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Optical Flow Estimation

David J. Fleet, Yair Weiss

ABSTRACT This chapter provides a tutorial introduction to gradient-
based optical flow estimation. We discuss least-squares and robust estima-
tors, iterative coarse-to-fine refinement, different forms of parametric mo-
tion models, different conservation assumptions, probabilistic formulations,
and robust mixture models.

1 Introduction

Motion is an intrinsic property of the world and an integral part of our
visual experience. It is a rich source of information that supports a wide
variety of visual tasks, including 3D shape acquisition and oculomotor con-
trol, perceptual organization, object recognition and scene understanding
[16, 21, 26, 33, 35, 38, 45, 47, 50]. In this chapter we are concerned with
general image sequences of 3D scenes in which objects and the camera
may be moving. In camera-centered coordinates each point on a 3D surface
moves along a 3D path !X(t). When projected onto the image plane each
point produces a 2D path !x(t) ≡ (x(t), y(t))T , the instantaneous direction
of which is the velocity d !x(t)/dt. The 2D velocities for all visible surface
points is often referred to the 2D motion field [27]. The goal of optical
flow estimation is to compute an approximation to the motion field from
time-varying image intensity. While several different approaches to motion
estimation have been proposed, including correlation or block-matching
(e.g, [3]), feature tracking, and energy-based methods (e.g., [1]), this chap-
ter concentrates on gradient-based approaches; see [6] for an overview and
comparison of the other common techniques.

2 Basic Gradient-Based Estimation

A common starting point for optical flow estimation is to assume that pixel
intensities are translated from one frame to the next,

I(!x, t) = I(!x + !u, t + 1) , (1.1)

where I(!x, t) is image intensity as a function of space !x = (x, y)T and time
t, and !u = (u1, u2)T is the 2D velocity. Of course, brightness constancy
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FIGURE 1. The gradient constraint relates the displacement of the signal to its
temporal difference and spatial derivatives (slope). For a displacement of a linear
signal (left), the difference in signal values at a point divided by the slope gives
the displacement. For nonlinear signals (right), the difference divided by the slope
gives an approximation to the displacement.

rarely holds exactly. The underlying assumption is that surface radiance
remains fixed from one frame to the next. One can fabricate scenes for which
this holds; e.g., the scene might be constrained to contain only Lambertian
surfaces (no specularities), with a distant point source (so that changing
the distance to the light source has no effect), no object rotations, and
no secondary illumination (shadows or inter-surface reflection). Although
unrealistic, it is remarkable that the brightness constancy assumption (1.1)
works so well in practice.

To derive an estimator for 2D velocity !u, we first consider the 1D case. Let
f1(x) and f2(x) be 1D signals (images) at two time instants. As depicted in
Fig. 1, suppose further that f2(x) is a translated version of f1(x); i.e., let
f2(x) = f1(x−d) where d denotes the translation. A Taylor series expansion
of f1(x − d) about x is given by

f1(x − d) = f1(x) − d f ′
1(x) + O(d2f ′′

1 ) , (1.2)

where f ′ ≡ d f(x)/dx. With this expansion we can rewrite the difference
between the two signals at location x as

f1(x) − f2(x) = d f ′
1(x) + O(d2f ′′

1 ) .

Ignoring second- and higher-order terms, we obtain an approximation to d:

d̂ =
f1(x) − f2(x)

f ′
1(x)

. (1.3)

The 1D case generalizes straightforwardly to 2D. As above, assume that
the displaced image is well approximated by a first-order Taylor series:

I(!x + !u, t + 1) ≈ I(!x, t) + !u ·∇I(!x, t) + It(!x, t) , (1.4)

where ∇I ≡ (Ix, Iy) and It denote spatial and temporal partial deriva-
tives of the image I, and !u = (u1, u2)T denotes the 2D velocity. Ignoring
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higher-order terms in the Taylor series. and then substituting the linear
approximation into (1.1), we obtain [28]

∇I(!x, t) · !u + It(!x, t) = 0 . (1.5)

Equation (1.5) relates the velocity to the space-time image derivatives at
one image location, and is often called the gradient constraint equation. If
one has access to only two frames, or cannot estimate It, it is straight-
forward to derive a closely related gradient constraint, in which It(!x, t) in
(1.5) is replaced by δI(!x, t) ≡ I(!x, t + 1) − I(!x, t) [34].

Intensity Conservation

Tracking points of constant brightness can also be viewed as the estimation
of 2D paths !x(t) along which intensity is conserved:

I(!x(t), t) = c , (1.6)

the temporal derivative of which yields

d

d t
I(!x(t), t) = 0 . (1.7)

Expanding the left-hand-side of (1.7) using the chain rule gives us

d

d t
I(!x(t), t) =

∂I

∂x

dx

d t
+

∂I

∂y

d y

d t
+

∂I

∂t

d t

d t
= ∇I · !u + It , (1.8)

where the path derivative is just the optical flow !u ≡ (dx/dt, dy/dt)T . If we
combine (1.7) and (1.8) we obtain the gradient constraint equation (1.5).

