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Humans incorporate attention-dependent uncertainty

into perceptual decisions and confidence
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Perceptual decisions are better when they take uncertainty into
account. Uncertainty arises not only from the properties of sen-
sory input but also from cognitive sources, such as different
levels of attention. However, it is unknown whether humans
appropriately adjust for such cognitive sources of uncertainty
during perceptual decision-making. Here we show that, in a
task in which uncertainty is relevant for performance, human
categorization and confidence decisions take into account uncer-
tainty related to attention. We manipulated uncertainty in an
orientation categorization task from trial to trial using only an
attentional cue. The categorization task was designed to disam-
biguate decision rules that did or did not depend on attention.
Using formal model comparison to evaluate decision behav-
ior, we found that category and confidence decision bound-
aries shifted as a function of attention in an approximately
Bayesian fashion. This means that the observer’s attentional
state on each trial contributed probabilistically to the decision
computation. This responsiveness of an observer’s decisions to
attention-dependent uncertainty should improve perceptual deci-
sions in natural vision, in which attention is unevenly distributed
across a scene.
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Sensory representations are inherently noisy. In vision, stim-
ulus factors such as low contrast, blur, and visual noise can

increase an observer’s uncertainty about a visual stimulus. Opti-
mal perceptual decision-making requires taking into account
both the sensory measurements and their associated uncertainty
(1). When driving on a foggy day, for example, you may be more
uncertain about the distance between your car and the car in
front of you than you would be on a clear day and try to keep
further back. Humans often respond to sensory uncertainty in
this way (2, 3), adjusting their choice (4) behavior as well as
their confidence (5). Confidence is a metacognitive measure that
reflects the observer’s degree of certainty about a perceptual
decision (6, 7).

Uncertainty arises not only from the external world but also
from one’s internal state. Attention is a key internal state vari-
able that governs the uncertainty of visual representations (8,
9); it modulates basic perceptual properties like contrast sen-
sitivity (10, 11) and spatial resolution (12). Surprisingly, it has
been suggested that, unlike for external sources of uncertainty,
people fail to take attention into account during perceptual
decision-making (13–15), leading to inaccurate decisions and
overconfidence—a risk in attentionally demanding situations like
driving a car.

However, this proposal has never been tested using a per-
ceptual task designed to distinguish fixed from flexible decision
rules, nor has it been subjected to formal model comparison.
Critically, as we show in SI Appendix, section S1, the standard
signal detection tasks used previously cannot, in principle, test
the fixed decision rule proposal. In standard tasks, the abso-
lute internal decision rule cannot be uniquely recovered, making
it impossible to distinguish between fixed and flexible decision
rules (SI Appendix, Fig. S1A).

Testing whether observers take attention-dependent uncer-
tainty into account for both choice and confidence also requires
a task in which such decision flexibility stands to improve cate-
gorization performance. This condition is not met by traditional
left versus right categorization tasks, in which the optimal choice
boundary is the same (halfway between the means of the left and
right category distributions) regardless of the level of uncertainty
(SI Appendix, Fig. S1B). Optimal performance can be achieved
simply by taking the difference between the evidence for left
and the evidence for right, with no need to take uncertainty
into account. The same principle applies to present versus absent
detection tasks.

To overcome these limitations, we used a categorization
task—which we call the embedded category task—specifically
designed to test whether decision rules depend on uncertainty.
Observers categorized stimuli as belonging to one of two distri-
butions, which had the same mean but different variances (Fig.
1A). The task requires distinguishing a more specific from a
more general perceptual category (4, 5), which is typical of object
recognition (16, 17) (e.g., distinguishing a beagle from other
dogs) and perceptual grouping (e.g., distinguishing collinear line
segments from other line segment configurations) (18). In the
embedded category task, the optimal choice boundaries shift as
uncertainty increases, which allowed us to determine whether
observers’ behavior tracked these shifts, along with analogous
shifts in confidence boundaries.

Significance

We must routinely make decisions based on uncertain sensory
information. Sometimes that uncertainty is related to our own
cognitive state, such as when we are not paying attention.
Do our decisions about what we perceive take into account
our attentional state? Or are we blind to such internal sources
of uncertainty, leading to poor decisions and overconfidence?
We found that human observers take attention-dependent
uncertainty into account when categorizing visual stimuli and
reporting their confidence in a task in which uncertainty is
relevant for performance. Moreover, they do so in an approx-
imately Bayesian fashion. Human perceptual decision-making
can therefore, at least in some cases, adjust in a statisti-
cally appropriate way to external and internal sources of
uncertainty.
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Fig. 1. Stimuli and task. (A) Stimulus orientation distributions for each cat-
egory. (B) Trial sequence. Cue validity, the likelihood that a nonneutral cue
would match the response cue, was 80%. Each button corresponds to a
category choice and confidence rating.

Results
Observers performed the embedded category task in which they
categorized drifting grating stimuli as drawn from either a nar-
row distribution around horizontal (SD=3�, category 1) or a
wide distribution around horizontal (SD=12�, category 2) (Fig.
1A) (4). Because the category distributions overlap, maximum
accuracy on the task is ⇠80%. We trained observers on the cat-
egory distributions in category training trials, in which a single
stimulus was presented at the fovea, before the main experiment
and in short, top-up blocks interleaved with the test blocks (see
Materials and Methods). Accuracy on category training trials in
test sessions was 71.9% ± 4.0%, indicating that observers knew
the category distributions and could perform the task well.

Four stimuli were briefly presented on each trial, and a
response cue indicated which stimulus to report. Observers
reported both their category choice (category 1 vs. 2) and their
degree of confidence on a 4-point scale using one of eight but-
tons, ranging from high-confidence category 1 to high-confidence
category 2 (Fig. 1B). Using a single button press for choice
and confidence prevented postchoice influences on the confi-
dence judgment (19) and emphasized that confidence should

reflect the observer’s perception rather than a preceding motor
response. We manipulated voluntary (i.e., endogenous) attention
on a trial-to-trial basis using a spatial cue that pointed to either
one stimulus location (valid condition: the response cue matched
the cue, 66.7% of trials; and invalid condition: it did not match,
16.7% of trials) or all four locations (neutral condition: 16.7% of
trials) (Fig. 1B). Twelve observers participated, with about 2,000
trials per observer.

Cue validity increased categorization accuracy, one-way
repeated-measures ANOVA, F (2, 11)= 95.88, P < 10�10, with
higher accuracy following valid cues, two-tailed paired t test,
t(11)= 7.92, P < 10�5, and lower accuracy following invalid
cues, t(11)= 4.62, P < 10�3, relative to neutral cues (Fig. 2A,
Top). This pattern confirms that attention increased orientation
sensitivity (e.g., refs. 11 and 20). Attention also increased con-
fidence ratings, F (2, 11)= 13.35, P < 10�3, and decreased reac-
tion time, F (2, 11)= 28.76, P < 10�6, ruling out speed–accuracy
tradeoffs as underlying the effect of attention on accuracy (Fig.
2A, Center and Bottom).

Decision rules in this task are defined by how they map stim-
ulus orientation and attention condition onto a response. We
therefore plotted behavior as a function of these two variables.
Overall performance was a “W”-shaped function of stimulus
orientation (Fig. 2B, Top), reflecting the greater difficulty in cat-
egorizing a stimulus when its orientation was near the optimal
category boundaries (at ⇠5� with no noise). Attention increased
the sensitivity of responses to the stimulus orientation (Fig. 2B).

