Image Statistics
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Evolution of image models

I. (1950’s): Fourier + Gaussian
II. (mid 80’s - late 90’s): Wavelets + kurtotic marginals

III. (mid 90’s - mid 00’s): Wavelets + local context
e local amplitude (contrast)

e Jocal orientation

IV. (recent): Hierarchical models

General methodology

il

observe “interesting”
joint statistics

transform to
optimal representation




General methodology

AT

observe “interesting”
joint statistics

transform to
optimal representation

General methodology

il

observe “interesting”
joint statistics

transform to
optimal representation

& T

“Onion peeling”
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Translation invariance

Assuming translation invariance,
=> covariance matrix is Toeplitz (convolutional)
=> eigenvectors are sinusoids (complex exp.)

=> can diagonalize (decorrelate) with F.T.

The variances of the frequency components (known as the
“Power Spectrum”) capture the full covariance structure!
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Spectral power
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Maximum entropy (maxEnt)

The density with maximal entropy satisfying

E(f(z))=c

18 of the form
pMmE(z) ox exp (A f(x))

where A depends on ¢

Examples: f(z) =z f(z)=|z|

Model I (Fourier/Gaussian)
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Common statistical estimators:

e maximum likelihood (ML)

IML = arg mg?xp(y|x)
* maximum a posterior (MAP)

TmAp = argmax p(z|y) = argmax p(y|z)p(z)
T T

e minimum mean squares error (MMSE)
puise = argmin [ flz | plaly) da
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Bayesian estimation

TBayes(y) = argmin / L(z,2") p(x|y) dv

X arg miln/ L(z,z") p(y|z) p(x) dz

Given observation y, choose estimate that
minimizes the average loss

Denoising: classical

If signal is Gaussian, MAP/MMSE estimate is linear:

7o)

E@7) = Co(Ce + Cu) ™7
" A/wP =

X(w) = A/w?{uji— = Y (w) .

noisy (y)
[proof on board]




Denoising: classical

If signal is Gaussian, MAP/MMSE estimate is linear:

|
E(z]y) = Co(Co + Cw)_l?j B
. A/wP g
Xw) = /wz/, “jr - Y(@) S| .

noisy (y)
[proof on board]

Bottom line: Suppress fine scales, retain coarse scales
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Fourier/Gaussian image model

+ Simple/tractable/well-understood

+ Pseudo-biological (Hebbian) whitening
algorithms

- Fourier basis is global
- Whitening transform is not unique

- Important dependencies/structures remain




