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The Plenoptic Function and
the Elements of Early Vision

Edward H. Adelson and
James R. Bergen

What are the elements of early vision? This question   
might be taken to mean, What are the fundamental atoms   
of vision?—and might be variously answered in terms of
such candidate structures as edges, peaks, corners, and so    
on. In this chapter we adopt a rather different point of    
view and ask the question, What are the fundamental
substances of vision? This distinction is important because
we wish to focus on the first steps in extraction of visual
information. At this level it is premature to talk about
discrete objects, even such simple ones as edges and   
corners.

There is general agreement that early vision involves
measurements of a number of basic image properties in-
cluding orientation, color, motion, and so on. Figure l.l
shows a caricature (in the style of Neisser, 1976), of the  
sort of architecture that has become quite popular as a   
model for both human and machine vision. The first stage
of processing involves a set of parallel pathways, each
devoted to one particular-visual property. We propose     
that the measurements of these basic properties be con-
sidered as the elements of early vision. We think of early
vision as measuring the amounts of various kinds of vi-
sual "substances" present in the image (e.g., redness or
rightward motion energy). In other words, we are inter-  
ested in how early vision measures “stuff” rather than in  
how it labels “things.”

What, then, are these elementary visual substances?
Various lists have been compiled using a mixture of intui-
tion and experiment. Electrophysiologists have described
neurons in striate cortex that are selectively sensitive to
certain visual properties; for reviews, see Hubel (1988)    
and DeValois and DeValois (1988). Psychophysicists have
inferred the existence of channels that are tuned for cer-   
tain visual properties; for reviews, see Graham (1989),  
Olzak and Thomas (1986), Pokorny and Smith (1986),    
and Watson (1986). Researchers in perception have found
aspects of visual stimuli that are processed pre-attentive-   
ly  (Beck,  1966;  Bergen & Julesz, 1983;  Julesz & Bergen,
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A generic diagram for visual processing. In this approach, early
vision consists of a set of parallel pathways, each analyzing
some particular aspect of the visual stimulus.

1983; Treisman, 1986; Treisman & Gelade, 1980). And in
computational vision, investigators have found that cer-
tain low-level measurements are useful for accomplishing
vision tasks; for examples, see Horn (1986), Levine (1985),
and Marr  (1982).

These various approaches have converged on a set of
superficially similar lists, but there is little sense of struc-
ture. Why do the lists contain certain elements and not
others? Or, indeed, are there other unknown visual ele-
ments waiting to be discovered?

Our interest here is to derive the visual elements in a
systematic way and to show how they are related to the
structure of visual information in the world. We will show
that all the basic visual measurements can be considered    
to characterize local change along one or more dimen-   
sions of a single function that describes the structure of    
the information in the light impinging on an observer.
Since this function describes everything that can be seen,
we call  it the plenoptic function (from plenus, complete or
full,   and optic). Once we have defined this function, the
measurement of various underlying visual properties such
as motion, color, and orientation fall out of the analysis
automatically.

Our approach generates a list of the possible visual
elements, which we think of as somewhat analogous to
Mendeleev's periodic table in the sense that it displays
systematically   all  the  elemental  substances  upon  which

vision can be based. This table catalogues the basic visual
substances and clarifies their relationships.

This cataloging process makes no assumptions about  
the statistics of the world and no assumptions about the
needs of the observing organism. The periodic table lists
every sim-ple visual measurement that an observer could
potentially make, given the structure of the ambient light
expressed in the plenoptic function. A given organism    
will probably not measure all of the elements, and of     
those that it measures it will devote more resources to    
some than to others.

In what follows we will make reference to some of the
relevant psychophysical and physiological literature on
early vision. Our topic is quite broad, however, and if we
were to cite all of the relevant sources we would end up
listing hundreds of papers. Therefore our references will    
be sparse, and readers are encouraged to consult the var-   
ious books and review articles cited above.

The Plenoptic Function

We begin by asking what can potentially be seen. What
information about the world is contained in the light   
filling a region of space? Space is filled with a dense array
of light rays of various intensities. The set of rays passing
through any point in space is mathematically termed a
pencil. Leonardo da Vinci refers to this set of rays as a
“radiant pyramid”:

The body of the air is full of an infinite number of radiant
pyramids caused by the objects located in it. These pyramids
intersect and interweave  without interfering with each  other
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during the independent passage throughout the air in which
they are infused. (Kemp, 1969)

If a pinhole camera happens to be positioned at a given
point, it will select the pencil of rays at that point and will
reveal that they form an image. An observer's eye acts in the
same way (neglecting the finite aperture of the pupil       
for now): It reveals the structure of the pencil of light at   
the pupil's location. The fact that image information fills
space is expressed by Leonardo in his notebooks; he in-
vites the reader to perform a thought experiment:

I say that if the front of a building—or any open piazza or
field—which is illuminated by the sun has a dwelling oppo-
site to it, and if, in the front which does not face that sun,
you make a small round hole, all the illuminated objects
will project their images through that hole and be visible
inside the dwelling on the opposite wall which may be made
white; and there, in fact, they will be upside down, and if
you make similar openings in several places in the same
wall you will have the same result from each. Hence the
images of the illuminated objects are all everywhere on this
wall and all in each minutest part of it. (Richter, 1970)

J. J. Gibson referred to a similar notion when he spoke
of the structure of ambient light (Gibson, 1966) "The
complete set of all convergence points . . . constitutes the
permanent possibilities of vision, that is, the set of all
points where a mobile individual might be."