Least-Squares Estimation

Of course, one cannot recover !u from one gradient constraint since (1.5)
is one equation with two unknowns, u1 and u2. The intensity gradient
constrains the flow to a one parameter family of velocities along a line in
velocity space. One can see from (1.5) that this line is perpendicular to ∇I,
and its perpendicular distance from the origin is |It|/||∇I|| .

One common way to further constrain !u is to use gradient constraints
from nearby pixels, assuming they share the same 2D velocity. With many
constraints there may be no velocity that simultaneously satisfies them all,
so instead we find the velocity that minimizes the constraint errors. The
least-squares (LS) estimator minimizes the squared errors [34]:

E(!u) =
∑

!x

g(!x) [!u ·∇I(!x, t) + It(!x, t)]2 , (1.9)

where g(!x) is a weighting function that determines the support of the es-
timator (the region within which we combine constraints). It is common
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to let g(!x) be Gaussian in order to weight constraints in the center of the
neighborhood more highly, giving them more influence. The 2D velocity û
that minimizes E(!u) is the least squares flow estimate.

The minimum of E(!u) can be found from its critical points, where its
derivatives with respect to !u are zero; i.e.,

∂E(u1, u2)
∂u1

=
∑

!x

g(!x)
[
u1Ix

2 + u2IxIy + IxIt

]
= 0

∂E(u1, u2)
∂u2

=
∑

!x

g(!x)
[
u2Iy

2 + u1IxIy + IyIt

]
= 0 .

These equations may be rewritten in matrix form:

M !u = !b , (1.10)

where the elements of M and !b are:

M =
[ ∑

g Ix
2 ∑

g IxIy∑
g IxIy

∑
g Iy

2

]
, !b = −

( ∑
g IxIt∑
g IyIt

)
.

When M has rank 2, then the LS estimate is û = M−1!b.

Implementation Issues

Usually we wish to estimate optical flow at every pixel, so we should express
M and !b as functions of position !x, i.e., M(!x) !u(!x) = !b(!x). Note that the
elements of M and !b are local sums of products of image derivatives. An
effective way to estimate the flow field is to first compute derivative images
through convolution with suitable filters. Then, compute their products
(Ix

2, IxIy , Iy
2, IxIt and IyIt), as required by (1.10). These quadratic images

are then convolved with g(!x, ) to obtain the elements of M(!x) and !b(!x).
In practice, the image derivatives will be approximated using numerical

differentiation. It is important to use a consistent approximation scheme
for all three directions [13]. For example, using simple forward differencing
(i.e., Îx = I(x, y) − I(x + 1, y)) will not give a consistent approximation
as the x, y and t derivatives will be centered at different locations in the
xyt-cube [27]. Another practicality worth mentioning is that some image
smoothing is generally useful prior to numerical differentiation (and can
be incorporated into the derivative filters). This can be justified from the
first-order Taylor series approximation used to derive (1.5). By smoothing
the signal, one hopes to reduce the amplitudes of higher-order terms in the
image and to avoid some related problems with temporal aliasing.

Aperture Problem

When M in (1.10) is rank deficient one cannot solve for !u. This is often
called the aperture problem as it invariably occurs when the support g(x) is
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FIGURE 2. (left) A single moving grating viewed through a circular aperture
is consistent with all 2D velocities along a line in velocity space. (right) With
two drifting gratings there are multiple constraint lines that intersect to uniquely
constrain the 2D velocity. (After [2])

sufficiently local. However, the important issue is not the width of support,
but rather the dimensionality of the image structure. Even for large regions,
if the image is one-dimensional then M will be singular. As depicted in
Fig. 2 (left); when each image gradient within a region has the same spatial
direction, it is easy to see that rank[M] = 1. Moreover, note that a single
gradient constraint only provides the normal component of !u,

!un =
−It

||∇I||
∇I

||∇I|| .

When there exist constraints with two or more gradient directions, as
depicted in Fig. 2 (right), then the different constraint lines intersect to
uniquely constrain the 2D velocity.

3 Iterative Optical Flow Estimation

Equation (1.9) provides an optimal solution, but not to our original prob-
lem. Remember that we ignored high-order terms in the derivation of (1.3)
and (1.5). As depicted in Fig. 1, if f1 is linear then d = d̂. Otherwise, to
leading order, the accuracy of the estimate is bounded by the magnitude
of the displacement and the second derivative of f1:

|d̂ − d| ≤ d2 |f ′′
1 (x)|

2 |f ′
1(x)| + O(d3) . (1.11)

For a sufficiently small displacement, and bounded |f ′′
1 /f ′

1|, we expect rea-
sonably accurate estimates. This suggests a form of Gauss-Newton opti-
mization in which we use the current estimate to undo the motion, and
then we reapply the estimator to the warped signals to find the residual
motion. This continues until the residual motion is sufficiently small.

