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Well-fit by a generalized Gaussian:

P(z) x exp —|z/s|P

[Mallat 89; Simoncelli&Adelson 96; Moulin&Liu 99; ...]




II. BLS for non-Gaussian prior

® Assume marginal distribution Mallat 89]:

P(z) x exp —|z/s|P

® Then Bayes estimator is generally nonlinear:

p=05

[Simoncelli & Adelson, ‘96]

MAP shrinkage

[Simoncelli 99]




State Space
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[Field, “what is the goal of sensory coding”, 1994]

“Independent” Components Analysis
(ICA)

For Linearly Transformed Factorial (LTF) sources:
guaranteed independence

(with some minor caveats)

[Comon 94; Cardoso 96; Bell/Sejnowski 97; ...]




Independent Component Analysis

Solve for a set of axes (not necessarily orthogonal)
along which the data are least Gaussian.
Examples:

e FOBI - simplest algorithm (Cardoso, 1989)

e Fast ICA - fixed-point algorithm with fast
convergence (Hyvarinen, 1997)

Closely related: Projection pursuit. Seek projections of data
that are non-Gaussian (Friedman & Tukey, 1974).
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ABSTRACT

This communication presents a simple algebraic method
for the extraction of independent components in
multidimensional data. Since statistical independence is a
much stronger property than uncorrelation, it is possible, using
higher-order moments, to identify source signatures in array
data without any a-priori model for propagation or reception,
that is, without directional vector parametrization, provided
that the emitting sources be independent with different
probability distributions. We propose such a “blind"
identification procedure. Source signatures are directly
identified as covariance eigenvectors after data have been
orthonormalized and non linearily weighted. Potential

in Array Processing has been done within this framework
[6,7.8]. However, actual physical settings are often such that
source signatures (directional vectors) depart from the
assumed model. As expected, model-based methods are very
sensitive to such discrepancies. Multipath, unknown antenna
deformation are among the common causes of severe
performance degradation.

It is the purpose of this communication to present a simple
algebraic method allowing source identification when NO a
priori information about the propagation and the reception is
available. The key requirement is that the observed data
consist in a linear superimposition of statistically independent
components. It may seem strange that such a blind

applications to Array Pre ing are ill d by a simulati
consisting in a simultaneous range-bearing estimation with a
passive array.

INTRODUCTION

For a lot of reasons (of various kinds), the most common
Signal Processing methods deal with second-order statistics,
expressed in terms of covariance matrices. It is well known
that Gaussian stochastic processes are exhaustively described
by their second-order statistics. Nonetheless, when the
Gaussian assumption is not valid, some information is lost by
retaining only second-order statistics.

dentification procedure be possible, but it should be recalled

that statistical independence between sources is a much
stronger requirement than mere uncorrelation. The question of
blind separation of multidimensional components by taking
advantage of statistical independence has already been
adressed in recent litterature. A non-linear adaptive procedure
has been proposed in [9,10] while a direct solution using
explicitely cumulants was given for the case of two sources
and two sensors in [11]. In contrast, we propose here a simple
algebraic method to separate an arbitrary number of sources,
given measurements from a larger number of sensors.

THE SOURCE SEPARATION PROBLEM




ICA on image blocks

[Bell/Sejnowski *97]
[example obtained with FastICA, Hyvarinen]

Alt: Sparse representation

E(&) = ||Z — Be||* + A\S, () [Olshausen & Field *95]
Sp(@) = lexl”

® [f p >=1, the objective function is convex
(and thus can solve with descent algorithms)

® The p=1 case is widely used [LAssO - Tibshirani, 1996]
[Basis Pursuit - Chen, Donoho, Sanders, 1998]

® Finding efficient solutions, and/or solutions

for p<1, has become a major research area

[e.g., Figueiredo&Nowak 01; Daubechies etal 03; Starck etal 03; Bect etal 04;
Elad etal 06; Chartrand 08]




Sparse basis for images
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V1 receptive fields




Kurtosis vs. bandwidth
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Octave-bandwidth representations
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Model II (LTF)
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II. BLS for non-Gaussian prior

® Assume marginal distribution Mallat ‘891:

P(z) x exp —|z/s|P

® Then Bayes estimator is generally nonlinear:

=20 p=10 p=05

[Simoncelli & Adelson, ‘96]




MAP shrinkage

p=2.0

[Simoncelli 99]

noisy I-linear
(4.8) (10.61)
II-marginal

(11.98)