Let us follow this line of thought a bit further and
consider the parameters necessary to describe this lumi-
nous environment. Consider, first, a black and white pho-
tograph taken by a pinhole camera. It tells us the intensity
of light seen from a single viewpoint, at a single time,
averaged over the wavelengths of the visible spectrum.  
That is to say, it records the intensity distribution P with-
in the pencil of light rays passing through the lens. This
distribution may be parameterized by the spherical co-
ordinates, P(θ,φ), or by the Cartesian coordinates of a
picture plane, P(x,y) (figure 1.2; see discussion below). A
color photograph adds some infor-mation about how the
intensity vanes with wavelength λ , thus: P(θ,φ,λ). A color
movie further extends the information to include the time
dimension t: P(θ,φ,λ ,t). A color holographic movie, final-
ly, indicates the observable light intensity at every view-
ing position, Vx, Vy, and Vz: P(θ,φ,λ ,t,Vx,Vy,Vz). A true
holographic movie would allow reconstruction of every
possible  view,  at every moment,  from every  position,  at
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The image information available from a single viewing
position is defined by the pencil of light rays passing through
the pupil. The rays may be parameterized in angular coordinates
or in Cartesian coordinates. The Cartesian approach is
commonly used in machine vision and computer graphics, but
the angular approach can more easily represent the full sphere of
optical information impinging on a point in space.

every wavelength, within the bounds of the space-time-
wavelength region under consideration. The plenoptic
functions is equivalent to this complete holographic rep-
resentation of the visual world.

Such a complete representation would contain, impli-
citly, a description of every possible photograph that    
could be taken of a particular space-time chunk of the  
world (neglecting the polarization and instantaneous phase  
of the incoming light). Note that the plenoptic function  
need not contain any parameters specifying the three
viewing angles describing the direction of gaze and ori-
entation of the eye, since rotating the eye without dis-
placing it does not affect the distribution of light in the
bundle of rays impinging on the pupil, but merely changes
the relative positions at which they happen to strike the
retina. The fact that some rays are behind the eye and are
therefore blocked is irrelevant to the present discussion,
which is intended to characterize the optical information
potentially available at each point in space, as if the hy-
pothetical eye had a 360° field of view. Figure 1.3 shows   
a pair of samples from this function, with the eye placed     
at different positions in a natural scene.

To measure the plenoptic function one can imagine
placing an idealized eye at every possible (Vx,Vy,Vz) loca-
tion and recording the intensity of the light rays passing
through the center of the pupil at every possible angle
(θ,φ), for every wavelength, λ , at every time t. It is sim-
plest to have the eye always look in the same direction, so
that the angles (θ,φ) are always computed with respect to   
an optic axis that is parallel to the Vz axis. The resulting
function takes the form:

P  = P(θ,φ,λ ,t,Vx,Vy,Vz).                                         (1)
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The plenoptic function describes the information available to
an observer at any point in space and time. Shown here are two
schematic eyes-which one should consider to have punctate
pupils-gathering pencils of light rays. A real observer cannot
see the light rays coming from behind, but the plenoptic
function does include these rays.

Alternatively, one may choose to parameterize the rays
entering the eye in terms of (x,y) coordinates, where x       
and y are the spatial coordinates of an imaginary picture
plane erected at a unit distance from the pupil. This is the
approach commonly adopted in computer graphics and
machine vision. The parameterization then becomes:

P  = P(x,y,λ ,t,Vx,Vy,Vz).                                            (2)

The spherical parameterization more easily suggests    
the fact that the light impinges on a given point in space
from all directions and that no direction has special status.
However, the Cartesian parameterization is more familiar,
and we will use it in the discussion that follows.

The plenoptic function is an idealized concept, and one
does not expect to completely specify it for a natural    
scene. Obviously one cannot simultaneously look at a
scene from every possible point of view, for every wave-
length, at every moment of time. But, by describing the
plenoptic function, one can examine the structure of the
information that is potentially available to an observer by
visual means.

The significance of the plenoptic function is this:     
The world is made of three-dimensional objects, but these
objects do not communicate their properties directly to     
an observer. Rather, the objects fill the space around them
with the  pattern  of light rays  that  constitutes  the plenop-
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 Some edgelike structures that might be found along particular
planes within the plenoptic function (note the venous axes, as
labeled on each figure): (a) a vertical edge; (b) a horizontal edge,
(c) a stationary edge; (d) a full-field brightening; (e) a tilting
edge; (f) a moving edge; (g) a color sweep; (h) an edge with
horizontal binocular parallax.

tic function, and the observer  takes samples from this
function. The plenoptic function serves as the sole com-
munication link between physical objects and their corre-
sponding retinal images. It is the intermediary between    
the world and the eye.

Plenoptic Structures

It may initially appear that the plenoptic function is ex-
tremely complicated. Since it has seven dimensions, it is
difficult to visualize. However, much of the information
that the plenoptic function contains describes familiar
structures of the visual world. One can develop a sense     
of the structure of the plenoptic function as a whole by
considering some planar slices.

Figure l.4 shows a variety of slices along various planes
passing through the x-axis. The figure illustrates a number
of edgelike structures that might occur within a given
plenoptic function. Part A, in the (x,y) plane, shows a
vertical edge. Part B, also in the (x,y) plane, shows a
horizontal edge. Part C, in the (x,t) plane, shows a sta-
tionary edge. Part D, also in the (x,t) plane, shows a
temporal edge a sudden increase in intensity. Part E, in    
the (x,y) plane, shows a tilted edge. Part F, in the (x, t)
plane, shows a moving edge. Part G, in the (x,λ) plane,
shows a patch that changes color across space. Part H, in  
the  (x,Vx)  plane,  shows  an edge  that projects  a changing
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A hypothetical scene that produces a variety of simple
plenoptic structures. See figure 1.6.

retinal image as the eye is translated in the Vx direction—
that is, an edge with horizontal parallax.

Figure 1.5 shows a concrete example of a particular
simple scene. The eye views a red bar at a certain dis-  
tance, moving against a grey background at a larger dis-
tance. The figure also shows the imaginary picture plane   
at a unit distance from the eye.

Figure 1.6 shows a variety of slices through the plen-
optic function for this scene. All the slices shown pass
through the x-axis; thus all of the parameters other than    
the two diagrammed in the slice are taken to be zero          
if not otherwise specified. The only exception is wave-
length, λ , which we will let default to 550 nm, which is
the approximate center of the human visible spectrum.