In 2D, given an estimate of the optical flow field !u 0, we create a warped
image sequence I0(!x, t):

I0(!x, t + δt) = I(!x + !u 0δt, t + δt) , (1.12)
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where δt is the time between consecutive frames. (In practice, we only
need to warp enough frames for temporal differentiation.) Assuming that
!u = !u0 + δ!u, it is straightforward to see from (1.1) and (1.12) that

I0(!x, t) = I0(!x + δ!u, t + 1) . (1.13)

If δ!u = !0, then clearly I0 would be constant through time (assuming bright-
ness constancy). Otherwise, we can estimate the residual flow using

δû = M−1!b (1.14)

where M and !b are computed by taking spatial and temporal derivatives
(differences) of I0. The refined optical flow estimate then becomes

!u 1 = !u 0 + δû .

In an iterative manner, this new flow estimate is then used to rewarp the
original sequence (as in (1.12)), and another residual flow can be estimated.

This iteration yields a sequence of approximate objective functions that
converge to the desired objective function [10]. At iteration j, given the
estimate !u j and the warped sequence Ij , our desired objective function is

E(δ!u) =
∑

!x

g(!x)
[
I(!x, t) − I(!x + !u j + δ!u, t + 1)

]2 (1.15)

=
∑

!x

g(!x)
[
Ij(!x, t) − Ij(!x + δ!u, t + 1)

]2

≈
∑

!x

g(!x)
[
∇Ij(!x, t) · δ!u + Ij

t (!x, t)
]2

≡ Ẽ(δ!u) . (1.16)

The gradient approximation to the difference in (1.15) gives an approxi-
mate objective function Ẽ. From (1.11) one can show that Ẽ approximates
E to second-order in the magnitude of the residual flow, δ!u. The approx-
imation error vanishes as δ!u is reduced to zero. The iterative refinement
with rewarping reduces the residual motion at each iteration so that the
approximate objective function converges to the desired objective function,
and hence the flow estimate converges to the optimal LS estimate (1.15).

The most expensive step at each iteration is the computation of image
gradients and the matrix inverse in (1.14). One can, however, formulate the
problem so that the spatial image derivatives used to form M are taken at
time t, and as such, do not depend on the current flow estimate !u j [23].
To see this, note that the spatial deriatives are computed at time t and it
is straightforward to see that I(!x, t) = Ij(!x, t). Of course !b in (1.14) will
always depend on the warped image sequence and must be recomputed at
each iteration. In practice, when M is not recomputed from the warped
sequence then the spatial and temporal derivatives will not centered at the
same location in (x, y, t) and hence more iterations may be needed.
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FIGURE 3. (Left) The spectrum of a translating signal is nonzero on a line in the
frequency domain. Temporal sampling introduces spectral replicas, causing alias-
ing for higher speeds (steeper slopes). (Right) The problem may be avoided by
blurring the images before computing derivatives. The spectra of such coarse-scale
filters will be insensitive to the replicas. Velocity estimates from the coarse scale
are used to warp the images, thereby undoing much of the motion. Finer-scale
derivative filters can now be used to estimate the residual motion. (After [43])

Temporal Aliasing and Coarse-To-Fine Refinement

In practice, our images have temporal sampling rates lower than required by
the sampling theorem to uniquely reconstruct the continuous signal. As a
consequence, temporal aliasing is a common problem in motion estimation.

The spectrum of a translating signal is confined to a plane through the
origin in the frequency domain [15, 51]. That is, if we construct a space-
time signal f(!x, t) by translating a 2D signal f0(!x) with velocity !u, i.e.,
f(!x, t) = f0(!x − !ut), one can show that the space-time Fourier transform
of f(!x, t) is given by

F (ωx,ωy,ωt) = F0(ωx,ωy) δ(u1ωx + u2ωy + ωt) , (1.17)

where F0 is the 2D Fourier transform of f0 and δ() is a Dirac delta. Equation
(1.17) shows that the spectrum is nonzero only on a plane, the orientation
of which gives the velocity. When the continuous signal is sampled in time,
replicas of the spectrum are introduced at intervals of 2π/T radians, where
T is the time between frames (see Fig. 3 (left)). It is easy to see how this
causes problems; i.e., the derivative filters may be more sensitive to the
spectral replicas at high spatial frequencies than to the original spectrum
on the plane through the origin.

This suggests a simple approach to aliasing problems [3, 7]. Optical flow
can be estimated at the coarsest scale of a Gaussian pyramid, where the
image is significantly blurred, and the velocity is much slower (due to sub-
sampling). The coarse-scale estimate can be used to warp the next (finer)
pyramid level to stabilize its motion. Since the velocities after warping are
slower, as shown in Fig. 3 (right)), a wider low-pass frequency band will be
free of aliasing. One can therefore use derivatives at the finer scale to esti-
mate the residual motion. This coarse-to-fine estimation continues until the
finest level of the pyramid (the original image) is reached. Mathematically,
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this is identical to iterative refinement except that each scale’s estimate
must be up-sampled and interpolated before warping the next finer scale.

