
NEURL-GA 3042.005 – Spring, 2014

Representation and Analysis of Visual Images

Homework 3
Due: 13 May 2014

Your results should be in the form of an executable MATLAB file (typically, the filename should
have an extension of .m), divided into sections by triple comments (%%%). Any functions you
write should be included as separate m-files. Please email your solutions to eero.simoncelli@nyu.edu.
You’ll need a few functions from www.cns.nyu.edu/∼lcv/software.php. Auxilliary matlab
files are in the course homework directory:

http://www.cns.nyu.edu/∼eero/imrep-course/Homework/
also linked from the course web page.

1. Pyramid denoising.

Download and put in your path the matlabPyrTools package, available at
http://www.cns.nyu.edu/pub/eero/matlabPyrTools.tar.gz

Download the file nycImage.jpg from the course web page, and execute
im=mean( double( imread(’nycImage.jpg’)), 3);

Add white Gaussian noise with variance σ2 equal to 0.25 of the image variance (i.e., standard
deviation equal to 0.5 the image standard deviation).

Now build a 2-band steerable pyramid on the noisy image you generated above
[noisyPyr, pind] = buildSFpyr(noisyIm, 5, 1), with the third argument indi-
cating the order of the derivative. Display it using showSpyr, which shows all the subbands,
except for the highpass residual (corners of the frequency domain).

(a) Band-wise adaptive Wiener estimate. Make a new variable containing a copy of the
noisy pyramid [i.e., cleanPyr = noisyPyr]. This will be where you’ll store your
result. Loop through the pyramid bands letting n go from 1 to size(pind,1)-1 (ev-
erything except the lowpass band). For each band, collect the indices of that band
within the pyramid (bind=pyrBandIndices(pind,n)). The vectorized subband is
simply band=cleanPyr(bind). The variance of the noise in that subband is propor-
tional to the variance of the noise in the image, where the scale factor depends on the
filters used in the pyramid and the subsampling:

noiseVar = 0.154 ∗ σ2 ∗ prod(size(im))/prod(size(band)).

One other ugliness: for band number 1 (the highpass residual), you need to multiply
this noise variance by an additional factor of 4. Finally, compute a single scalar multi-
plier:

m = max (var(band)− noiseVar, 0) /var(band),

and multiply the band by this scalar. Collapse the pyramid to create a result image,
using reconSFpyr(cleanPyr). Look at the result (use showIm to display with the
same scaling as the original image, so you can make a correct comparison!). Also com-
pute the mean squared error (you might find imStats useful).
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(b) Point-wise adaptive thresholding. Now do the same thing again, but this time, multi-
ply each pixel of each subband pointwise by the value:

m = max
(
band.2 − 4 ∗ noiseVar, 0

)
./band.2

Again, look at the result and compute the MSE.

(c) Local context-adaptive thresholding. Finally, do the same thing one more time, but
this time, multiply each band pointwise by a value that is computed based on a local
estimate of variance:

m = max
(
av(band.2)− 2 ∗ noiseVar

)
./av(band.2)

where av is the average over a 5 × 5 patch, computed with corrDn, using reflect1
edge handling. Note: You’ll need to reshape each subband back to an image before
computing this average, and then reshape back to a vector to insert it into cleanPyr.
Again, how’s it look, and what’s the MSE?

(d) Comparison. Which of the three denoising results gives best MSE? Which looks best
(in your opinion) and why?
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2. ICA and sparsity

(a) PCA/whitening. Compute the principal components of 10 × 10 blocks taken from
the image in the previous problem. Gather the full set of blocks (with overlap) into a
matrix (X) using im2col with the ’sliding’ argument. Compute the eigenvectors (E) and
eigenvalues (D) of the covariance matrix of the blocks, and then compute the whiten-
ing matrix W = D−1/2ET . (Note: Might be more efficient to do this using the SVD).
Compute the “basis functions”, which are the columns of W−1, and look at the first
25 of these, as 10 × 10 images, in a single window (use subplot(5,5,n)). What do
they look like? Apply the whitening matrix to X, and then compute the kurtosis (use
matlab’s function) of each component. What is the geometric mean, and the range of
the kurtosis values?

(b) Symmetric whitening. As discussed in class, the whitening matrix is non-unique, since
pre-multiplying by any orthogonal matrix does not affect the whitening property. One
way to make a unique whitening matrix is to demand that it be symmetric: Wsymm =
ED−1/2ET . Look at the first 25 basis functions (columns of W−1, displayed as images)
- what do you see? Apply this whitening matrix to X, and compute the kurtosis of each
component. What is the geometric mean, and the range of the kurtosis values?

(c) ICA. Now compute the ICA transform on blocks X, using the ica4 function in the
course directory. (Alternatively, you can try the fastICA algorithm, which can be down-
loaded from the internet). The function returns the ica-transformed data, and the ICA
transform matrix W . Again, compute and look at the basis functions (cols of W−1).
Apply W to X and measure the kurtosis of each component, computing the geometric
mean and range of values.

(d) Comparison. Plot the sorted kurtosis values from all three transforms on the same plot.
For comparison, compute the sorted kurtoses of the components arising from a random
transform (W = randn(100)). What do you see?
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3. Contrast enhancement

(a) Build a Laplacian pyramid on the image from part 1 (buildLpyr(im);). A simple
method of contrast enhancement is to multiply each subband by a scalar that grows or
shrinks geometrically with scale. That is multiply subband n by αN−n, where N is the
total number of subbands (size(pind,1)). Try doing this for α values of 0.9 or 1.1,
reconstruct a modified image (using reconLpyr), and look at it. What do you see?
Which α improves the image?

(b) Multiplying the whole band by a constant is not so effective, since it boosts/shrinks
all coefficients by the same amount. A better solution is to boost the small-amplitude
coefficients more than the large ones, using a saturating nonlinear function. For each
subband, measure the initial standard deviation, σ. Then apply the function sign(x)|x|p,
for exponent p = 1/2. Finally, restore the standard deviation, by dividing the result by
its standard deviation, and multiplying by the standard deviation you measured before
the transformation. Reconstruct the modified image and look at it. Try this for different
p, ranging from 1/4 to 2. What do you prefer?


