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Introduction

Hypothesis: Early sensory processes self-organize in response to
input signal statistics (e.g., Barlow, 1961).

e Grand goal: Ecologically motivated model for early cortical sen-
sory processing.

e Restricted problem: Can we “derive” a functional model for
neurons in primary visual cortex (V1) from the statistics of natu-

ral images?
e Assumption: Neural outputs should be statistically independent.
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Image Statistics through a Linear Model
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With a proper linear basis:

e “Optimal” basis functions are localized and oriented
(e.g., Olshausen/Field, 1996; Bell / Sejnowski, 1997)

e Responses are uncorrelated

e Responses are non-Gaussian (e.g., Field, 1987)
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Image Statistics through a Rectified Neural Model
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Consider joint statistics:

e Linear responses are uncorrelated, but are not independent.

e Specifically, rectified responses are strongly correlated.
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Image Statistics through a Normalization Model
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¢ Divisive normalization increases independence

e Proper weighting of normalizing signals can be determined from
statistical measurements
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Normalization Neighborhood
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e Normalization by weighted linear combination of other neurons
e Weights chosen least-squares optimal, based on image statistics

e Weights govern non-specific suppression behaviors
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Methods

e Model:
1. Linear basis: orthonormal multi-scale (wavelets)
2. “Neuron”: vertical, optimal spatial frequency 0.125 cycle/ pixel
3. Neighborhood: 2 scales, 3 orientations, 65x65 pixels
4. Normalization weights: optimized for statistics of 3 images:

e For each stimulus:
1. Compute linear responses of full neighborhood

2. Square
3. Divide chosen neuron response by weighted combination of

squared neighbor responses.
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Parallel Surround Suppression
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- Data from Cavanaugh, Bair and Movshon, 1997.
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Perpendicular Surround Suppression
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- Data from Cavanaugh, Bair and Movshon, 1997.
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- Data from Cavanaugh, Bair and Movshon, 1997.
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Mean Response Rate
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Surround Spatial Frequency
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- Data from Miiller, Krauskopf, & Lennie (unpublished).
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Surround Proximity
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- Data from Cavanaugh, Bair and Movshon, 1997.
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Conclusions

Image statistics can be used to derive a parameter-free model for early
visual processing.

e Statistics

— Independence: Is it a reasonable goal?
— Basis: What happens in a redundant (overcomplete) basis?

— Specialization: are some neurons optimized for image sub-
classes?

e Time

— Implementation: feedback and temporal dynamics
— Motion: Direction-selectivity / image sequences
— Plasticity: can normalization weights be modified?
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