To assess whether observers changed their category and confi-
dence decision boundaries to account for attention-dependent
orientation uncertainty, we fit two main models. In one,
the Bayesian model, decisions take uncertainty into account,
whereas in the other, the Fixed model, decisions are insensi-
tive to uncertainty. Both models assume that, for the stimulus
of interest, the observer draws a noisy orientation measure-
ment from a normal distribution centered on the true stimulus
value with SD (i.e., uncertainty) dependent on attention. In the
Bayesian model, decisions depend on the relative posterior prob-
abilities of the two categories, leading the observer to shift his
or her decision boundaries in measurement space, based on the
attention condition (4, 5) (Fig. 3 A and B; SI Appendix, Fig.
S2). The Bayesian model maximizes accuracy and produces con-
fidence reports that are a function of the posterior probability
of being correct. Note that observers could take uncertainty
into account in other ways, but here we began with a norma-
tive approach by using a Bayesian model. In the Fixed model,
observers use the same decision criteria, regardless of the atten-
tion condition (13, 15, 21–27) (i.e., they are fixed in measurement
space; Fig. 3 A and B). We used Markov chain Monte Carlo
(MCMC) sampling to fit the models to raw, trial-to-trial cat-
egory and confidence responses from each observer separately
(Materials and Methods and SI Appendix, Table S1).

Observers’ decisions took attention-dependent uncertainty
into account. The Bayesian model captured the data well
(Fig. 3C) and substantially outperformed the Fixed model (Fig. 3
C and D), which had systematic deviations from the data.
Although the fit depended on the full dataset, note deviations
of the Fixed fit from the data near zero tilt and at large tilts
in Fig. 3C, including failure to reproduce the cross-over pat-
tern of the three attention condition curves that is present in
the data and the Bayesian fit. To compare models, we used an
approximation of leave-one-out cross-validated log likelihood
that uses Pareto-smoothed importance sampling (PSIS-LOO;
henceforth LOO) (29). Bayesian outperformed Fixed by an
LOO difference (median and 95% CI of bootstrapped mean dif-
ferences across observers) of 102 [45, 167]. This implies that
the attentional state is available to the decision process and
is incorporated into probabilistic representations used to make
the decision.
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Fig. 2. Behavioral data. n = 12 observers. Error bars show trial-weighted
mean and SEM across observers. (A) Accuracy, confidence ratings, and reac-
tion time as a function of cue validity. (B) As in A but as a function of
cue validity and stimulus orientation. Stimulus orientation is binned to
approximately equate the number of trials per bin. SI Appendix, Fig. S5
shows proportion category 1 choice data, and SI Appendix, Fig. S6 shows
confidence and reaction time data in more detail.

Although our main question was whether observers’ decisions
took uncertainty into account, our methods also allowed us to
determine whether Bayesian computations were necessary to
produce the behavioral data or whether heuristic strategies of
accounting for uncertainty would suffice. We tested two mod-
els with heuristic decision rules in which the decision boundaries
vary as linear or quadratic functions of uncertainty, approxi-
mating the Bayesian boundaries (SI Appendix, Fig. S3A). The
Linear and Quadratic models both outperformed the Fixed
model (LOO differences of 124 [77, 177] and 129 [65, 198],
respectively; SI Appendix, Fig. S3 B and C). The best model,
quantitatively, was Quadratic, similar to previous findings with
contrast-dependent uncertainty (4, 5). SI Appendix, Table S2
shows all pairwise comparisons of the models. Model recov-
ery showed that our models were meaningfully distinguishable
(SI Appendix, Fig. S4). Decision rules therefore changed with
attention without requiring Bayesian computations.

We next asked whether category decision boundaries—regard-
less of confidence—shift to account for attention-dependent
uncertainty. Perhaps, for example, performance of the Bayesian
model was superior not because observers changed their catego-
rization behavior but because they rated their confidence based
on the attention condition, which they knew explicitly. Given
the mixed findings on the relation between attention and con-
fidence (30–33) and the proposal that perceptual decisions do
not account for attention (13), such a finding would not be trivial

(see Discussion), but it would warrant a different interpretation
than if category decision boundaries also depended on atten-
tion. We fit the four models to the category choice data only and
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Fig. 3. Model schematics, fits, and fit comparison. (A) Schematic of Bayesian
(Left) and Fixed (Right) models, which were fit separately for each observer.
As attention decreases, uncertainty (measurement noise SD) increases, and
orientation measurement likelihoods (blue and red curves) widen (28). In the
Bayesian model, choice and confidence boundaries change as a function of
uncertainty. In the Fixed model, boundaries do not depend on uncertainty.
Colors indicate category and confidence response (color code in Fig. 1B). (B)
Decision rules for Bayesian and Fixed models show the mappings from orien-
tation measurement and uncertainty to category and confidence responses.
Horizontal lines indicate the uncertainty levels used in A; the regions inter-
secting with a horizontal line match the regions in the corresponding plot
in A. (C) Model fits to response as a function of orientation and cue valid-
ity. Response is an 8-point scale ranging from high confidence category 1 to
high confidence category 2, with colors corresponding to those in Fig. 1B; only
the middle six responses are shown. Error bars show mean and SEM across
observers. Shaded regions are mean and SEM of model fits (see SI Appendix,
section S3.8). Although mean response is shown here, models were fit to raw,
trial-to-trial data. Stimulus orientation is binned to approximately equate the
number of trials per bin. (D) Model comparison. Black bars represent individ-
ual observer LOO differences of Bayesian from Fixed. Negative values indicate
that Bayesian had a higher (better) LOO score than Fixed. Blue line and shaded
region show median and 95% confidence interval (CI) of bootstrapped mean
differences across observers.
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again rejected the Fixed model (SI Appendix, Fig. S5 A and B and
Tables S3 and S4). Therefore, category criteria, independent of
confidence criteria, varied as a function of attention-dependent
uncertainty.

Finally, we directly tested for decision boundary shifts—the
key difference between the Bayesian and Fixed models—by
estimating each observer’s category decision boundaries non-
parametrically. To do so, we fit the category choice data with
a Free model in which the category decision boundaries var-
ied freely and independently for each attention condition. The
estimated boundaries differed between valid and invalid tri-
als (Fig. 4 and SI Appendix, Fig. S5C), with a mean differ-
ence of 7.5� (SD = 7.8�), two-tailed paired t test, t(11)=
3.33, P < 10�2. Most observers showed a systematic outward
shift of category decision boundaries from valid to neutral to
invalid conditions, confirming that their choices accounted for
uncertainty.

Discussion
Using an embedded category task designed to distinguish fixed
from flexible decision rules, we found that human perceptual
decision-making takes into account uncertainty due to spatial
attention, when uncertainty is relevant for performance. These
findings indicate flexible decision behavior that is responsive
to attention—an internal factor that affects the uncertainty of
stimulus representations.

Our findings of flexible decision boundaries run counter to a
previous proposal that observers use a fixed decision rule under
varying attentional conditions (13–15, 21). This idea originated
from a more general “unified criterion” proposal (25, 26), which
asserts that in a display with multiple stimuli, observers adopt
a single, fixed decision boundary (the unified criterion) for all
items (22–27). The unified criterion proposal implies a rigid, sub-
optimal mechanism for perceptual decision-making in real-world
complex scenes, in which uncertainty can vary due to a variety of
factors.