Part B of figure 1.6 shows an (x,y) slice, which is
simply the view at 550 nm, at the moment t = 0, given the
eye is in position (0, 0, 0). It consists of a darker bar against
a lighter background. Part C shows an (x,t) slice, which can
be thought of as the temporal record of horizontal raster
lines appearing at height y = 0; wavelength is 550 nm,   
and the eye is at (0, 0, 0). This image consists of a spatio-
temporally "tilted" bar, the tilt corresponding to the
changing position over time. Part D shows an (x,λ) slice,
which one might call a "spatiospectral" or "spatiochro-
matic" slice, taken at height y = 0, time t = 0, and view-   
ing position (0, 0, 0). The fact that the bar is red leads to  
the variation in intensity along the wavelength dimension
in the middle region of the slice: Long wavelengths have
high  intensities  while  short wavelengths  have  low inten-

sities. Part E shows an (x, Vx) slice, representing the   
series of views obtained as the eye position shifts from   
left to right. Part F shows a similar slice for (x, Vy), as the
eye position shifts up and down. Finally, part G shows     
an (x, Vz) slice, representing the changing image as the     
eye moves backward or forward.

It is clear from examining these slices that similar struc-
tures are to be found along various planes in the plenoptic
function. In the case of the example shown, extended
edgelike features appear in all planes, with different tilts and
curvatures. Each plane offers useful information about
different aspects of the stimulus. The (x,y) plane contains
information about instantaneous form; the (x,λ) plane
contains information about chromatic variation in the x
direction; the (x, Yx) plane contains information about
horizontal parallax information that could be gathered   
either through head motion or through stereo vision; the    
(x,Vz) plane contains information about the looming that
occurs when the eye advances along the z-axis, and so on.
All of the information in the plenoptic function is poten-
tially  useful.

The Plenoptic Function and Elemental
Measurements in Early Vision

The Task of Early Vision

We suggest that the first problem of early vision is to
extract as much information as possible about the struc-
ture of the plenoptic function. The first task of any visual
system is to measure the state of the luminous environ-
ment. As pointed out by Koenderink and van Doorn   
(1987), only by representing this information internally    
can all potential visual information be made available for
subsequent analysis. By definition, the state of the lumi-
nous environ-ment is described by the plenoptic function.
Clearly, only a small portion of the potential information
present in this environment can be extracted.

As noted above, much of the structure of the plenoptic
function describing simple stimulus configurations may  
take the form of oriented patterns at various angles within
plenoptic space. An oriented pattern is one that changes    
in one direction more rapidly than in another direction;
characterizing this anisotropy is a useful first step in ana-
lyzing the local structure of a signal. We therefore offer    
the following propositions:
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The plenoptic structures found along various planes for the
scene illustrated in figure 1.5. Each picture represents a slice
through the plenoptic function, where all the unspecified
parameters take on their default values.

• Proposition 1. The primary task of early vision is to
deliver a small set of useful measurements about each
observable location in the plenoptic function.

• Proposition 2. The elemental operations of early vision
involve the measurement of local change along various
directions within the plenoptic function.

These two propositions establish a useful "null hy-
pothesis" regarding the existence of early visual mecha-
nisms. If some local descriptor of the plenoptic function
exists, then we may (in general) expect a visual system to
compute this descriptor. If the system does not do this,    
we have reason to ask why this particular aspect of visual
information is not being extracted. By comparing what is
extracted by a visual system (as specified by the basic
measurements  that  it makes)  with  what might  be extract-

ed (specified by the structure of the plenoptic func-       
tion), we can learn something about the nature of the
system's visual process. What exactly are the fundamental
measurements  implied  by  these  propositions?

Extraction of Information from the Plenoptic
Function

Efficient extraction of information from the plenoptic
function requires that each sample contain as much in-
formation as possible about the most important aspects    
of the function. An additional desideratum is that the
information represented by each sample be simply inter-
pretable without reference to many other samples. Rep-
resentations motivated by these requirements can take    
many forms. Since local change defined in arithmetic    
terms is equivalent to a derivative, a reasonable choice for
conceptual purposes consists of the low order directional
derivatives of the plenoptic function at the sample points.
This set of measures fits well with the goal of capturing    
the  simple structure of  the plenoptic function  since it con-
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sists of oriented linear filters in the plenoptic hyper-  
planes. In this sense, these derivatives may be thought of   
as "feature detectors," corresponding to the structures    
shown in figure 1.6 However, since these are linear filters
they are not really detecting features; rather they are mea-
suring the amount of a particular type of local structure.

Another way to think about this type of representation
is as a truncated Taylor series expansion around each   
sample point. Koenderink and van Doorn (1987) have
developed a theory of early representation based on local jets
which pursues such an interpretation. If we compute        
all of the derivatives at each point, each set of derivatives
contains the information present in all of the samples
(assuming that the function is smooth). By computing    
only the low order derivatives, we construct a synopsis of
the local structure of the function at each point. This
explicit representation of local structure allows analysis of
salient local characteristics without repeated examination   
of multiple samples. The appropriateness of this repre-
sentation depends on the plenoptic function having the    
kind of locally correlated structure described in the pre-  
vious section. It would not make sense if the plenoptic
function looked like uncorrelated random noise or were
otherwise chaotic in structure.

Mathematically, a derivative is taken at a point, but for
characterizing a function within a neighborhood it is more
useful to work with the local average derivative of the
function, or the derivative of the local average of the
function, which is the same thing. The equivalence of  
these alternate processes follows trivially from the com-
mutativity of linear systems, but it is worth emphasizing,
as illustrated in figure 1.7. Let the original function f(s),
where s is the variable of interest, have the form of a
trapezoid for purposes of illustration. The figure shows  
three paths to the same result. In one path, a local average
is taken by convolving f(s) with a smoothing function,
g(s); then this smoothed function is differentiated to pro-
duce the final result, f(s) V g'(s). In a second path, the de-
rivative is taken, and then this function is smoothed by  
local averaging. In the third path, shown on the diagonal,
the two steps are combined into one: A single linear filter
(the derivative of the smoothing function) is used to pro-
duce the final output.

Along with the three paths are three verbal descrip-
tions: taking a derivative of an averaged signal; taking an
average  of a  differentiated signal;  and  convolving  the sig-
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Fig. 7.7
The local average of a derivative is the same as the derivative of
a local average.

nal with a single filter. The result is the same in each   
case.