While widely used, coarse-to-fine methods have their drawbacks, usually
stemming from the fact that fine-scale estimates can only be as reliable as
their coarse-scale precursors; a poor estimate at one scale provides a poor
initial guess at the next finer scale, and so on. That said, when aliasing does
occur, one must use some mechanism such as coarse-to-fine estimation to
avoid local minima in the optimization.

4 Robust Motion Estimation

The LS estimator is optimal when the gradient constraint errors, i.e.,

e(!x) ≡ !u ·∇I(!x, t) + It(!x, t) , (1.18)

are mean-zero Gaussian, and the errors in different constraints are inde-
pendent and identically distributed (IID). Not surprisingly, this is a frag-
ile assumption. For example, brightness constancy is often violated due to
changing surface orientation, specularities reflections, or time-varying shad-
ows. When there is significant depth variation in the scene, the constant
motion model will be extremely poor, especially at occlusion boundaries.

LS estimators are not suitable when the distribution of gradient con-
straint errors is heavy-tailed, as they are sensitive to small numbers of
measurement outliers [24, 32]. It is therefore often crucial that the quadratic
estimator in (1.9) be replaced by a robust estimator, ρ(·), which limits the
influence of constraints with larger errors (e.g., see [5, 9, 41]):

E(!u) =
∑

x,y

g(!x) ρ(e(!x), σ) . (1.19)

For example, Black and Anandan [9] used the redescending Geman-McClure
estimator [20], ρ(e,σ) = e2/(e2 + σ2), where σ2 determines the range of
constraint errors for which influence is reduced.

Among the various ways one might minimize (1.19), one very useful ap-
proach takes the form of iteratively reweighted least-squares [32]. In short,
this is an iterative solution in which the weights g(!x) in (1.9) are scaled
by a weight function that downweights those constraints that are inconsis-
tent (i.e., have large errors) with the current motion estimate. Often it is
also useful to anneal the optimization, wherein σ2 starts large, and is then
slowly decreased to achieve greater robustness.

5 Motion Models

Thus far we have assumed that the 2D velocity is constant in local neigh-
bourhoods. Nevertheless, even for small regions this is often a poor assump-
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tion. We now consider generalizations to more interesting motion models.

Affine Model

General first-order affine motion is usually a better model of local motion
than a translational model (e.g., [7, 9, 17]). An affine velocity field centered
at location !x0 can be expressed in matrix form as

!u(!x; !x0) = A(!x; !x0) !c , (1.20)

where !c = (c1, c2, c3, c4, c5, c6)T are the motion model parameters, and

A(!x; !x0) =
[

1 0 x−x0 y−y0 0 0
0 1 0 0 x−x0 y−y0

]
.

Combining (1.20) and (1.5) yields the gradient constraint equation

∇I(!x, t)A(!x; !x0) !c + It(!x, t) = 0 ,

for which the LS estimate for the neighbourhood has the form

ĉ = M−1!b , (1.21)

where now M and !b are given by

M =
∑

!x

g AT∇IT ∇IA , !b = −
∑

!x

g AT∇IT It .

When M is rank deficient there is insufficient image structure to estimate
the six unknowns. Affine models often require larger support than constant
models, and one may need a robust estimator instead of the LS estimator.

Iterative refinement is also straightforward with affine motion models.
Let the optimal affine motion be !u = A!c, and let the affine estimate
at iteration j be !u j = A!c j . Because the flow is linear in the motion
parameters, it follows that δ!u ≡ !u − !u j and δ!c ≡ !c − !c j satisfy

δ!u = Aδ!c . (1.22)

Accordingly, defining I j(!x, t) to be the original sequence I(!x, t) warped by
!u j as in (1.12) we use the same LS estimator as in (1.21), but with I and
ĉ replaced by Ij and δĉ. The updated LS estimate is then !c j+1 = !c j + δĉ.

Low-Order Parametric Deformations

There are many other polynomial and rational deformations that make use-
ful motion models. Similarity deformations, comprising translation (d1, d2),
2D rotation θ, and uniform scaling by s are a special case of the affine model,
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(a) (b) (c) (d)

FIGURE 4. (a,b) Mouth regions of two consecutive images of a person speaking.
(c) Flow field estimated using dense optical flow method. (d) Flow field estimated
using the learned model with 6 basis flow fields. (After [16])

but still very useful in practice. In a neighbourhood centred at !x0 it has
the same form as (1.20), but with !c = (d1, d2, s cos θ, s sin θ)T and

A(!x; !x0) =
[

1 0 x − x0 −y + y0

0 1 y − y0 x − x0

]
.

With this linear form, one can solve directly for !c using linear least-squares,
and then compute the similarity parameters d1, d2, s, and θ.

Another useful motion model is the projective deformation (or homogra-
phy) [7], which captures image deformations of a 3D plane under camera
rotation and translation. See [?] for a discussion of homographies and re-
lated motion models.