Although the unified criterion proposal has served to explain
experimental findings (13–15, 21–27, 34), it is impossible to infer
decision boundaries from behavior in the signal detection theory
(SDT) tasks used previously (35). In theory, it is always possible
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Fig. 4. Free model analysis. Group mean MCMC parameter estimates
(crosses) show systematic changes in the category decision boundary across
attention conditions. The same pattern can be seen for individual observers:
Each gray line corresponds to a different observer, with connected points
representing the estimates for valid, neutral, and invalid attention condi-
tions. Each point represents a pair of parameter estimates: uncertainty and
category decision boundary for a specific attention condition.

to explain behavioral data from such tasks with a fixed decision
rule, as long as the means and variances of the internal measure-
ment distributions are free to vary (SI Appendix, section S1).

This issue is particularly thorny for attention studies: SDT
works with arbitrary, internal units of “evidence” for one choice
or another, and attention could change the means, the vari-
ances, or both properties of the internal evidence distributions
(10, 11, 36). As a result, the decision boundaries are under-
constrained: A fixed decision boundary could be mistaken for a
flexible one, and vice versa (Fig. 5). Relatedly, in a perceptual
averaging task, confidence data apparently generated by a fixed
decision rule can also be explained by a Bayesian decision rule
with small underestimations of the internal measurement noise
(37). These considerations underscore the importance of doing
model comparison even for relatively simple decision models. It
may be, then, that decision boundaries did change with atten-
tion in previous studies, but these changes were not inferred for
methodological reasons.

Alternatively, it may be that decision boundaries truly did not
change in previous studies, and task differences underlie our dif-
fering results. Studies supporting the unified criterion proposal
used either detection or orthogonal discrimination (13, 15, 21–
27, 34), which is often used as a proxy for detection (10, 38). In
these tasks, the stimuli are low contrast relative to either a blank
screen or a noisy background, and performance is limited by low
signal-to-noise ratio. In our categorization task, by comparison,
although maximum performance is capped due to overlap of the
category-conditioned stimulus distributions, variations in perfor-
mance depend on the precision of orientation representations,
just as in a left vs. right fine discrimination task. Therefore, it
may be that observers adjust decision boundaries defined with
respect to precise features (e.g., What is the exact orientation?)
but not boundaries defined with respect to signal strength (e.g.,
Is anything present at all?).

Other task differences could play a role as well. Some exper-
iments matched perceptual sensitivity d 0 for different attention
conditions by changing stimulus contrast, so attention and phys-
ical stimulus properties covaried (13, 15). For the metacognitive
report, we asked for confidence rather than visibility (13); these
subjective measures are known to differ (39). Finally, one study
(15) using a signal detection approach suggested that observers
rely insufficiently on an instructed prior, especially for unat-
tended stimuli. The question of how attention affects the use of
a prior is different from the current question, as incorporating
a prior requires a cognitive step beyond accounting for uncer-
tainty in the perceptual representation. In the future, it will be
interesting to examine how decision boundaries relate to priors,
attention, and uncertainty more generally in this task and other
tasks in which absolute decision boundaries can be uniquely
inferred.

Despite attention’s large influence on visual perception (8),
only a handful of studies have examined its influence on visual
confidence, with mixed results. Two studies found that voluntary
attention increased confidence (30, 31), one found that volun-
tary but not involuntary attention increased confidence (33),
and another found no effect of voluntary attention on confi-
dence (32). This last result has been attributed to response speed
pressures (30, 33). Three other studies suggested an inverse
relation between attention and confidence, though these used
rather different attention manipulations and measures. One
study reported higher confidence for uncued compared with
cued error trials (40), one found higher confidence for stimuli
with incongruent compared with congruent flankers (41), and
a third found that lower fMRI BOLD activation in the dorsal
attention network correlated with higher confidence (21). Here,
experimentally manipulating spatial attention without response
speed pressure revealed a positive, approximately Bayesian,
relation between attention and confidence.
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Fig. 5. Limitations of standard SDT tasks. SDT tasks such as the detection
task illustrated here cannot distinguish fixed from flexible decision rules
when the means and variances of internal measurement distributions can
also vary across conditions. (A) Fixed and (B) flexible decision rules give
the same behavioral data (perceptual sensitivity, d

0, and criterion, c) in
the two depicted scenarios, in which attention affects the measurement
distributions differently (compare the invalid distributions in A and B).
An experimenter could not infer from the behavioral data which scenario
occurred.

The mechanisms for decision adjustment under attention-
dependent uncertainty could be mediated by effective contrast
(10, 42, 43). Alternatively, attention-dependent decision-making
may rely on higher order monitoring of attentional state.
For example, the observer could consciously adjust a decision
depending on whether he or she was paying attention. Future
studies will be required to distinguish between these more
bottom-up or top-down mechanisms.

Our finding that human observers incorporate attention-
dependent uncertainty into perceptual categorization and con-
fidence reports in a statistically appropriate fashion points to the
question of what other kinds of internal states can be incorpo-
rated into perceptual decision-making. There is no indication, for
example, that direct stimulation of sensory cortical areas leads
to adjustments of confidence and visibility reports (21, 44, 45),
suggesting that the system is not responsive to every change to
internal noise. It may be that the system is more responsive to
states that are internally generated or that have consistent behav-
ioral relevance. Attention is typically spread unevenly across
multiple objects in a visual scene, so the ability to account for
attention likely improves perceptual decisions in natural vision.
It remains to be seen whether the perceptual decision-making
system is responsive to other cognitive or motivational states.

Materials and Methods
Extended materials and methods are available in SI Appendix.

Observers. Twelve observers (seven female) participated in the study.
Observers received $10 per 40- to 60-min session, plus a completion bonus of
$25. The experiments were approved by the University Committee on Activi-
ties Involving Human Subjects of New York University. Informed consent was
given by each observer before the experiment. All observers were naı̈ve to
the purpose of the experiment, and none were experienced psychophysical
observers.

Apparatus, Stimuli, and Task. Observers were seated in a dark room, at a
viewing distance of 57 cm from the screen, with their head stabilized by a
chin-and-head rest. Stimuli were presented on a gamma-corrected 100 Hz,
21-inch display (Model Sony GDM-5402) with a gray background (60 cd/m2).
Stimuli were drifting Gabors with spatial frequency of 0.8 cycles per degree
of visual angle (dva), speed of 6 cycles per second, Gaussian envelope with
SD 0.8 dva, and randomized starting phase. In category training, the stimuli

were positioned at fixation. In all other blocks, one stimulus was positioned
in each of the four quadrants of the screen (45, 135, 225, 315�), 5 dva from
fixation. On each trial, each of the four stimuli was drawn independently
and with equal probability from one of the two category distributions. The
main task is shown in Fig. 1 and described in Results. Online eye tracking
(Eyelink 1000) was used to ensure fixation.

Experimental Procedure. Each observer completed seven sessions: two stair-
case sessions (training, contrast staircase, prescreening) followed by five test
sessions (main experiment). Observers received instructions and training for
each task (see SI Appendix).

Staircase Sessions. Each staircase session consisted of three category train-
ing blocks (72 trials each) and three category/attention testing-with-stair-
case blocks (144 trials each), in alternation.