We can use the standard notation of vector calculus      
to describe the first few directional derivatives of the
plenoptic function. By convention, we assume that any
dimensions not mentioned are averaged over. In other  
words, Dx denotes a filter that averages locally (say, with    
a Gaussian weighting function) in all directions, and then
differentiates in the x direction. Similarly, Dx, means
differentiation in x and in y (the sequence is irrelevant).   
For second derivatives we write Dxx (for example) or Dλ.λ..
For derivatives in directions other than along coordinate
axes, such as “up and to the right,” we can write Dx+y (a
diagonal derivative) or Dx+t (a horizontally moving one).
These latter are in fact equal to Dx + Dy and Dx + Dt,
respectively, but it is useful to use the other notation
sometimes to emphasize the fact that these are no more
complicated than Dx or Dy, just taken in a different
direction.

Examples of these operators are shown in figure 1.8. If
we designate the axes shown as u and u, the operator in the
upper left corner is Dv. To the right of that are Dvv and   
Duv. The lower row consists of Du+v, D(u+v)(u+v), Duvv and
Duuvv.

The only slightly more complicated case that we need   
to consider is the Laplacian operator, shown in the upper
right corner. This is not a directional derivative per se,      
but  it is  the  sum of  second  directional  derivatives:  Luv =
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The low order derivative operators lead to a small number to
two-dimensional receptive field types.
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The same receptive field structures produce different visual
measurements when placed along different planes in plenoptic
space.

Duu + Dvv. We do not wish to suggest that center-   
surround structures in biological visual systems are nec-
essarily constructed in this way; we are simply describing
the formal relationships among the various types of
operators.)

Visual Mechanisms for Extracting Plenoptic Structure

The visual mechanisms suggested by this approach in-
clude some familiar receptive field structures, as well as
some that are more novel (cf. Young, 1989). Figure l.9
shows some examples of idealized receptive fields that    
one could construct to analyze change in various direc-  
tions in plenoptic space—ignoring implementational con-
straints for the moment. These particular receptive fields
represent only two dimensions of information, and one of
the dimensions shown is always the spatial dimension x.
All receptive fields have an implicit shape in the full set of
plenoptic dimen-sions; they are assumed to be bloblike in
all of the dimensions not shown.

Although these measurements do not precisely corre-
spond to properties that are described by ordinary lan-  
guage, it is possible to assign approximate labels for them:
(a) horizontally oriented structure (edgelike); (b) vertically
oriented structure (edgelike); (c) diagonally oriented struc-
ture (edgelike); (d) full-field brightening, (e) static spatial
structure; (f) moving edgelike structure; (g) full-field bluish
color; (h) achromatic edgelike structure; (i) spatiochromatic
variation; (j) full-field intensity change with eye position;
(k) absence of horizontal parallax (edgelike structure); (1)
horizontal parallax (edgelike structure).

Plenoptic Measurements in the Human Visual
System

We have presented an idealized view of the basic struc-   
ture available in the plenoptic function, and of the mea-
surements that early vision could employ to characterize
that structure. We now ask how these measurements, or
closely related measurements, might be implemented in   
the human visual system. (While we refer to the "human"
visual system, much of the evidence upon which our
analysis is based comes from physiological studies of    
other mammals. We will assume without arguing the point
that the early stages of processing are similar across
species.)

10 The Task of Vision



At any given  moment, a human observer has access to
samples along five of the seven axes of the plenoptic
function. A range of the x and y axes are captured on the
surface of the retina; a range of the λ-axis is sampled by  
the three cone types; a range of the t-axis is captured and
processed by temporal filters; and two samples from the    
Vx-axis are taken by the two eyes. In order to sample the
Vy-axis at an instant, we would need to have a third eye,
vertically displaced, and in order to sample the Vz-axis,    
we would need an extra eye displaced forward or back-   
ward. It is possible to accumulate information about Vy  
and Vz over time by moving the head—that is, using     
ego-motion—but the information is not available to a   
static observer at a given moment, and therefore we ex-  
clude any detailed consideration of this information from  
our discussion here.

For human observers then, the available plenoptic func-
tion involves the five parameters, x, y, t, λ , and Vx and  
may be parameterized:

P  = P(x,y,t,λ ,Vx).                                                     (3)

Each dimension is analyzed by the human visual sys-
tem with a limited resolution and a limited number of
samples. Given that the visual system can only extract a
finite number of samples, it is quite interesting to observe
where the-sampling is dense and where it is sparse. The
sampling in x and y (or visual angle, if one prefers), is by
far the densest, corresponding to hundreds of thousands     
of distinct values. The sampling in wavelength is much
cruder: The cones extract only three samples along the
wavelength dimension. The sampling in horizontal view-
ing position is cruder still with only two samples. Time is
represented continuously, but the dimensionality of the
representation at any given instant is probably quite low.

The fact that different dimensions are sampled with
different densities may reflect a number of factors, such as:
(1) some dimensions have greater physical variance than
others and thus simply contain more information (Mal-
oney, 1986), (2) some dimensions contain information   
that is more important for survival than other dimensions,
and (3) some dimensions are easier to sample than others,
given biological constraints. It is worth noting that the  
eyes of certain mantis shrimps have been reported to
analyze the spectrum with as many as ten distinct photo-
receptor types (Cronin & Marshall, 1989); these orga-
nisms  can presumably  make much  finer chromatic distinc-

tions than humans can, although their spatial resolution is
much poorer than that of humans. Denser sampling in one
domain requires sparser sampling in another, and so the
tradeoffs chosen in a given organism reflect the way in
which visual information is weighted in that organism's
niche. It is also significant that in the human visual system
the sampling is not uniform across space, being far denser
in the fovea than in the periphery. Thus the direction of
gaze has a major impact on the actual information avail-
able to the observer, even though it does not affect the
information potentially available in the pencil of rays en-
tering the pupil.

We now consider the way that human (and other mam-
malian) visual systems analyze the various dimensions of
the plenoptic function. Both the commonalities and the
variations are quite interesting.

Space

The two spatial dimensions (or visual angle dimensions),
which we will consider together, are analyzed in far more
detail than any other dimensions. Spatial receptive fields
may have more lobes than the two or three expected from
the lowest order derivative operators: indeed, neurons     
with six or more lobes have been reported in visual cor-   
tex (De Valois, Thorell & Albrecht, 1985; Young, 1985),
which would suggest derivative orders of 5 or more.         
In addition, the spatial analysis is performed at many
positions and at many scales, and the analysis is more
detailed in the fovea than in the periphery. The extensive
and diverse analysis that is devoted to the spatial domain
indicates that it is far more important than any other
sampled dimension for primate (and presumably for   
human) vision.