Learned Subspace Models

Many objects exhibit complex motions that are not well modeled by smooth
polynomials. For example Fig. 4(a,b) shows two frames of a mouth during
speech, for which non-rigidity, occlusion, and fast speeds make flow es-
timation difficult. Interestingly, the regression framework above extends
to diverse types of complex 2D motions with the use of basis flow fields,
{!bj(!x)}J

j=1, such that the local optical flow field is expressed as

!u(!x) =
J∑

j=1

cj
!bj(!x) . (1.23)

In this context, optical flow estimation reduces to the estimation of the
linear coefficients !c, analogous to the affine model discussed above.

In [16] a motion basis was learned for human mouths. This was accom-
plished by applying a robust estimator with a generic smoothness model [9]
to mouths to obtain training data (e.g., see Fig. 4(c)). The principal com-
ponents of the ensemble of training flow fields were then extracted and used
as the basis. Figure 4(d) shows the optical flow obtained with the subspace
model and a robust estimator. The model was found to greatly increase
the quality of the optical flow estimates, and the temporal variation in the
subspace coefficients were then used to recognize linguistic events.
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General Differentiable Warps

In general, one can formulate area-based regression in terms of warp func-
tions w(!x; !p) that are not necessarily smooth in space, nor linear in the
warp parameters !p. One can parametrize the warp as a function of time,
or assume the two-frame case:

I(!x, t) = I(w(!x; !p), t + 1) . (1.24)

The warp functions must be differentiable with respect to !p. To develop an
efficient estimation algorithm, one may need to further constrain w to be
invertible (e.g., see [23]).

6 Global Smoothing

While area-based regression is commonly used, some of the earliest for-
mulations of optical flow estimation assumed smoothness through non-
parametric motion models, rather than an explicit parametric model in
each local neighbourhood (e.g., see [27, 36, 42]). One such energy func-
tional was proposed by Horn and Schunck [28]:

E(!u) =
∫

(∇I · !u + It)2 + λ
(
||∇u1||2 + ||∇u2||2

)
dx dy . (1.25)

A key advantage of global smoothing is that it enables propagation of
information over large distances in the image. In image regions of nearly
uniform intensity, such as a blank wall or tabletop, local methods will often
yield singular (or poorly conditioned) systems of equations. Global methods
can fill in the optical flow from nearby gradient constraints.

Equation (1.25) can be minimized directly with discrete approximations
to the integral and the derivatives in (1.25). Thie yields a large system
of linear equations that may be solved through iterative methods such as
Gauss-Seidel or SOR overrelaxation [22]. Alternatively one can solve the
corresponding Euler-Lagrange (PDE) equations under reflecting boundary
conditions (e.g., [11, 42]). Recent extensions to global methods include ro-
bust penalty functions (for data and smoothness terms), the use of coarse-
to-fine search for optimization, and the incorporation of stronger local con-
straints on the motion, resulting in impressive optical flow estimates [11].

The main disadvantage of global methods is computational efficiency.
Even with more efficient optimization algorithms (e.g. [46, 53]) the com-
putational cost is far higher than with local methods. Whether this is jus-
tified may depend on the image domain and the need for dense optical
flow. Another problem is in the setting of the regularization parameter λ
that determines the amount of desired smoothing (similar problems arise in
choosing the support width for area-based regression). Prior knowledge on
the smoothness of flow can be useful here, and more sophisticated methods
might be used to estimate (or marginalize) the regularization parameter.



12 David J. Fleet, Yair Weiss

7 Conservation Assumptions

All of the above formulations assumed intensity conservation. Nevertheless,
gradient constraints may be used to track any differentiable image property.

Higher-Order Derivative Constraints

Some techniques assume that image gradients are conserved (e.g., [36, 43,
48]). This two further constraints at each pixel, i.e.,

u1Ixx + u2Ixy + Ixt = 0 (1.26)
u1Ixy + u2Iyy + Iyt = 0 .

These are useful insofar as they provide more constraints with which to
estimate motion parameters. Conversely, higher-order derivatives are often
extremely noisy, and the conservation of ∇I implies that the motion field
has no first-order deformation (e.g., rotation). Intensity conservation (1.7),
by comparison, assumes only that the image motion is smooth.

Phase-Based Methods

Phase-based methods [17, 18] are based on an initial decomposition of the
image into band-pass channels, like those produced by quadrature-pair fil-
ters in steerable pyramids [19]. While multi-scale representations are com-
monly used for flow estimation, a further decomposition into orientation
bands, yields more local constraints, often with better signal-to-noise ratios.
Complex-valued band-pass images can be represented as real and imagi-
nary images, or in terms of amplitude and phase images. Figure 5 shows
the real-part of a 1D band-pass signal, along with its amplitude and phase.
Amplitude encodes the magnitude of local signal modulation, while phase
encodes the local structure of the signal (e.g., zero-crossings, peaks, etc).