In category training blocks, observers learned the stimulus distributions.
On each trial, category 1 or 2 was selected with equal probability, the stim-
ulus orientation was drawn from the corresponding stimulus distribution,
and the stimulus appeared at fixation for 300 ms at 35% contrast. Observers
reported category 1 or 2 and received accuracy feedback after each trial.

In category/attention testing-with-staircase blocks, the trial sequence was
identical to the main task (Fig. 1B), except observers reported only cate-
gory choice. There was no trial-to-trial feedback on this or any other type of
attention block.

We used an adaptive staircase procedure (46, 47) to estimate psychomet-
ric functions for performance accuracy as a function of contrast, separately
for valid, neutral, and invalid trials. Simulations we conducted before start-
ing the study showed that without a sufficiently large accuracy difference
between valid and invalid trials, our models would be indistinguishable.
Therefore, we used the psychometric function posteriors to determine
whether the observer was eligible for the test sessions and, if so, to deter-
mine the stimulus contrast for that observer (see SI Appendix). Twenty-eight
observers were prescreened, 13 were invited to participate in the main
study, and 1 dropped out, leaving 12 observers, our target.

Test Sessions. Each test session consisted of three category training blocks
(identical to staircase sessions but with observer-specific stimulus contrast)
and three confidence/attention testing blocks (144 trials each), in alter-
nation. These testing blocks were the main experimental blocks; the trial
sequence is shown in Fig. 1B.

Modeling Procedures. The modeling procedures were similar to those used
by Adler and Ma (5).

We used free parameters to characterize �, the SD of orientation mea-
surement noise, for all three attention conditions: �valid, �neutral and �invalid.
We added orientation-dependent noise (48).

We coded all responses as r 2 {1, 2, . . . , 8}, with each value indicating
category and confidence, as in Fig. 1B. The probability of a single trial i

is equal to the probability mass of the internal measurement distribution
p(x | si) =N (x; si , �2

i
) in a range corresponding to the observer’s response ri .

We find the boundaries (br
i
�1(�i), br

i
(�i)) in measurement space, as defined

by the fitting model m and parameters ✓, and then compute the probability
mass of the measurement distribution between the boundaries:

pm,✓(ri | si , �i) =
Z �b

r
i
�1

�br
i

N (x; si , �
2
i
) dx +

Z
br

i

b
r
i
�1

N (x; si , �
2
i
) dx, [1]

where b0 = 0� and b8 =1�.
To obtain the log likelihood of the dataset, given a model with parame-

ters ✓, we compute the sum of the log probability for every trial i, where t

is the total number of trials:

log p(data | ✓) =
tX

i=1

log p(ri | ✓) =
tX

i=1

log p✓(ri | si , �i). [2]

To fit the model, we sampled from the posterior distribution over parame-
ters, p(✓ | data). To sample from the posterior, we use an expression for the
log posterior

log p(✓ | data) = log p(data | ✓) + log p(✓) + constant, [3]

where log p(data | ✓) is given in Eq. 2. We took uniform (or, for param-
eters that were standard deviations, log-uniform) priors over reasonable,
sufficiently large ranges (49), which we chose before fitting any models.
We sampled from the probability distribution using a MCMC method, slice
sampling (50) (see SI Appendix).
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To compare model fits while accounting for the complexity of each
model, we computed the LOO (29). A bootstrapping procedure was used
to compute the group mean with CIs for LOO score differences between
models.

Bayesian Model. The Bayesian model generates category and confidence
responses based on the log posterior ratio, d, of the two categories:

d = log
p(C = 1 | x)
p(C = 2 | x)

= log
p(x | C = 1)
p(x | C = 2)

+ log
p(C = 1)
p(C = 2)

. [4]

Given the orientation measurement likelihoods, p(x | C), and marginalizing
over the stimulus s, this is equivalent to

d =
1
2

log
�2 +�2

2

�2 +�2
1

�
�2

2 ��2
1

2(�2 +�2
1) (�2 +�2

2)
x

2 + log
p(C = 1)
p(C = 2)

. [5]

The observer compares d to a set of decision boundaries (k0, k1, . . . , k8),
which define the eight possible category and confidence responses. k4 is
the category boundary and captures possible category bias, and it is the
only boundary parameter in models of category choice only. k0 is fixed
at �1 and k8 is fixed at 1, leaving seven free boundary parameters:
(k1, k2, . . . , k7) = k.

In the Bayesian models with d noise, we assume that, for each trial, there
is an added Gaussian noise term on d, ⌘d ⇠ p(⌘d), where p(⌘d) =N (0, �2

d
)

and �d is a free parameter.

Fixed Model. The observer compares the measurement to a set of bound-
aries that are not dependent on �. We fit free parameters k and use
measurement boundaries br = kr .

Linear and Quadratic Models. The observer compares the measurement to a
set of boundaries that are linear or quadratic functions of �. We fit free
parameters k and m and use measurement boundaries br (�) = kr + mr�
(Linear) or br (�) = kr + mr�

2 (Quadratic).

Free Model. To estimate the category boundaries with minimal assumptions,
we fit free parameters k4, valid, k4, neutral, and k4, invalid and used measurement
boundaries b4, attention condition = k4, attention condition.

Data and Code Availability. All data and code used for running experi-
ments, model fitting, and plotting are available at https://doi.org/10.5281/
zenodo.1422804.
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Supplementary Text

S1 Theoretical motivations for the task

The goal of the current study was to test whether category and confidence decision rules account for attention-
dependent uncertainty. Unlike the tasks used in previous studies, the task we used1 can answer this question,
because it has two properties: 1) Unlike the detection and coarse discrimination (e.g., ±45¶) tasks used in
most signal detection theory2 (SDT) studies, the current task allows inference of absolute decision bound-
aries. 2) Unlike tasks with mirror-image categories (e.g., left vs. right discrimination), the current task
creates an incentive to shift the category boundary when uncertainty changes.

S1.1 Inference of absolute decision boundaries

A decision rule can be thought of as a boundary defined on the observer’s internal measurement space. Here
we were interested in the absolute location of that boundary b. The “unified criterion” discussed previously
also refers to an absolute boundary3,4.

To infer absolute decision boundaries from behavioral data, the measurement axis must represent known
feature values. The embedded category task has this property, because the measurement axis represents
orientation. Making a category or confidence decision can be thought of as comparing the observed stimulus
orientation to an internal reference orientation, which is the decision boundary. As experimenters, we know
the means of the internal measurement distributions (specific orientations), so we can infer the absolute
decision boundary on the orientation axis.

In SDT detection and coarse discrimination tasks, in contrast, absolute decision boundaries cannot be
inferred, because the measurement axis represents values that we, as experimenters, do not know. In a
detection task, the measurement value is thought of as the strength of the internal signal, or the “amount
of evidence” that the external signal is present. In a coarse discrimination task, the measurement value
is thought of as the amount of evidence for choice 1 (e.g., ≠45¶) versus choice 2 (e.g., +45¶). We don’t
know the means of the internal measurement distributions in real values; we don’t even know what the units
are. Consequently, the behavioral SDT measures d

Õ (perceptual sensitivity) and c (criterion) are defined
in a normalized space – d

Õ and c are z-scored measures of the distance between the two internal category
distributions and the location of the observer’s decision boundary, respectively. So they are relative measures.