Spatial receptive fields at the level of the retina and the
lateral geniculate nucleus (LGN) tend to be circular or
slightly elliptical. But the receptive fields of cells devoted
to spatial analysis in primary visual cortex are almost
invariably oriented, except for the cells in layer 4, which
receive direct input from LGN. As far as we know, cells
with "crisscross" receptive fields, such as would result   
from separable analysis of two spatial directions, are not
found.

Time

The time dimension is unusual in two ways. First, all
filtering  must be  causal,  which is to say that the  impulse
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Since temporal impulse responses must be causal, they do not
have the same form as the weighting functions observed along
other axes. Shown here are the zeroth, first, and second
derivatives of a fourth-order Butterworth filter. The amplitude
spectra of these filters are similar to those of the corresponding
Gaussian and Gaussian derivative filters, although the phase
spectra are quite different.

response can only include events in the past and not in    
the future. This means that (unless unreasonable amounts  
of delay are introduced) the temporal weighting functions
cannot have the symmetrical form found in the space
domain. Rather, they tend to look more like those shown    
in figure 1.10, which shows impulse responses corre-
sponding to a lowpass filter of the form t4e-t, along with  
its first and second derivatives.

A second peculiarity of the time dimension is that it is
not discretely sampled. All other dimensions are sampled  
by a finite number of neurons, but since these neurons
produce continuously varying outputs (neglecting the fact
that they must convey this output via a spike train) there
seems to be no equivalent sampling in time. The amount   
of information conveyed in the cell responses is, of course,
limited by the stochastic character of the spike train; more-
over, there is a temporal frequency bandlimit on the cell's
response, and this can be used to compute an effective
temporal sampling rate.

One can also ask about the dimensionality of the tem-
poral analysis that is available at a given retinal position at
a given time. If only a single cell were responding the
dimensionality would be unity, but if several cells are
responding simultaneously to different temporal epochs   
(as with lagged cells) or to different temporal frequency
bands (as with flicker and motion cells), then it becomes
reasonable to speak of the dimensionality of the temporal
representation at an instant. This dimensionality is likely   
to be small, as there seem to be only two or three broadly
tuned temporal channels at a given location (Graham,
1989).

It is worth noting that, from the standpoint of the
plenoptic function, simple temporal change (brightening,
dimming, and flicker) is at least as fundamental as is mo-
tion, which involves correlated change across space and
time.

Wavelength

In humans the wavelength axis is sampled at only three
points, by three cone types (neglecting the rods). The   
broad cone action spectra can be thought of as prefilters
required by this sparse sampling that prevent high fre-
quency aliasing in the wavelength domain (cf. Barlow,
1982). An averaging across wavelength, without any de-
rivatives, leads to an achromatic signal, as shown in figure
1.11A. A first derivative operator in wavelength corre-
sponds to a blue-yellow opponent signal, as shown in
figure 1.11B. A second derivative operator corresponds       
to a red-green opponent signal, as shown in figure 1.11C.
Note that this red-green signal receives positive input   
from both the short-wave and long-wave cones, which is
consistent with many results in psychophysics and phy-
siology. These three idealized weighting functions are
qualitatively similar to the ones that are actually found
experimentally, although they differ in detail.

It is also interesting to characterize common chromatic
neurons with spatiochromatic receptive fields. Color op-
ponent "blob" cells (those without spatial structure) corre-
spond to derivatives in wavelength without any deriva-  
tives in space (Dλ); figure 1.12A illustrates an (x,λ) slice of
an idealized cell. Double opponent cells correspond to deriva-
tives in wavelength and circular (Laplacian) derivatives in
space (in one dimension Dxxλ); a slice is shown in       
figure 1.12B.  Single opponent cells,  as in figure 1.12C, do
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The zeroth, first, and second derivatives of a Gaussian
weighting function along the wavelength axis are similar to the
luminance, blue-yellow, and red-green weighting functions
found in the human visual system.
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Spatiochromatic receptive fields may be used to characterize
various color selective neurons: (a) an opponent color cell with
no spatial structure; (b) a double opponent cell; (c) a single
opponent cell. Note that this cell type does not correspond to a
standard derivative type, although it may be constructed by
taking sums of derivatives.

not have any simple interpretation in terms of derivatives,
although one can synthesize them as sums of derivatives   
(in fact Dλ + Dxx + Dyy). Cells that are spatio-chromat-  
ically oriented (not illustrated here) would respond to
chromatic ramps or edges.

Horizontal Parallax (Binocular)

The axis corresponding to horizontal eye position (Vx) is
sampled at only two discrete positions by the two eyes.
This creates potential ambiguities in the interpretation of
this dimension by the visual system. The finite size of the
pupil offers a very small amount of spatial prefiltering,
which is entirely inadequate to prevent the aliasing in-
troduced by such sparse sampling. Aliasing in the Vx-axis
is the source of the "correspondence problem" in stereo
vision (also known as the problem of ghosts). If the eyes
were somehow able to prefilter properly along the Vx-   
axis, the correspondence prob-lem would vanish. How-  
ever, this would be optically impos-sible, and even if it
were possible it would greatly reduce the accuracy with
which stereo disparity could be measured.

Figure 1.13 shows examples of how the (x, Vx) plane
can be analyzed with  simple derivative operators.  We show
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 x  x
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Four examples of binocular receptive fields. Humans only take
two samples from the Vx axis, as shown by the two lines labeled
R.E. and L.E. for right eye and left eye. The curves beneath each
receptive field indicate the individual weighting functions for
each eye alone. The four receptive field types shown here
correspond to: (a) binocular correlation; (b) binocular anti-
correlation; (c) uncrossed disparity; (d) crossed disparity. These
could be used to produce cells that would be categorized as "tuned
excitatory," "tuned inhibitory," "far," and "near."

the plane itself, along with the two linear samples that
correspond to the images acquired by the left eye (L.E.)   
and right eye (R.E). For these examples we assume that  
the two eyes are fixating a common point at a finite
distance; note that this condition differs from our earlier
convention that the eye's axis is always parallel to the      
z-axis. When the eyes are fixating a point at an inter-
mediate distance, then near points and far points exhibit
parallax of different signs. Below each of the receptive   
fields is a diagram showing the individual responses of    
the right eye and left eye alone; these individual responses
would be linearly summed to produce sampled versions     
of the underlying receptive fields.