Phase-based methods assume conservation of phase in each band-pass
channel. The phase-based gradient constraint, given a complex-valued band-
pass channel, r(!x, t), with phase φ(!x, t) ≡ arg[r(!x, t)], is simply

∇φ(!x, t) · !u + φt(!x, t) = 0 . (1.27)

These may be combined to estimate optical flow using any of the estima-
tors above. In practice, because phase is a multi-function, only uniquely
defined on intervals of width 2π, explicit differentiation is difficult. Instead,
it is convenient to exploit the following identities for computing spatial
derivatives and temporal differences,

∂φ(!x, t)
∂x

=
Im[rx(!x, t) r∗(!x)]

|r(!x)|2 , δφ(!x, t) = arg[r(!x, t + 1) r∗(!x, t)] .
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FIGURE 5. A band-pass filtered 1D signal can be expressed using its amplitude
and phase signals. Note the linearity of phase over large spatial extents.

where Im[r] denotes the imaginary part of r, r∗ is the complex-conjugate
of r, and rx ≡ ∂r/∂x. Compared to phase, r(!x, t) is relatively easy to
differentiate and interpolate [15, 17].

Phase has a number of appealing properties for optical flow estimation.
First, phase is amplitude invariant, and therefore quite stable when signifi-
cant changes in contrast and mean intensity occur between frames. Second,
phase is approximately linear over relatively large spatial extents, and has
very few critical points where the gradient is zero. This is important as it
implies that more gradient constraints may be available, and that the range
of velocities that can be estimated is significantly larger than with image
derivatives. This also improves the accuracy of gradient-based estimates,
reducing the number of iterations required for refinement. Phase has also
been shown to be stable with respect to first-order deformations of the
image from one time to the next [18]. Both the expected spatial extent of
phase linearity and the stability of phase are determined, in part, by filter
bandwidth. The main disadvantages of phase concern the computational
expense of the band-pass filters, and the spatial support of the filters near
occlusion boundaries and fine-scale objects.

Brightness Variations

While contrast normalization, or the use of phase, provides some degree
of invariance with respect to deviations from brightness constancy, more
significant variations in brightness must be modeled explicitly. The models
may be object specific, to model objects under different lighting conditions
[23], poses or configurations [10]. Alternatively, the models may be physics-
based [25], or they may be generic models for smooth mean and contrast
variations [37]. Despite the wide-spread use of brightness constancy these
models may be extremely useful for certain domains.
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8 Probabilistic Formulations

One problem with the above estimators is that, although they provide
useful estimates of optical flow, they do not provide confidence bounds.
Nor do they show how to incorporate any prior information one might
have about motion to further constrain the estimates. As a result, one may
not be able to propagate flow estimates from one time to the next, nor
know how to weight them when combining flow estimates from different
information sources. These issues can be addressed with a probabilistic
formulation.

The cost function (1.16) has a simple probabilistic interpretation. Up to
normalization constants, it corresponds to the log likelihood of a velocity
under the assumption that intensity is conserved up to Gaussian noise.

I(!x, t) = I(!x + !u, t + 1) + η . (1.28)

If we assume that the same velocity !u is shared by all pixels within a
neighbourhood, that η is white Gaussian noise with standard deviation σ,
and uncorrelated at different pixels, we obtain the conditional density

p(I | !u) ∝ e−
1

2σ2 E(!u) , (1.29)

where E(!u) is the LS objective function (1.16). To obtain further insight
into this likelihood function, we again approximate E to second order using
Ẽ as in (1.15). Under this approximation the likelihood function is Gaussian
with mean M−1!b and covariance matrix M−1.

The approximate covariance matrix M−1 defines an uncertainty ellipse
around the estimated optical flow. These uncertainties can be propagated to
subsequent frames, or to other spatial scales [44]. They can also be used di-
rectly in algorithms for 3D reconstruction [29]. (See [55] for a more detailed
discussion of likelihood functions for probabilistic optical flow estimation.)

The probabilistic formulation also allows one to introduce prior informa-
tion. Equation (1.29) can be combined with a prior probability distribution
over local velocities. For example, a very useful prior model is that the lo-
cal flow tends to be slow (e.g. [44]). This is convenient to model with a
zero-mean Gaussian distribution,

p(!u) ∝ e
1

2σ2
p
−‖!u‖2

. (1.30)

Combining this prior probability with the approximate likelihood function
(1.29) gives us a Gaussian posterior probability whose mean (and mode) is

!u = (M + λI)−1!b , (1.31)

where λ is the ratio of the noise and prior variances, λ = σ2/σ2
p. Note

that this Bayesian estimate will actually be biased, and will not correctly
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estimate the speed or direction of patterns where the local uncertainty is
large. This has the benefit that it dampens the estimates to help avoid
divergence in iterative refinement and tracking. Interestingly, many “illu-
sions” in human motion perception can actually be explained with a prior
favoring slow motions and a Bayesian model of inference [56].