As a result, an absolute decision boundary b is unrecoverable from behavioral data. This fact can be shown
mathematically. The standard formulae for d

Õ and c are

d
Õ = Z(H) ≠ Z(F ) (S1)

c = ≠1
2(Z(H) + Z(F )), (S2)

where Z is the inverse of the normal cumulative distribution function (i.e., z-score), H is the proportion of
hits, and F is the proportion of false alarms. Note this formula gives c with respect to the unbiased criterion.
If we let the mean of the noise distribution be 0 and the mean of the signal distribution be µ, then
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d
Õ = µ

‡
(S3)

c =
b ≠ µ

2
‡

. (S4)

Here we have two equations with three unknowns. Any combination of d
Õ and c is therefore consistent with

an infinite set of combinations of the µ, ‡, and b parameters; thus b cannot be uniquely determined. The
intuition here is that the SDT axis can be rescaled without changing d

Õ and c (Figure S1a). The same
issue applies not only to d

Õ and c but to any other relative behavioral measure, such as hit rate or false
alarm rate. Kontsevich et al.5 raised this concern about Gorea and Sagi’s4 proposal of a unified criterion
for simultaneously presented stimuli.
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Figure S1: Methodological limitations in standard signal detection tasks. (a) Rescaling the SDT axis by a factor a yields the

same values of dÕ
and c, but with a di�erent set of parameters (the original parameters rescaled by a). This is because dÕ

and c are relative to the internal measurement distributions, not any absolute evidence metric. (b) In standard SDT tasks,

when the means of the internal measurement distributions are symmetric about the optimal category boundary, changing

the uncertainty does not change the optimal boundary. µ = mean, ‡ = standard deviation, b = decision boundary.

The non-uniqueness of SDT parameters creates a critical problem when asking whether b changes with
attention. Attention could change µ, ‡, or both properties of the internal measurement distributions6–8.
Therefore, b cannot be compared, even in a relative fashion, across attention conditions; so fixed and flexible
decision rules cannot be distinguished (Figure 5).

Note that in a left vs. right fine discrimination task, in which stimuli are drawn from orientation distributions
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with similar means, absolute decision boundaries can be inferred, again because the measurement axis
represents orientation, and the measurement distribution means are known to the experimenter9.

This argument relates to that by Aitchison et al.10, who showed that to distinguish di�erent models of
confidence, two-dimensional data are required. They used features of two separate stimuli. Here, we used
orientation and uncertainty.

S1.2 Incentive to shift the category boundary when uncertainty changes

Fine discrimination tasks have the first property, allowing inference of absolute decision boundaries. However,
not every such task has the second property, an incentive to shift category boundaries.

In the embedded category task, the category distributions overlap in such a way that the optimal category
boundaries shift when the uncertainty in the measurement distributions changes (Figure 3a,b). Therefore,
observers have an incentive to shift their category decision rules when uncertainty changes, and we as
experimenters are able to assess whether they do so.

In standard SDT tasks, in contrast, the optimal category boundary does not depend on uncertainty ‡ if the
means of the internal measurement distributions remain symmetric about the boundary (Figure S1b). So if
attention does not change the means, or changes them symmetrically (as in a discrimination task), then the
optimal category boundary will not change. Observers therefore have no incentive to change their category
decision rules when uncertainty changes, making it impossible to test whether the category boundary is fixed
or flexible.

In summary, the embedded category task has two critical advantages over standard SDT tasks, which allow
an unambiguous determination of whether and how perceptual decisions take uncertainty into account.

Extended Materials and Methods

S2 Experiment

S2.1 Observers

Twelve observers (7 female, 5 male), aged 18–25 years, participated in the experiment. These observers came
from an original set of 28 observers who completed at least one session. The remaining observers did not
complete the main experiment, either because they were not invited to continue following the pre-screening
staircase sessions (15 observers, Section S2.3.7) or because they chose to stop participating before all
sessions were completed (one observer). Observers received $10 per 40–60 minute session, plus a completion
bonus of $25. The experiments were approved by the University Committee on Activities Involving Human
Subjects of New York University. Informed consent was given by each observer before the experiment. All
observers were naïve to the purpose of the experiment. No observers were fellow scientists.

S2.2 Apparatus and stimuli

2.2.1 Apparatus

Observers were seated in a dark room, at a viewing distance of 57 cm from the screen, with their chin
in a chinrest. Stimuli were presented on a gamma-corrected 100 Hz, 21-inch display (Model Sony GDM-
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5402). The display was connected to a 2010 iMac running OS X 10.6.8 using MATLAB (Mathworks) with
Psychophysics Toolbox 311–13.

2.2.2 Stimuli

The background was mid-level gray (60 cd/m2). Stimuli consisted of drifting Gabors with a spatial frequency
of 0.8 cycles per degree, a speed of 6 cycles/s, a Gaussian envelope with a SD of 0.8 degrees of visual angle
(dva), and a randomized starting phase. In category training, the stimuli were positioned at fixation, and
the central fixation cross was a black “+” subtending 1.2 dva in diameter. In all other blocks, one stimulus
was positioned in each of the four quadrants of the screen, at 45, 135, 225, and 315 degrees, 5 dva from
fixation, and the fixation cross was a black “◊” with each arm pointing to a quadrant. One or more of the
arms turned white to provide a precue or response cue (Figure 1b). Stimulus contrast depended on the block
type.

2.2.3 Categories

Stimulus orientations si were drawn from Gaussian distributions with means µ1 = µ2 = 0¶, and standard
deviations ‡1 = 3¶ (category 1) and ‡2 = 12¶ (category 2). Because the category distributions overlapped,
maximum accuracy was ~80%.

2.2.4 Attention manipulation

During attention training and testing blocks, voluntary spatial attention was manipulated via a central precue
presented at the start of the trial. A response cue at the end of the trial indicated which of the four stimuli
to report. On each trial, each of the four stimuli was drawn from one of the two category distributions. Each
stimulus was generated independently. In valid trials (66.7% of all trials), a single quadrant was precued
and the response cue matched the precue. In invalid trials (16.7%), a single quadrant was precued and the
response cue did not match the precue. Cue validity was therefore 80% when a single quadrant was precued.
In neutral trials (16.7%), all four quadrants were precued, and the response cue pointed to one of the four
quadrants with equal probability for each quadrant.

S2.3 Procedure

Each observer completed seven sessions. Because our behavioral task involved multiple components—
orientation categorization, confidence reports, and attention—we trained observers on each component in a
stepwise fashion, as described below.

The first two sessions (“staircase sessions”) were used to pre-screen observers and find a stimulus con-
trast level that would achieve maximum separability in performance across the three attention conditions.
Each staircase session consisted of 3 category training blocks and 3 category/attention testing-with-staircase
blocks, in alternation. No confidence reports were collected in these sessions. The first category training
block was preceded by a category demo, and the first category/attention testing-with-staircase block was
preceded by a category/attention training block. Detailed instructions were provided in the first session.
Most blocks consisted of sets of trials, in between which the observer was informed of their progress (e.g.,
“You have completed three quarters of Testing Block 2 of 3”) and allowed to rest. The staircase sessions
also served as practice on the categorization and attention components of the task, so that observers knew
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them well by the time they started the main experiment. During these sessions, stimulus contrast was 35%
for training blocks, and varied during the testing-with-staircase blocks.

The final five sessions (“test sessions”) comprised the main experiment. Each test session consisted of 3
category training blocks and 3 confidence/attention testing blocks, in alternation. The first category training
block was preceded by a category demo, and the first confidence/attention testing block was preceded by a
confidence/attention training block. During these sessions, stimulus contrast was fixed to an observer-specific
value in all blocks.