Part A of figure 1.13 shows a receptive field for zero
disparity,   which  will  respond  well  when  an  object  lies
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in the plane of fixation. Part B shows a receptive field     
for binocular anticorrelation, which will respond well to    
an object that is giving different or opposite contrasts to    
the two eyes (leading to the percept known as "luster").    
Part C shows a receptive field sensitive to objects beyond
the plane of fixation (i.e., uncrossed disparity); part D
shows a receptive field sensitive to objects before the     
plane of fixation (i.e., crossed disparity). Poggio and
Poggio (1984) describe "tuned excitatory," "tuned inhibi-
tory," "near," and "far", cells, which might correspond to
the receptive field types shown here.

Parallax in Yx, Yy, and Vz

A free observer can gather information about parallax    
along arbitrary directions in space by actively translating  
the eye through a range of viewing positions. The in-
formation is known as motion parallax, and it includes
horizontal and vertical parallax for the Vx and Vy direction
as well as the looming effects of the Vz direction. To
produce a receptive field for motion parallax, one must
combine information about the observer's motion with
information about the changing retinal image; such mech-
anisms are more complex than the ones we have chosen    
to discuss under the heading of early vision, but in princi-
ple they could be analyzed in similar terms.

Periodic Tables for Early Vision

We have considered the structure of information in the
luminous environment and how this information appears  
to be sampled in mammalian visual systems. We are now
in a position to list systematically the possible elements of
early vision, i.e. to build our periodic table of visual ele-
ments. Figure 1.14 shows a set of measurements that can
be made by taking derivatives along single axes of the
plenoptic function (Du and Duu). Since there are five axes,
there are five entries for each. For the first derivative       
we find measure-ments as follows: x-axis: vertical "edge";
y-axis: "horizontal "edge"; t-axis: flicker (brightening);     
λ-axis blue-yellow opponency; Vx-axis: binocular anticor-
relation (luster). For the second derivative, which we have
shown with on-center polarity, we find: x-axis: vertical
"bar"; y-axis: horizontal "bar", t-axis: flicker (pulse); λ-axis:
green-red opponency. There is no meaningful measure-  
ment for the Vx-axis given only the samples from two  
eyes.

The range of possible measurements becomes richer
when we allow variation in two dimensions instead of    
just one. A given receptive field type now may occur    
with any pair of different axes. Thus we arrive at a 5         
by 5 matrix of possible measurements for a given recep-  
tive field type. An example is shown in figure 1.15. The
receptive field consists of a diagonal second derivative    
(D(u + v)(u + v)). The possible axes are listed along the sides of
the matrix; each pair of axes leads to a preferred stimulus,
which is listed in the matrix. The diagonal entries are
meaningless, and the upper triangle is identical to the    
lower triangle in this particular case by symmetry. Thus
only the lower triangle is filled.

Each entry has four descriptors, corresponding to the
spatial, temporal, chromatic, and binocular aspects of the
preferred stimulus. The default values for the descriptors   
are: full-field (no spatial variation); static (no temporal
variation); achromatic (no wavelength variation), and no
binocular disparity. For each entry, the "interesting    
values" are shown in boldface, while the default values
remain in plain text.

Some of the entries correspond to well-known cell    
types that respond to common experimental stimuli, such  
as tilted or moving bars. Both horizontal and vertical
disparity also appear in the matrix. Some of the chro-  
matic measurements are unexpected wavelength varia-    
tion correlated with space, time, and eye position lead to
measurements of what we call spatial and temporal hue-
sweeps, and to chromatic luster. Although these chro-  
matic properties may sound obscure, they correspond to
properties that an observer can encounter in the world.    
For example, a spatial hue-sweep can occur when an ob-
ject's color varies across space; a temporal hue-sweep can
occur when an object changes color over time; and a
binocular hue difference can occur with certain kinds of
lustrous objects, especially iridescent ones. Interestingly,
Livingstone and Hubel (1984) reported a cell in the striate
cortex of a monkey that was chromatically double oppo-
nent in both eyes but with opposite sign; that is, in the
right eye it was R+G- center, R-G+ surround, while in    
the left eye it was R-G+ center, R+G- surround.

Another example is shown in figure 1.16. In this case,
the measurement consists of a pair of single derivatives
taken separably along two dimensions (Duv). Once again   
the upper and lower triangles are identical symmetry, and  
the diagonal entries are not meaningful. This leaves us    
with  the  ten  measurements  listed  in  the  matrix.   Some

14 The Task of Vision



x y t λ Vx

vertical
"edge"

horizontal
  "edge"

  blue-yel.
opponency

binocular
anticorrel.
("luster")

  

dimension
of interest

re
sp

on
se

x y t λ Vx

vertical
 "bar"

horizontal
   "bar"

 green-red
opponency

  

dimension
of interest

re
sp

on
se

     flicker
(brightening)

 flicker
(pulse)

F i g . 1 . 1 4
Derivatives along single dimensions lead to a number of basic visual
measurements.

x y t λ Vx

x

y

t

λ

Vx

diag. "bar"
static
achromatic
no dispar

vert. "bar"
leftward
achromatic
no dispar

vertical
static
hue-sweep
no dispar

horiz.
static

no dispar

hor. "bar"
downward
achromatic
no dispar

vert. "bar"
static
achromatic
hor. dispar

hor. "bar"
static
achromatic
vert. dispar

full-field
sequential

no dispar

full-field
sequential
achromatic
eye-order

full-field
static
hue-shift
luster

hue-sweep hue-sweep
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The ten entries in the section of the periodic table correspon-
ding to a tilted second derivative. The entries on the diagonal
are meaningless, and the entries in the upper triangle are the
same as those in the lower triangle by symmetry.

x y t λ Vx

x

y
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λ

Vx

criss-cross
static
achromatic
no dispar

vert."edge"
reversing
achromatic
no dispar.

static
blue-yel.
no dispar.

vert."edge"
static
achromatic
anticorr.

hor "edge"
reversing
achromatic
no dispar.

hor. "edge"
static
blue-yel.
no dispar.

hor. "edge"
static
achromatic
anticorr.

full-field
reversing
blue-yel.
no dispar.

full-field
reversing
achromatic
anticorr.

full-field
static
blue-yel.
anticorr.

vert."edge"
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The entries in the periodic table corresponding to separable first
derivatives along both axes. There are ten elementary measure-
ments of this type
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of the measurements are familiar, such as reversing (i.e.,
counterphase flickering) edges. The spatial "crisscross"
measurement would seem to be straightforward enough,    
but cells showing this receptive field are rarely if ever    
found in cortex. Chromatic flicker and binocular luster
(anticorrelation) are among the other measurements ap-
pearing in the table.