Total Least-Squares

When one assumes significant image noise that contaminates spatial as
well as temporal derivatives, then the maximum likelihood motion estimate
given a collection of space-time image gradients is given by total-least-
squares (TLS) [40, 52]. If we view velocity as a unit direction in space-time,
or in 3D homogeneous coordinates !v ≡ α(u1, u2, 1), α ∈ R, and denote the
space-time image gradient !ok ≡ (∇I(!xk, t), It(!xk, t))T , then the gradient
constraint becomes !oT

k !v = 0. The sum or squared constraint errors is then

E(!v) = !v TS!v , where S =
∑

k

!ok !o
T

k . (1.32)

The TLS solution is obtained by minimizing E(!v) in (1.32), subject to the
constraint ||!v|| = 1 to avoid the trivial solution. The solution is given by the
eigenvector corresponding to the minimum eigenvalue of S. This approach
has been called tensor-based, with S called the structure tensor [8, 25, 30],
These methods have produced excellent optical flow results [14].

Different noise models yield different estimators. TLS is a ML estima-
tor when the noise in !ok is additive, isotropic and IID. When the noise is
anisotropic and not identically distributed the formulation becomes much
more complex [39]. More complex noise models, especially those with cor-
related noise in local regions, remain topics for future research.

9 Layered Motion: Mixture Models and EM

One common problem with area-based regression methods concerns the
size of spatial support. With larger support there are more constraints for
parameter estimation, but there is a greater risk that simple parametric
motion models will be unsuitable. This is particularly serious near occlusion
boundaries where multiple motions exist. For example, in the scene depicted
in Fig. 6 the camera was translating, and therefore both the soda can and
the background move with respect to the camera, but with different image
velocities. To demonstrate this, Fig. 6 (right) shows a subset of the gradient
constraints in the small region (marked in white) at the left side of the can.
There are two points with a high density of constraint-line intersections,
corresponding to the velocities of the can and the background.

One way to cope with regions with multiple motions is to explicitly model
the layers in the scene. The layered model is like a cardboard cutout rep-
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u2

u1

FIGURE 6. (left) The depth discontinuity at the left side of the can creates a
motion discontinuity as the camera translates right. (right) Motion constraint
lines in velocity space are shown from pixels within the white square. (After [31])

resentation of a scene in which different cardboard surfaces correspond to
different layers, and they are assumed to be able to move independently
[31, 49]. Layered motion estimation can be formulated using probabilistic
mixture models, with the Expectation-Maximization (EM) algorithm for
parameter estimation [4, 31, 53, 54].

Mixture Models

Let there be a region of pixels {!xk}K
k=1 in which we suspect there are

multiple velocities. The region might contain an occlusion boundary for
example. By way of notation, let !u(!x; !c) denote a parameterized flow field
with parameters !c. Within a single region of the image we will assume that
there are N motions, parameterized by !cn, for 1 ≤ n ≤ N . Furthermore,
according to the our mixture model, the individual motions occur with
probability mn. These mixing probabilities tell us what fraction of the K
pixels within the region we expect to be consistent with (i.e., owned by)
each motion. Of course the mixing probabilities sum to 1.

Let us further assume that we have one gradient constraint per pixel
within the region. Let !ok ≡ (∇I(!xk, t), It(!xk, t))T denote the spatial and
temporal image derivatives at pixel !xk. As above, given the correct motion,
we assume that the gradient constraint is satisfied up to Gaussian noise:

e(!xk; !cn) ≡ ∇I(!xk, t) · !un(!x; !cn) + It(!xk, t) = η ,

where η is a mean-zero Gaussian random variable with a standard deviation
of σv. Thus, the likelihood of observing a constraint !ok given the nth flow
model, is simply pn(!ok |!cn) = G(e(!xk; !cn); σv) where G(e; σ) denotes a
mean-zero Gaussian with standard deviation σ evaluated at e.

Finally, given the mixing probabilities and likelihood functions, the mix-
ture model expresses the probability of a gradient measurement !ok, as

p(!ok | !m, !c1, ..., !cN ) =
N∑

n=1

mn pn(!ok |!cn) .
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The probability of observing !ok is a weighted sum of the probabilities of
observing !ok from each of the individual motions. The joint likelihood of
a collection of K independent observations {!ok}K

k=1 is the product of the
individual probabilities:

L(!m, !c1, ..., !cN ) =
K∏

k=1

p(!ok | !m, !c1, ..., !cN ) . (1.33)

Our goal is to find the mixture model parameters (the mixture pro-
portions and the motion model parameters) that maximize the likelihood
(1.33). Alternatively, it is often convenient to maximize the log likelihood:

log L(!m, !c1, ..., !cN ) =
K∑

k=1

log

(
N∑

n=1

mn pn(!ok |!cn)

)
.

