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Representation and Analysis
of Visual Images

Eero Simoncelli

01 - Light, reflectance, imaging, color

From M. Landy and J. A. Movshon (eds), Computational Models of Visual Processing (9p. 3-20). Cambridge, MA: MIT Press (1991).

The Plenoptic Function and What are the elements of early vision? This question
might be taken to mean, What are the fundamental atoms

the Elements Of Eal'ly ViSion of vision?—and might be variously answered in terms of

such candidate structures as edges, peaks, corners, and so

Edward H. Adelson and on. In this chapter we adopt a rather different point of
view and ask the question, What are the fundamental
JamesR. Bergen substances of vision? This distinction is important because

we wish to focus on the first steps in extraction of visual
information. At this level it is premature to talk about
discrete objects, even such simple ones as edges and
comers.




Every body in light and shade fills the surrounding air with
infinite images of itself; and these, by infinite pyramids
diffused in the air, represent this body throughout space
and on every side. Each pyramid that is composed of a long
assemblage of rays includes within itself an infinite number
of pyramids and each has the same power as all, and all as
each.

— The Notebooks of Leonardo da Vinci

(late 1400’s)

[Newton, 1665]
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4.1 NEWTON'S SUMMARY DRAWING of his experiments with light. Using a
point source of light and a prism, Newton separated sunlight into its fundamental
components. By reconverging the rays, he also showed that the decomposition is
reversible,

[from Wandell: Foundations of Vision, 1995]
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The “Plenoptic” function
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(everything there is to see)

[Adelson & Bergen 91]

Imaging: capture of the plenoptic function on a 2D sensor surface
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First production camera (“Daguerrotype”), 1839

14-bit CMOS sensor

“Bayer” pattern

I(z,y,\,t, V3, V,, V) ?  Integrated over viewpoint and time,
sampled in (x,y) and wavelength




Perceptual color matching experiment
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test light 3 primary lights
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[Young, Helmholtz, Grassman, etc, 1800°s; slide c/o D. Brainard]

Perceptual color matching experiment

Arbitrary Mixture of
test light 3 primary lights
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[Young, Helmholtz, Grassman, etc, 1800°s; slide c/o D. Brainard]
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Grassmann’s
Laws, 1853

1) Any light can be matched with a mixture of 3 primaries
2) Sum of 2 lights results in a sum of the corr. mixtures
3) Rescaling the light results in a rescaled mixture

= Matching can be described by an Nx3 linear system!
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Theory: the visual system projects the wavelength
spectra of light onto a 3-dimensional space

* Accurately predicts perceptual limitations
» Basis for color technology standards (CIE, 1931)
» Underlying mechanism (cones) verified 100+ years later

A/nm

CIE “standard observer” color matching functions (1931)
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CIE “standard observer” color matching functions (1931)
used to define the standard “XYZ” color coordinate system

CIE-LUYV color space (1976)

One (of many) attempts to create a perceptually-uniform color
space.
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ICC profiles

» Standard for specifying color coordinate
system for displays and sensors (often
embedded in digital photo files)

 3x3 matrix [relative to XYZ coords]
* point nonlinearities [power, or lookup table]

Ciliary body

Choroid

[figure: John Moran Eye Center, U. Utah]




Cone Sensitivity
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[Baylor, Nunn & Schnapf, 1987] [figure: David Brainard]

S e min

Cone photoreceptor
mosaic near fovea

- Roorda and Williams (1999)

I(z,y,A\,t, V3, V,, V,)? Integrated over viewpoint and time,
sampled in (x,y) and wavelength!




Light sources (illuminants)
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Wavelength (nm) (right) a tungsten bulb.

[Wandell: Foundations of Vision, 1995]




Reflectance

source

Reflectance functions

[Forsyth, 2002]
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1) Graphics is easy, vision is hard/impossible :)

2) In fact, humans are quite good (but not perfect) at separating

illumination from reflectance.

[Wandell: Foundations of Vision, 1995]

[Adelson, 1995]

Even in grayscale, humans are pretty good at estimating
reflectance, and local intensity changes, but are very poor at

estimating absolute intensities




What’s color perception for?

Perhaps humans try to estimate reflectance, regardless of
lighting?
[c/o David Brainard]

Change of lighting, or change of paint?

[photo: Brainard 2003]
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[Brainard 2003]

Why don’t colors look right in photographs? Sources
of failure:

e viewing conditions

* multiple light sources

* sensor not matched to cone absorption space

Auto white balance? Sources of information:

» distribution of pixel colors in scene

* brightest point in scene (specularities)

* prior assumptions about illuminants, reflectances
* inter-reflections
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red rose, white light :

J
red light, white rose : / ci(A) r(A) Z an w(A)"
A

: sensitivity of ith cone type

white (either reflectance or spectral power rescaled to [0, 1]

: red(...)

: proportion of light with n bounces




Inter-reflections...

—e— red rose, white light
—e— white rose red light
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Bayesian color constancy
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The problem af color constancy may be solved if we can recover the physical properties of illuminants and

ris from We comlder this problem within the framework of Bayesian decision
theory. First, we model the relation among ill s, and ph Second, we
construct prior distributions that describe the probability that particular illumi; and surfaces exist in the

world. Given a set of photosensor responses, we can then use Bayess rule to compute the posterior distribu-
tion for the illuminants and the surfaces in lhe scene. There are two widely used methods for obtaining a
single best esti from a These are maximum a posteriori (MAP) and minimum

d (MMSE) esti i We argue that neither is app: for p bl We
descnbe a new estimator, which we call the maximum local mass (MLM) eaumate (hat mmgrabea local prob-
ability density. The new method uses an optimality criterion that is appropriate for perception tasks: It
finds the most probable approximately correct answer. For the case of low observation noise, we provide an

efﬁciem appmximr.ion. We develop the MLM esti for the col problem in which flat matte

i illumi i ions we shaw that the MLM method performs better than the
MAP eauma!or and better than & number of dard We note conditions under
which even the optimal di : when the spectral properties of the surfaces in the

scene are biased. © 1997 ()pucal Society of Amencn 80740-3232(97)01607-4]




Reflectance Prior

Surface Basis Functions
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I1luminant Prior

EQ)=w[EA)+uE,(A)+vE®})]

Daylight measurements
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Algorithm Performance
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Bayes Predictions: Broad Prior

0.52

Inferred Achromatic Surface ° @ lluminant
025 0.50- ° @ Achromatic
E . v
0.20 > ) Bayes Prediction
o
s = 0.48
3 -
g oas g o
g So o
E 010 [ £ 0.46+
2 s
>
005 Rasassisn o 0.4
O
0.00
400.00 500.00 600.00 700.00 0.42
Wavelength (nm)
0.40

0.14 0.16 0.18 0.20 0.22 0.24 0.26
CIE u' chromaticity

[Brainard & Freeman]




