer-vision topics, you may find the book by Rick Szeliski useful: http://szeliski.org/Book. For human vision topics, you may find the book by Brian Wandell useful (Foundations of Vision (https://www.stanford.edu/group/vista/cgi-bin/FOV/).
Grading:	Grades will be based on homework assignments.
Topics:	 Image formation/measurement (brief) The Plenoptic function light & surfaces: sources, absorption, reflectance, transparency color, trichromacy (perception and technology), sensors, display devices Classical tools Convolution and Fourier transforms in multiple dimensions PCA, spectral models, matched filtering statistical inference, decision, classification Analysis estimation of discrete multi-dimensional derivatives rotation-invariance, orientation estimation, edge detection matching/alignment/registration of image content, motion estimation multi-scale / coarse-to-fine methods image comparison: texture classification, perceptual quality metrics
	 4. Representation multi-scale bases (pyramids, wavelets) classical and modern statistical models/representations: PCA, ICA, sparsity, random field models classical and modern estimation/restoration texture representation/synthesis rate-distortion theory, image compression invariant representations, energy models, normalization