EM and Ownerships

The EM algorithm is a general technique for maximum likelihood or MAP
parameter estimation [12]. The approach is often explained in terms of a
parametric model, some observed data, and some unobserved data. Our
observed data are the gradient constraints, the model parameters are the
motion parameters and mixing probabilities, and the unobserved data are
the assignments of gradient measurements to motion models. Note that if
we knew which measurements were associated with which motion, then we
could solve for each motion independently from their respective constraints.

Roughly speaking, the EM algorithm is an iterative algorithm that it-
erates two steps that compute 1) the expected values of the unobserved
data given the more recent estimate of the model parameters (the E Step),
and then 2) the ML/MAP estimate for the model parameters given the
observed data, and the expected values for the unobserved data.

A key quantity in this algorithm is called the ownership probability. An
ownership probability, denoted qn(!xk), is the probability that the nth mo-
tion model is responsible for the constraint (i.e., generated the observed
data) at pixel !xk. This is an important quantity as it effectively segments
the region, telling us which pixels belong to which motions. Using Bayes’
rule, the probability that !ok is owned by model Mn can be expressed as

p(Mn |!ok) =
p(!ok |Mn) p(Mn)

p(!ok)
.

In terms of the mixture model notation here, this becomes

qn(!xk) =
mn pn(!ok |!cn)

∑N
n=1 mn pn(!ok | !cn)

. (1.34)
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That is, the likelihood of the observation given the nth model is simply
pn(!ok |!cn), and the probability of the nth model is just mn. The denomina-
tor is the marginalization of the joint distribution p(!ok, !cn) over the space
of models. And of course it is easy to show that

∑
n qn(!xk) = 1. In the

context of the EM algorithm these ownership probabilities can be viewed
as soft assignments of data to models. Once these assignments are made we
can perform a weighted regression to find the motion parameters of each
model, using the same tools developed above for a single motion.

Given ownership probabilities, the updated mixing probability for model
Mn is just the fraction of the total available ownership probability as-
signed to the nth model, mn = 1

K

∑K
k=1 qn(!xk). The estimation of the

motion model parameters is similarly straightforward. That is, given the
ownership probabilities, we estimate the motion parameters for each model
independently as a weighted area-based regression problem. For the case
of a translational motion model, where the motion parameters are just
!cn ≡ !un, this is just the minimization of the weighted least-squares error

E(!un) =
K∑

k=1

qn(!xk) [∇I(!xk, t) · !un + It(!xk, t) ]2 . (1.35)

Because the mixture model likelihood function (1.33) here will have mul-
tiple local minima, a starting point for the EM iterations is required. That
is, to begin the iterative procedure one needs an initial guess of either the
ownership probabilities, or of the model parameters (motion and mixture
parameters). Often one starts by choosing random values for the initial
ownership probabilities and then begin with the estimation of the mixing
probabilities and the motion model parameters.

Outliers

As above, we must expect outliers among the gradient constraint obser-
vations. Gradient measurements near an occlusion boundary, for example,
may not be consistent with either of the two motions. As a result, it is
often extremely useful to introduce an outlier model, M0, in addition to
the motion models; the likelihood for this outlier layer may be modeled
with a uniform density [31]. Figure 7 shows results for the region near the
can with two motion models and an outlier model like that described here.
For the region shown in Fig. 7, the measurement constraints owned by the
outlier model are shown in the bottom-right plot.

10 Conclusions

This chapter surveys several approaches to optical flow estimation. It is
therefore natural to ask what works best? While historically some tech-
niques have been shown to outperform others [6], in recent years several
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u2

u1

Image Region Convergent Behaviour

Ownership Probabilities in Image Domain, and in Velocity Space (2 Motions + Outliers)

FIGURE 7. The top figures show a region at a depth discontinuity, and some of
the constraint lines from pixels within that region. The black crosses in the upper
right show a sequence of estimates at EM iterations. White crosses depict the final
the estimates. The bottom figures showing ownership probabilities. The bottom
left shows ownership probabilities at each pixel (based on the motion constraint
at that pixel). The next two plots shown the velocity constraints where intensity
depicts ownership (black denotes high ownership probability). The bottom right
plot shows constraint lines owned by the outlier model. (After [31])

different approaches have produced excellent results on benchmark data
sets, provided one pays attention to detail. Some of the important details
include (1) multiple scales to help avoid local minima, (2) iterative warping
and estimate refinement, and (3) robust cost functions to handle outliers.
Accordingly, many techniques work well up to the limits of the key assump-
tions, namely, brightness constancy and smoothness.

Future research is needed to move beyond brightness constancy and
smoothness. Detecting and tracking occlusion boundaries should greatly
improve optical flow estimation. Similarly, prior knowledge concerning the
expected form of brightness variations (e.g., given knowledge of scene ge-
ometry, lighting, or reflectance) can dramatically improve optical flow esti-
mation. Brightness constancy is especially problematic over long image se-
quences where one must expect the appearance of image patches to change
significantly. One promising area for future research is the joint estimation
appearance and motion, with suitable dynamics for both quantities.
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