Combining all test sessions, 9 observers completed 15 confidence/attention testing blocks (2160 trials), 2
observers completed 14 testing blocks (2016 trials), and 1 observer completed 12 testing blocks (1728 trials).
Accuracy on category training trials was 70.8% ± 4.0% (mean ± 1 SD) in staircase sessions and 71.9% ±
4.0% in test sessions, indicating that observers learned the category distributions well (recall that maximum
accuracy on the task is ~80%).

2.3.1 Eye tracking

Eye tracking (Eyelink 1000) was used to monitor fixation online. In all blocks, trials were only initiated
when the observer was fixating. In testing blocks, trials in which observers broke fixation due to blinks or
eye movements were aborted and repeated later in the experiment.

2.3.2 Instructions

First staircase session. Before the first category training block, we provided observers with a printed graphic
similar to Figure 1a, explained how the stimuli were generated from distributions, and explained the category
training procedure. We also explained that trials would only proceed when the observer maintained fixation.
Before the category/attention training block, we explained the attention task using an onscreen graphic that
explained the cuing procedure and a printed graphic that illustrated cue validity. We also explained the
requirement to maintain fixation from the precue until the response cue and the consequences of breaking
fixation. Before the first category/attention testing-with-staircase block, we explained that the stimulus
presentation time would be shorter and that the contrast of the stimuli would vary.

First test session. Before the confidence/attention training block, we explained two changes to the experi-
ment. First, we told observers that they would be reporting category choice and confidence simultaneously.
We provided a printed graphic similar to the buttons shown in Figure 1b, showing the eight buttons repre-
senting category choice and confidence level, the latter on a 4-point scale. The confidence levels were labeled
as “very high,” “somewhat high,” “somewhat low,” and “very low.” All printed graphics were visible to
observers throughout the experiment. Second, we told observers that contrast would be fixed (rather than
variable) for the remainder of the experiment, in all blocks.

2.3.3 Category demo

We showed observers 25 randomly drawn exemplar stimuli from each category (50 exemplars in the first
staircase session). Stimulus contrast was 35% in staircase sessions and observer-specific in test sessions.
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2.3.4 Category training

To ensure that observers knew the stimulus distributions well, we gave them extensive category training with
trial-to-trial correctness feedback and foveal stimulus presentation to reduce orientation uncertainty. Each
trial proceeded as follows: Observers fixated on a central cross for 1 s. Category 1 or category 2 was selected
with equal probability. The stimulus orientation was drawn from the corresponding stimulus distribution
and displayed as a drifting Gabor. The stimulus appeared at fixation for 300 ms, replacing the fixation cross.
Observers were asked to report category 1 or category 2 by pressing a button with their left or right index
finger, respectively. Observers were able to respond immediately after the o�set of the stimulus, at which
point correctness feedback was displayed for 1.1 s, e.g., “You said Category 1. Correct!” The fixation cross
then reappeared. In staircase sessions, the stimulus contrast was 35%. In test sessions, the contrast matched
the observer-specific levels chosen for testing blocks, in order to minimize obvious changes between training
and testing blocks. Each category training block had 2 sets of 36 trials (72 total). At the end of the block,
observers were shown the percentage of trials that they had correctly categorized.

2.3.5 Category/attention training

To familiarize observers with the attention task before the testing-with-staircase blocks, they completed
category/attention training. Observers performed the attention task, reporting only category choice. To
prevent observers from forming a simple mapping of orientation measurement and attention condition onto
the probability of category 1 (which might have biased behavior towards the Bayesian model), we withheld
trial-to-trial feedback on this and all other types of attention blocks. The precue indicating which location(s)
to attend to appeared for 300 ms, followed by a 300 ms period in which a standard fixation cross was shown.
Then the four drifting Gabor stimuli were displayed for 300 ms. After another 300 ms period with a fixation
cross, the response cue appeared, indicating which stimulus to report. The response cue remained on the
screen until the observer pressed one of the two choice response buttons, with no time pressure. Observers
were free to blink or rest briefly between trials, with a minimum intertrial interval of 800 ms. All attention
conditions were randomly intermixed. The stimulus contrast was 35%, as in staircase session category
training. The block had 36 trials in the first session and 30 trials in subsequent sessions. At the end of the
block, observers were shown the percentage of trials they had correctly categorized.

2.3.6 Category/attention testing-with-staircase

The purpose of this block was to determine the stimulus contrast for each observer that would be used
in the test sessions. The trial procedure was identical to that of category/attention training, except that
stimulus presentation time was 80 ms (instead of 300 ms) and stimulus contrast varied. We used an adaptive
staircase procedure to determine the stimulus contrast on each trial and estimate psychometric functions
for performance accuracy as a function of log contrast. Separate staircases were used for valid, neutral, and
invalid conditions. We used Luigi Acerbi’s MATLAB (https://github.com/lacerbi/psybayes) implementation
of the PSI method by Kontsevich and Tyler14, extended to include the lapse rate15. The method generates a
posterior distribution over three parameters of the psychometric function: threshold µ, slope ‡, and lapse rate
⁄. On each trial, it selects a stimulus intensity that maximizes the expected information gain by completion
of the trial. µ (log contrast units) ranged from ≠6.5 to 0 and had a Gaussian prior distribution with mean
≠2 and SD 1.2. log ‡ ranged from ≠3 to 0, and had a uniform prior distribution across the range. ⁄ ranged
from 0.15 (because the maximum accuracy in the task was slightly below 1 ≠ 0.15) to 0.5, and had a Beta
prior distribution with shape parameters – = 20 and — = 39. Each block had 4 sets of 36 trials (144 total).
At the end of the block, observers were shown the percentage of trials that they had correctly categorized.
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2.3.7 Observer pre-screening and contrast selection

Simulations we conducted before starting the study showed that without a su�ciently large noise (related
to accuracy) di�erence between valid and invalid trials, our models would be indistinguishable. Therefore,
we used a pre-screening process to select observers with a robust attention e�ect to participate in the
main experiment. We also determined the stimulus contrast at which each observer’s attention e�ect was
maximal. This procedure increased the probability that uncertainty would depend on attention in the main
experiment, which was critical for answering our central question about decision behavior. Note that the
pre-screening procedure only concerned the overall accuracy di�erence between valid and invalid trials, which
is independent of how attention a�ects the decision rule.

After each observer’s final staircase session, we plotted and visually inspected the mean and SD of the
posterior over the 3 (valid, neutral, and invalid) estimated psychometric functions (an example is shown in
Figure S7). An observer was considered eligible for the remainder of the study if there existed a contrast
that satisfied two conditions. 1) Invalid accuracy was above chance: The mean minus the SD of the posterior
over invalid psychometric functions was above 0.5. 2) Valid accuracy was di�erent from invalid accuracy:
The mean minus the SD of the posterior over valid psychometric functions was greater than the mean plus
1 SD of the posterior over invalid psychometric functions. For example, note that there is a range of values
in Figure S7 for which the purple shading does not overlap with the chance line or with the green shading.
Within the range of suitable contrasts, we selected the contrast for which the separation between valid,
neutral, and invalid performance appeared to be maximal. Observers for which no suitable contrast could
be found were not invited to participate in the main experiment. Selected contrasts ranged from 4% to 60%
across observers.

