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Introduction

Hypothesis: Early sensory processes self-organize in response to
input signal statistics (e.g., Barlow, 1961).

� Grand goal: Ecologically motivated model for early cortical sen-
sory processing.

� Restricted problem: Can we �derive� a functional model for
neurons in primary visual cortex (V1) from the statistics of natu-
ral images?

� Assumption: Neural outputs should be statistically independent.
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Image Statistics through a Linear Model
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With a proper linear basis:

� �Optimal� basis functions are localized and oriented
(e.g., Olshausen/Field, 1996; Bell/Sejnowski, 1997)

� Responses are uncorrelated

� Responses are non-Gaussian (e.g., Field, 1987)
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Image Statistics through a RectiÞed Neural Model

Consider joint statistics:

� Linear responses are uncorrelated, but are not independent.

� SpeciÞcally, rectiÞed responses are strongly correlated.
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Image Statistics through a Normalization Model
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� Divisive normalization increases independence

� Proper weighting of normalizing signals can be determined from
statistical measurements
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Normalization Neighborhood
�Normalization by weighted linear combination of other neurons

�Weights chosen least-squares optimal, based on image statistics

�Weights govern non-speciÞc suppression behaviors
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Methods
�Model:

1. Linear basis: orthonormal multi-scale (wavelets)
2. �Neuron�: vertical, optimal spatial frequency 0.125 cycle/pixel
3. Neighborhood: 2 scales, 3 orientations, 65x65 pixels
4. Normalization weights: optimized for statistics of 3 images:

� For each stimulus:
1. Compute linear responses of full neighborhood
2. Square
3. Divide chosen neuron response by weighted combination of
squared neighbor responses.
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Parallel Surround Suppression
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- Data from Cavanaugh, Bair and Movshon, 1997.
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Perpendicular Surround Suppression
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Surround Orientation
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Surround Spatial Frequency
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- Data fromMüller, Krauskopf, & Lennie (unpublished).
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Surround Proximity
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- Data from Cavanaugh, Bair and Movshon, 1997.
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Conclusions

Image statistics can be used to derive a parameter-freemodel for early
visual processing.

� Statistics

� Independence: Is it a reasonable goal?
� Basis: What happens in a redundant (overcomplete) basis?
� Specialization: are some neurons optimized for image sub-
classes?

� Time

� Implementation: feedback and temporal dynamics
�Motion: Direction-selectivity / image sequences
� Plasticity: can normalization weights be modiÞed?
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