For each receptive field type one can construct a similar
table. For a given shape of two-dimensional receptive   
field, there correspond twenty basic measurements, or ten
when there is symmetry about the diagonal. Consider the
receptive fields (RF) shown in figure 1.8. The seven or-
iented and separable RF types will lead to a total of some
100 distinct elemental measurements. (The exact number
depends on how one chooses to treat symmetries.)

These 100 measurements can be considered to be the
first stage of a periodic table of visual elements. Note that
these measurements only include derivatives of order one
and two, and that they do not include measurements
involving derivatives along three or more dimensions of   
the plenoptic function. Thus, for example, a moving chro-
matic bar would not be properly analyzed at this level.

Several points emerge from this exercise. First, the
plenoptic function is quite rich in information: At every
point within it there are some 100 distinct and inde-  
pendent local measurements that can be used to char-  
acterize is structure, even when the measurements are
restricted to the simplest sort. Second, it would be an
enormous burden for the human visual system to sample
and represent all of these measurements at high density,  
and so it is necessary that only the more important        
ones be analyzed in detail. Third, as one allows higher
derivatives and more plenoptic dimensions, the number     
of potential elements grows through a combinatorial
explosion.

Psychophysical experiments can be performed to de-
termine human sensitivity to change along various axes    
in plenoptic space. Indeed, many psychophysical tasks can
be shown to have unexpected relationships through such   
an analysis. Some interesting examples are discussed in    
the  appendix.

Further Computations

The linear derivative-like computations we have dis-   
cussed offer a starting point for early vision.  Later stages in
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Energy computation: (A) a pair of receptive fields that are in
quadrature phase can be used to compute a local energy measure;
(B) complex cells in striate cortex may compute local energy
measures by combining the rectified outputs of several adjacent
receptive fields.

vision can make use of these initial measurements by
combining them in various ways.

In some cases one may wish to measure the magnitude
of local change within the plenoptic function in a region    
of the visual field, without specifying the exact location or
spatial structure within that region. One may wish to  
know, for example, that there exists an oriented contour
without specifying whether it is an edge, a dark line, or a
light line. In this case, a "local energy measure" can be
computed that pools similar derivative-like signals within   
a spatial region. The term "local energy" is motivated by
the fact that this pooling can be accomplished by sum-
ming the squared outputs of two linear receptive fields
differing in phase by 90°. This arrangements is shown in
figure 1.17A. This nonlinear combination gives a single-
peaked positive response to edges and lines, regardless of
sign (Adelson & Bergen, 1985; Granlund, 1978; Knutsson
& Granlund, 1983; Ross, Morrone & Burr, 1989); the re-
sponse extends smoothly over a patch centered on the
feature of interest. Similar properties are obtained in gen-
eral if an array of related linear subunits, as shown in    
figure 1.17B, are passed through a rectifying nonlinearity
and then summed over some region. Complex cells in
striate cortex seem to be performing a computation   
similar to this (Movshon, Thompson & Tolhurst, 1978;
Spitzer & Hochstein, 1985). In addition, motion-selective
complex cells may compute spatiotemporal energy mea-
sures by pooling the outputs of receptive fields that are
oriented in space-time  (Adelson & Bergen, 1985;  Emerson,
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Bergen & Adelson, 1987, 1991). By performing similar
operations along other axes in the plenoptic function one
can compute local energy measures for binocular dis-   
parity (Jacobson & Gaska, 1990; Ohzawa, DeAngelis &
Freeman, 1990; cf. Sanger, 1988), flicker, chromatic satura-
tion, and so on.

Energy measures can also be combined and cascaded to
form more complex measurements (Granlund, 1978). Such
an approach may be used to form cells that are end-   
stopped or side-stopped, or which are selective for more
complex properties such as curvature. There is abundant
evidence for this sort of complexity in striate cortex and
beyond, but a discussion is outside our present scope      
(cf. Dobbins, Zucker & Cynader, 1987; Koenderink & van
Doorn, 1987).

Conclusion

The world is filled with light, and the structure of this    
light is determined by the physical arrangement of the
materials that fill the world. An observer can learn about
the world by making measurements of the structure of the
light passing through a given point.

We introduce the plenoptic function to specify for-
mally the way that light is structured. For a given wave-
length, a given time, and a given viewing position in
space, there exists a pencil of light rays passing through   
the viewing point. Each ray has an intensity, and the
collection of rays constitutes a panoramic image. This
panoramic image will vary with time, viewing position,
and wavelength. The plenoptic function thus has seven
dimensions and may be parameterized as P(x,y,t,λ ,
Vx,Vy,Vz).

One of the tasks of early vision is to extract a compact
and useful description of the plenoptic function's local
properties; the low order derivatives offer such a descrip-  
tion under reasonable assumptions about world statistics.    
If one takes locally weighted first and second derivatives
along various axes in plenoptic space, a full range of
elemental visual measurements emerges, including all of   
the familiar measurements of early vision.

The actual information extracted by the human visual
system is a small subset of the information that is physi-
cally available in the plenoptic function. Humans gather
information from only two viewing positions at a time,
obtaining  two samples  along  the Vx axis,  both taken  at a

single value of Vy and Vz. Humans sample  the wavelength
axis with  only three cone types.  The  most densely sam-
pled axes are those corresponding to visual angle, name-  
ly, the spatial axes of the retinal image. Time is the only
axis that is represented continuously.