2.3.8 Confidence/attention training

To familiarize observers with the button mappings for choice and confidence, they completed confidence/attention
training. The trial procedure was identical to category/attention training, except observers reported their
confidence on each trial in addition to their category choice. Observers were not instructed to use the full
range of confidence reports, as that might have biased them away from reporting what felt most natural.
Instead, they were simply asked to be “as accurate as possible in reporting their confidence” on each trial.
Feedback about their choice and confidence report was presented for 1.2 s after each trial, e.g. “You said cat-
egory 2 with HIGH confidence.” The stimulus contrast was specific to each observer, based on the staircase
sessions. There were 30 trials per block.

2.3.9 Confidence/attention testing

These were the main experimental blocks. The trial procedure (Figure 1b) was the same as in confi-
dence/attention training blocks, but with no trial-to-trial feedback whatsoever. Each block had 4 sets of 36
trials (144 total). At the end of each block, observers were required to take a break of at least 30 s. During
the break, they were shown the percentage of trials that they had correctly categorized. Observers were also
shown a list of the top 10 block scores (across all observers, indicated by initials). This was intended to
motivate observers to perform well, and to reassure them that their scores were normal, since it is rare to
score above 75% on a block.
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S3 Modeling

The modeling procedures were similar to those used by Adler and Ma9. Several modeling choices were
adopted based on model comparisons performed for that study. These included: having orientation-dependent
measurement noise; allowing all decision boundaries to be free parameters in the Bayesian model; including
decision noise in the Bayesian model; and modeling three types of lapse rates.

S3.1 Measurement noise

We used free parameters to characterize ‡, the standard deviation (SD) of orientation measurement noise,
for all three attention conditions: ‡valid, ‡neutral, and ‡invalid.

We assumed additive orientation-dependent noise in the form of a rectified 2-cycle sinusoid, accounting for the
finding that measurement noise is higher at noncardinal orientations16. For a given trial i, the measurement
noise SD comes out to

‡i = ‡attention condition + Â

---sin
fis

90

---. (S5)

The second term of this equation is a constant that depends on the stimulus orientation s, with Â a free
parameter that determines the degree of orientation dependence.

S3.2 Response probability

We coded all responses as r œ {1, 2, . . . , 8}, with each value indicating category and confidence. A value
of 1 mapped to high confidence category 1, and a value of 8 mapped to high confidence category 2, as in
Figure 1b. The probability of a single trial i is equal to the probability mass of the internal measurement
distribution p(x | si) = N (x; si, ‡

2
i ) in a range corresponding to the observer’s response ri. Because we only

use a small range of orientations, we can safely approximate measurement noise as a normal distribution,
rather than a von Mises distribution. We find the boundaries (bri≠1(‡i), bri(‡i)) in measurement space, as
defined by the fitting model m and parameters ◊, and then compute the probability mass of the measurement
distribution between the boundaries:

pm,◊(ri | si, ‡i) =
⁄ ≠bri≠1

≠bri

N (x; si, ‡
2
i ) dx +

⁄ bri

bri≠1

N (x; si, ‡
2
i ) dx, (S6)

where b0 = 0¶ and b8 = Œ¶.

To obtain the log likelihood of the dataset, given a model with parameters ◊, we compute the sum of the log
probability for every trial i, where t is the total number of trials:

log p(data | ◊) =
tÿ

i=1
log p(ri | ◊) =

tÿ

i=1
log p◊(ri | si, ‡i). (S7)
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S3.3 Model specification

3.3.1 Bayesian

Derivation of d. The log posterior ratio d is equivalent to the log likelihood ratio plus an additive term
representing the prior probability over category:

d = log p(C = 1 | x)
p(C = 2 | x) = log p(x | C = 1)

p(x | C = 2) + log p(C = 1)
p(C = 2) . (S8)

To get d, we need to find the expressions for the orientation measurement likelihood p(x | C). The observer
knows that the measurement x is caused by the stimulus s, but has no knowledge of s. Therefore, the optimal
observer marginalizes over s:

p(x | C) =
⁄

p(x | s)p(s | C) ds. (S9)

We substitute the expressions for the noise distribution and the stimulus distribution, and evaluate the
integral:

p(x | C) =
⁄

N (s; x, ‡
2)N (s; µC , ‡

2
C) ds = N (x; µC , ‡

2 + ‡
2
C). (S10)

Plugging in the category-specific µC and ‡C , and substituting these expressions back into Equation S8, we
get:

d = 1
2 log ‡

2 + ‡
2
2

‡2 + ‡
2
1

≠ ‡
2
2 ≠ ‡

2
1

2(‡2 + ‡
2
1)(‡2 + ‡

2
2)x

2 + log p(C = 1)
p(C = 2) . (S11)

The 8 possible category and confidence responses are determined by comparing the log posterior ratio d to
a set of decision boundaries (k0, k1, . . . , k8). k4 is equal to the observer’s believed log prior ratio log p(C=1)

p(C=2) ,
which functions as the boundary on d between the 4 category 1 responses and the 4 category 2 responses
and is fit to capture possible category bias. k4 is the only boundary parameter in models of category choice
only (and not confidence). k0 is fixed at ≠Œ and k8 is fixed at Œ. The observer chooses category 1 when d

is positive. Thus there were 7 free boundary parameters: (k1, k2, . . . , k7) = k.

The posterior probability of category 1 can be written as as p(C = 1 | x) = 1
1+exp(≠d) .

Decision boundaries. In the Bayesian models with d noise, we assume that, for each trial, there is an added
Gaussian noise term on d, ÷d ≥ p(÷d), where p(÷d) = N (0, ‡

2
d), and ‡d is a free parameter. We pre-computed

101 evenly spaced draws of ÷d and their corresponding probability densities p(÷d). We used Equation S11
to compute a lookup table containing the values of d as a function of x, ‡, and ÷d. We then used linear
interpolation to find sets of measurement boundaries b(‡) corresponding to each draw of ÷d

17. We then
computed 101 response probabilities for each trial (as described in Section S3.2), one for each draw of ÷d,
and computed the weighted average according to p(÷d). This gave the values of pm,◊(ri | si, ‡i) for each trial
i, which are needed in order to compute the total log likelihood of the dataset under the model.

In the Bayesian choice model without d noise, we translate the decision boundary k4 from a log prior ratio
to a measurement boundary corresponding to the fitted noise levels ‡. To do this, we use k4 as the left-hand
side of Equation S11 and solve for x at the fitted levels of ‡. We used this model only for the purpose of
obtaining estimates of the category decision boundary parameters, and not for model comparison.
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3.3.2 Fixed

In the Fixed model, the observer compares the measurement to a set of boundaries that are not dependent
on ‡. We fit free parameters k and use measurement boundaries br = kr.

3.3.3 Linear and Quadratic

In the Linear and Quadratic models, the observer compares the measurement to a set of boundaries that
are linear or quadratic functions of ‡. We fit free parameters k and m and use measurement boundaries
br(‡) = kr + mr‡ (Linear) or br(‡) = kr + mr‡

2 (Quadratic).

3.3.4 Free

To estimate the category boundaries with minimal assumptions, we fit a Free model in which the observer
compares the orientation measurement to a set of boundaries that vary nonparametrically (i.e., free of a
parametric relationship with ‡) across attention conditions. As with the Bayesian choice model without
d noise (Section S3.3.1), we used this model only for the purpose of obtaining estimates of the category
decision boundary parameters and did not fit confidence. We fit free parameters k4,valid, k4,neutral, k4,invalid,
and used measurement boundaries b4,attention condition = k4,attention condition.

