Explaining Cortical Adaptation with a Statistically Optimized Normalization Model

Martin Wainwright

Vision Sciences Harvard University Eero Simoncelli

Center for Neural Science Courant Institute New York University

Introduction

Hypothesis: sensory systems are matched to their input statistics (Attneave, 1954)

More specifically: statistical independence of neural responses? (Barlow, 1961)

Role of image statistics

- independence of responses must be defined with respect to statistics of visual input
- large body of previous research on natural image statistics and cortical processing (e.g, Field, 1987; Atick & Redlich, 1992; van Hateren, 1993; Ruderman, 1994; Olshausen & Field, 1996; Bell & Sejnowski, 1997)

Cortical adaptation and image statistics

Statistics of visual input are constantly changing (over seconds and/or minutes).

Question: Can cortical adaptation be understood as optimal adjustment to statistics of recent input?

Several authors have tried to link input statistics to cortical adaptation (e.g., Barlow, 1990; Wainwright, 1999).

Limitations of previous work:

- simplistic models of images (e.g., Gaussian)
- linear models of neurons

Normalization models

- Divisive normalization:
 - 1. Compute linear responses $\{L_k\}$ of receptive fields at different spatial scales, positions, and orientations.

- 2. Compute a normalized response by dividing a cell's squared response L^2 by a sum of squared responses of neighbors.
- Normalization accounts for nonlinear behavior in neurons. (Bonds, 1989; Geisler and Albrecht, 1992; Heeger, 1992)
- Normalization can be derived from natural image statistics. (Simoncelli, 1997; Simoncelli and Schwartz, 1998)

Statistical view of normalization

- normalization is a form of non-linear predictive coding
- responses of neighboring model neurons are used to *predict* the variance of a model neuron
- model neuron is normalized by the prediction

$$R = \frac{L^2}{\sigma^2 + (\sum_k \lambda_k |L_k|)^2}$$

• normalized responses are close to statistically independent

Key Point: σ^2 and $\{\lambda_k\}$ are determined by the statistics of the visual environment.

Contrast adaptation

Increase contrast \rightarrow increase $\sigma \rightarrow$ shift CRF right

$$R_A = \frac{L_1^2}{\sigma_A^2 + \lambda L_2^2}$$

$$R_B = \frac{L_1^2}{\sigma_B^2 + \lambda L_2^2}$$

Pattern adaptation

Increase dependency \rightarrow increase $\lambda \rightarrow$ decrease saturation

$$R_A = \frac{L_1^2}{\sigma^2 + \lambda_A L_2^2}$$

$$R_B = \frac{L_1^2}{\sigma^2 + \lambda_B L_2^2}$$

Simulation of adaptation

1. Compute *generic* parameters for an environment of natural images.

2. Compute *adapted* parameters for a mixture of sine wave grating and natural images.

3. Compute normalized responses to sinusoidal test stimuli using each set of parameters.

CRF: Different adapting contrasts

CRF: Different test spatial frequencies

Tuning curves: Different adapting orientations

Conclusions

- Cortical adaptation can be explained using a normalization model with parameters determined by image statistics.
- Such a model makes a principled distinction between contrast and pattern adaptation.
- Model accounts for V1 cell behavior under a variety of adaptation conditions.

References

- Atick, J. and Redlich, A. (1992). What does the retina know about natural scenes? *Neural Computation*, 4:196–210.
- Attneave, F. (1954). Informational aspects of visual processing. *Psychological Review*, 61:183–193.
- Barlow, H. (1990). A theory about the functional role and synaptic mechanism of visual aftereffects. In Blakemore, C., editor, *Vision:Coding* and *Efficiency*. Cambridge University Press.
- Barlow, H. B. (1961). Possible principles underlying the transformation of sensory messages. In Rosenblith, W. A., editor, *Sensory Communication*, page 217. MIT Press, Cambridge, MA.
- Bell, A. J. and Sejnowski, T. J. (1997). The 'independent components' of natural scenes are edge filters. *Vision Research*, 37(23):3327–3338.
- Bonds, A. B. (1989). Role of inhibition in the specification of orientation of cells in the cat striate cortex. *Visual Neuroscience*, 2:41–55.

- Field, D. (1987). Relations between the statistics of natural images and the response properties of cortical cells. *Journal of the Optical Society of America*, A4:2379–2394.
- Geisler, W. S. and Albrecht, D. G. (1992). Cortical neurons: Isolation of contrast gain control. *Vision Research*, 8:1409–1410.
- Heeger, D. J. (1992). Normalization of cell responses in cat striate cortex. Visual Neuroscience, 9.
- Olshausen, B. and Field, D. (1996). Natural image statistics and efficient coding. *Network: Computation in Neural Systems*, 7:333–339.
- Ruderman, D. L. and Bialek, W. (1994). Statistics of natural images: Scaling in the woods. *Phys. Rev. Letters*, 73(6).
- Simoncelli, E. P. (1997). Statistical models for images: Compression, restoration and synthesis. In 31st Asilomar Conf Signals, Systems and Computers, pages 673–678, Pacific Grove, CA. IEEE Sig Proc Society.

- Simoncelli, E. P. and Schwartz, O. (1998). Image statistics and cortical normalization models. In *Neural Information Processing Systems*, volume 10.
- Wainwright, M. J. (1999). Visual adaptation as optimal information transmission. Vision Research.