Texture Characterization via Joint Statistics of Wavelet Coefficient Magnitudes

Eero Simoncelli

Center for Neural Science, and Courant Institute of Mathematical Sciences New York University

Javier Portilla

Instituto de Optica Consejo Superior de Investigaciones Cientificas Madrid, SPAIN

Example Texture Types

Can we derive a statistical model (and sampling technique) to represent all of these?

Synthesis-by-Analysis

- Choice of statistical measurements crucial
- Proper transform can simplify statistics
- Most algorithms are iterative

Recent Inspirational Approaches

- Portilla et. al. (1996): Adaptive Gabor transform, constrained subband auto-correlation. Weakness: structures.
- Heeger & Bergen (1995): Steerable pyramid, constrained subband marginals (histograms). Weakness: periodicity, extended structures.
- Zhu, Wu & Mumford (1996): Small set of filters, constrained subband marginals, Gibbs sampling (maximal entropy). Weakness: extended structures, efficiency.
- DeBonet & Viola (1997): Laplacian pyramid, coarse-to-fine bootstrap sampling from the scale-conditional empirical neighborhood statistics. Weakness: random textures, no parameterization.

Complex Steerable Pyramid Representation

Fourier spectra of 4-orientation 3-scale complex analytic Steerable pyramid.

Matched Pixel Marginals

Matched Subband Variances

Captures smoothed distribution of energy in frequency domain.

Matched Subband Autocorrelation

Captures periodicity.

Matched Subband Marginals

Captures some local structure.

Subband Magnitudes

Correlated or anti-correlated magnitudes capture important structure.

Texture Model Parameters

• Coefficient magnitude correlations:

$$\mathcal{E}\left(\left|c_{i}\right|\cdot\left|c_{j}\right|
ight)$$

• Raw coefficient auto-correlation:

$$\mathcal{E}\left(c_x\cdot c_{x-\Delta}\right)$$

• Pixel statistics: mean, variance, skew, kurtosis, min, max.

$$7 \times 7$$
 neighborhoods 4 orientations $\Rightarrow \sim 870$ parameters 4 scales

Texture Synthesis System

Projection onto Constraint Surfaces

ullet Joint magnitudes*: match correlation of local (spatial position, orientation, scale) *magnitudes*. Find linear transformation A

minimizing: $\mathcal{E}\left(||\vec{Q}-A\vec{Q}||^2\right)$

subject to: $\mathcal{E}\left(A\vec{Q}\vec{Q}^TA^T\right) = \mathcal{E}\left(\vec{Q_0}\vec{Q_0}^T\right)$.

Synthesis Results

Artificial textures.

Synthesis Results

Natural textures, random.

Synthesis Results

Natural textures, structured.

Synthesis Failures

Spatial Extrapolation

Scale Extrapolation