One can develop a taxonomy of derivative types, and   
for each type one can construct a table of visual measure-
ments corresponding to different choices of axes. In this
way one can construct a kind of periodic table of the   
visual elements. A basic table (constructed with the sim-
ple derivative types applied to one or two axes at a time)
contains 100 elementary measurements.

The periodic table is constructed from first principles,
using only the constraints imposed by the available opti-
cal information. It is not dependent on the statistics of the
world or on the needs of any particular organism. Thus    
the periodic table offers a null hypothesis about the mea-
surements that an organism could make, with no further
assumptions about the environment or the organism's   
place in it. It then becomes interesting to compare the list
of potential measurements with the list of actual measure-
ments that a given organism makes.

The entries in the periodic table include all of the basic
visual properties that are commonly considered to con-
stitute early vision, such as orientation, color, motion, and
binocular disparity. Other less popular properties also ap-
pear in the list, including flicker, binocular correlation and
anticorrelation, and hue-shift in space and time. Finally,
there are some unexpected properties, such as binocular
chromatic anticorrelation.

Many psychophysical and physiological experiments
can be considered as explorations of sensitivity to the
elemental measurements listed in the periodic table. Over  
the years, experimenters have filled in the entries of the  
table in a somewhat random fashion; but it is possible to
approach the problem systematically. Physiologists can
look for neurons that fall into the various elemental cate-
gories, and psychophysicists can look for channels selec-
tive for the various elemental properties.

Appendix

Psychophysical Experiments in Plenoptic Space

A variety of paradigms have been developed over the    
years  to  assess  the limits  of  human  visual  performance.
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A variety of psychophysical stimuli that seem unrelated turn out
to have the same plenoptic structure. The basic spatial vernier
task (a) transforms into: (b) temporal displacement discrim-
ination; (c) spatial (top-bottom bipartite field) wavelength
discrimination; (d) biparite simultaneity or temporal order
judgment; (e) stereoacuity; (f) dichoptic simultaneity or eye-
order judgment.

When these experiments are depicted in plenoptic space,     
a number of unexpected parallels emerge. As an example,
the stimuli shown in figure 1.18 correspond to a variety   
of tasks involving spatial acuity, motion thresholds,
wavelength discrimination, and so on. The tasks seem
diverse but their structure in plenoptic space is quite
similar,  as  we  will  now  describe.

Part A of figure 1.18 shows the case in which the axes
are (x,y); this is just the classic vernier offset task, in which
one vertical line is displaced with respect to another. Part   
B shows the (x, t) case. This corresponds to a vertical line
undergoing a jump in position; in other words, it mea-
sures sensitivity to small sudden displacements. Part C
shows the (λ,y) case. This is a bipartite field, split into top
and bottom halves, in which the top half has a different
wavelength than the bottom half. In other words, this is a
wavelength discrimination task. Part D shows the (t,y)  
case. This is a bipartite field in which the top half is briefly
pulsed and then the bottom half is briefly pulsed. The task  
is to determine the temporal order in which the two      
half-fields  are  pulsed.

Parts E and F of figure 1.18 involve the eye position
axis, Vx. Since humans have only two eyes, they take only
two samples from this axis, and the locations of these
samples are indicated by the horizontal lines marked R.E.
and L.E. Part E depicts a stimulus of two vertical lines, one
in each eye, with a horizontal displacement—in other
words, a test for the detection of stereoscopic disparity.  
Part F depicts a stimulus in which a full-field flash is
presented first to one eye and then to the other.

Figure 1.19 enumerates all the variants of such a stim-
ulus, using pairwise combinations of the five dimensions of
x, y, t, λ , and Vx. Every stimulus makes sense, although
some of them seem a bit odd at first. For example, the
(λ ,Vx) stimulus represents a static field of one wavelength
in the left eye and a different wavelength in the other eye;
the task is to detect the wavelength difference.

Other stimulus classes are shown in figures 1.20 and
1.21. Figure 1.20 shows a stimulus that looks like a piece
of a checkerboard in (x,y) but which takes on various    
sorts of chromaticity, temporal steps, and binocular anti-
correlation when the different axes are used. The cells in    
the upper right triangle are left blank, as they are identical  
to the lower left triangle by symmetry. Figure 1.21 shows  
a stimulus that is a diagonal bar in the (x,y) plane, but can
become a rainbow, a moving bar, or other stimuli in other
planes.

The stimuli we have depicted  in the tables above  can be

x y t λ Vx

x

y

t

λ

Vx

vert. vernier
static
achromatic
no dispar.

vert. line
jump left
achromatic
no dispar.

2 vert. lines
static
    changeλ
no dispar.

vert. line
static
achromatic
h disp.

horiz. line
jump down
achromatic
no dispar.

2 hor. lines
static

no dispar.

horiz. line
static
achromatic
v disp.

full-field
pulse order
blue-yel.
no dispar.

full-field
pulse order
achromatic
anticorr.

full-field
static

anticorr.

    changeλ

hor. vernier
static
achromatic
no dispar.

vert. bipart.
pulse order
achromatic
no dispar.

hor. bipart.
pulse order
achromatic
no dispar.

no dispar.

vert. edge

no dispar.

hor. edge

     diff.λ

no dispar.
    changeλ

full-field
sequential

static

static
     diff.λ

     diff.λ
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A table of the psychophysical stimuli corresponding to the
basic vernier structure.
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checker
static
achromatic
no dispar

vert. edge
reversing
achromatic
no dispar.

vert. edge
static
blue-yel.
no dispar.

vert. edge
static
achromatic
anticorr.

horiz. edge
reversing
achromatic
no dispar.

horiz. edge
static
blue-yel.
no dispar.

horiz. edge
static
achromatic
anticorr.

full-field
exchange
blue-yel.
no dispar.

full-field
exchange
achromatic
anticorr.

full-field
static
blue-yel.
anticorr.
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A table of the psychophysical stimuli corresponding to the
checkerboard structure.

described with only two axes, but many psychophysi-     
cal stimuli require more. For example, a diagonal chromatic
moving bar in depth would require a full five-dimensional
description.
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