Maximum Differentiation Competition: Direct Comparison of Discriminability Models

Zhou Wang & Eero P. Simoncelli

Howard Hughes Medical Institute, Center for Neural Science, and Courant Institute for Mathematical Sciences New York University

Which model best accounts for perceived image quality?

Which model best accounts for perceived image quality?

Example Models

MSE: Mean Squared Error $E(\mathbf{X}, \mathbf{Y}) = \frac{1}{N} \sum_{i} (x_i - y_i)^2$

SSIM: Structural Similarity [Wang, et. al. '04]

- local cross-correlation measure:

$$s(\mathbf{x}, \mathbf{y}) = \frac{(2\mu_x\mu_y + C_1)(2\sigma_{xy} + C_2)}{(\mu_x^2 + \mu_y^2 + C_1)(\sigma_x^2 + \sigma_y^2 + C_2)}$$

- pooling
$$S(\mathbf{X}, \mathbf{Y}) = \frac{\sum_{i} w(\mathbf{x}_{i}, \mathbf{y}_{i}) s(\mathbf{x}_{i}, \mathbf{y}_{i})}{\sum_{i} w(\mathbf{x}_{i}, \mathbf{y}_{i})}$$

where $w(\mathbf{x}, \mathbf{y}) = \log_2(1 + \sigma_x^2/C) + \log_2(1 + \sigma_y^2/C)$

Wang & Simoncelli, VSS-2005

Conventional Method

- Procedure
 - 1. Choose set of reference and distorted images
 - 2. Perform subjective tests
 - 3. Compare model prediction with subjective responses

- Difficulties
 - Subjective experiments expensive
 - "Curse of dimensionality": impossible to cover image space

Conventional Method: MSE vs. SSIM

"LIVE" image database, UT Austin

Conventional Method: MSE vs. SSIM

Distortion:	JP2(1)	JP2(2)	JPG(1)	JPG(2)	Noise	Blur	Error
# images:	87	82	87	88	145	145	145
MSE	0.934	0.895	0.902	0.914	0.987	0.774	0.881
SSIM	0.968	0.967	0.965	0.986	0.971	0.936	0.944

MAximum Differentiation (MAD) Competition

MAximum Differentiation (MAD) Competition

• Let two models **compete**

MAximum Differentiation (MAD) Competition

- Let two models **compete**
- ... by **synthesizing** optimal stimuli

MAximum Differentiation (MAD) Competition

- Let two models **compete**
- ... by **synthesizing** optimal stimuli
- ... that **maximally differentiate** the models

2AFC Experiment

distortion level (MSE)

2AFC Experiment

distortion level (MSE)

- Subjects: 5 (4 naïve, 1 author)
- Images: 10 reference, viewed at 16 pixels/degree
- Trials: 20 per distortion-level per subject

Psychometric Functions

initial distortion level (MSE)

Psychometric Functions

Summary

- MAximum Differentiation (MAD) Competition
 - Let two models compete
 - ... by synthesizing optimal stimuli
 - ... that maximally differentiate the models
- Advantages
 - Optimized images maximize opportunity for model failure
 - Efficient (minimal # of 2-alternative comparisons)
 - Images reveal model weaknesses => potential improvements
- To Do
 - Full experiment, with more reference images
 - Application to other discriminable quantities
 - Physiology