S3.4 Lapse rates

In category and confidence models, we fit three di�erent types of lapse rate. On each trial, there is some
fitted probability of:

• A “full lapse” in which the category report is random, and confidence report is chosen from a distri-
bution over the four levels defined by ⁄1, the probability of a “very low confidence” response, and ⁄4,
the probability of a “very high confidence” response, with linear interpolation for the two intermediate
levels.

• A “confidence lapse” ⁄confidence in which the category report is chosen normally, but the confidence
report is chosen from a uniform distribution over the four levels.

• A “repeat lapse” ⁄repeat in which the category and confidence response is simply repeated from the
previous trial.

In category choice models, we fit a standard category lapse rate ⁄, as well the above “repeat lapse” ⁄repeat.

S3.5 Parameterization

All parameters that defined the width of a distribution (‡valid, ‡neutral, ‡invalid, ‡d) were sampled in log-space
and exponentiated during the computation of the log likelihood. See Table S1 for a complete list of model
parameters for category choice and confidence models and Table S3 for choice-only models.
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S3.6 Model fitting

Rather than find a maximum likelihood estimate of the parameters, we sampled from the posterior distribu-
tion over parameters, p(◊ | data); this has the advantage of maintaining a measure of uncertainty about the
parameters, which can be used both for model comparison and for plotting model fits. To sample from the
posterior, we use an expression for the log posterior

log p(◊ | data) = log p(data | ◊) + log p(◊) + constant, (S12)

where log p(data | ◊) is given in Equation S7. We assumed a factorized prior over each parameter j:

log p(◊) =
nÿ

j=1
log p(◊j), (S13)

where j is the parameter index and n is the number of parameters. We took uniform (or, for parameters
that were standard deviations, log-uniform) priors over reasonable, su�ciently large ranges17, which we
chose before fitting any models.

We sampled from the probability distribution using a Markov Chain Monte Carlo (MCMC) method, slice
sampling18. For each model and dataset combination, we ran between 4 and 10 parallel chains with random
starting points. For each chain, we took 100,000 to 1,000,000 total samples (depending on model computa-
tional time) from the posterior distribution over parameters. We discarded the first third of the samples and
kept 6,667 of the remaining samples, evenly spaced to reduce autocorrelation. All samples with log posteriors
more than 40 below the maximum log posterior were discarded. Marginal probability distributions of the
sample log likelihoods were visually checked for convergence across chains. In total we had 120 model and
dataset combinations, with a median of 40,002 kept samples (interquartile range = 13,334).

S3.7 Model comparison

3.7.1 Metric choice

To compare model fits while accounting for the complexity of each model, we computed an approximation of
leave-one-out cross-validation. Leave-one-out cross-validation is the most thorough way to cross-validate but
is very computationally intensive; it requires fitting the model t times, where t is the number of trials. The
Pareto smoothed importance sampling approximation of leave-one-out cross-validation (PSIS-LOO, referred
to here simply as LOO) takes into account the model’s uncertainty landscape by using samples from the full
posterior of ◊

19.

LOO is currently the most accurate approximation of leave-one-out cross-validation20.

We determined that our results were not dependent on our choice of model comparison metric. We computed
AIC, BIC, AICc, WAIC21, and LOO for all models in the 2 model groupings (category choice-plus-confidence
and category choice-only), multiplying the non-LOO metrics by ≠ 1

2 to match the scale of LOO. For AIC,
BIC, and AICc, we selected the MCMC sample with the highest log likelihood as our maximum-likelihood
parameter estimate. Then we computed Spearman’s rank correlation coe�cient for every possible pairwise
comparison of model comparison metrics for all model and dataset combinations, producing 20 total values
(2 model groupings ◊ 10 possible pairwise comparisons of model comparison metrics). All values were
greater than 0.998, indicating that, had we used an information criterion instead of LOO, we would not
have changed our conclusions. Furthermore, there are no model groupings in which the identities of the
lowest- and highest-ranked models are dependent on the choice of metric. The agreement of these metrics
strengthens our confidence in our conclusions.
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3.7.2 Metric aggregation

In all figures where we present model comparison results (Figures 3d, S3c, S5b), we aggregate LOO
scores by the following procedure: Choose a reference model (e.g. Fixed). Subtract all LOO scores from the
corresponding observer’s score for that model; this converts all scores to a LOO “di�erence from reference”
score, with lower (more negative) indicating a better score and higher (more positive) indicating a worse
score. Repeat the following standard bootstrap procedure 10,000 times: Choose randomly, with replacement,
a group of datasets equal to the total number of unique datasets, and take the mean of their “di�erence
from reference” scores for each model. Blue lines and shaded regions in model comparison plots indicate the
median and 95% CI on the distribution of these bootstrapped mean “di�erence from reference” scores.

S3.8 Visualization of model fits

Model fits were plotted by bootstrapping synthetic group datasets with the following procedure: For each
model and observer, we generated 20 synthetic datasets, each using a di�erent set of parameters sampled,
without replacement, from the posterior distribution of parameters. Each synthetic dataset was generated
using the same stimuli as the ones presented to the real observer. We randomly selected a number of
synthetic datasets equal to the number of observers to create a synthetic group dataset. For each synthetic
group dataset, we computed the mean response per orientation bin. We then repeated this 1,000 times and
computed the mean and standard deviation of the mean output per bin across all 1,000 synthetic group
datasets, which we then plotted as the shaded regions. Therefore, shaded regions represent the mean ±1
SEM of synthetic group datasets.

For plots with stimulus orientation on the horizontal axis (Figures 2b, 3c, S3b, S5a), orientation was
binned according to quantiles of the stimulus distributions so that each point consisted of roughly the same
number of trials. We took the overall stimulus distribution p(s) = 1

2 (p(s | C = 1) + p(s | C = 2)) and found
bin edges such that the probability mass of p(s) was the same in each bin. We then plotted the binned data
with linear spacing on the horizontal axis.

S3.9 Model recovery analysis

We performed a model recovery analysis22 to test our ability to distinguish our choice and confidence models.
We generated synthetic datasets from each model, using the same sets of stimuli that were originally randomly
generated for each of the 12 observers. To ensure that the statistics of the generated responses were similar
to those of the observers, we generated responses to these stimuli from 8 of the randomly chosen parameter
estimates obtained via MCMC sampling (as described in Section S3.6) for each observer and model.
In total, we generated 384 datasets (4 generating models ◊ 12 observers ◊ 8 datasets). We then fit all
four models to every dataset, using maximum likelihood estimation (MLE) of parameters by an interior-
point constrained optimization (MATLAB’s fmincon), and computed AIC scores from the resulting fits. For
reasons of computational tractability, we used AIC instead of LOO as the model comparison metric. Because
AIC and LOO scores gave us near-identical model rankings for data from real subjects (Section S3.7.1),
we do not believe that the model recovery results are dependent on choice of metric.

We found that the true generating model was the best-fitting model, on average, in all cases (Figure S4).
Overall, AIC “selected” the correct model (i.e., AIC scores were lowest for the model that generated the
data) for 87.5% of the datasets, indicating that our models are distinguishable.
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Supplementary Figures
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Figure S2: The Bayesian mapping from orientation measurement and attention-dependent uncertainty to response. Colors

correspond to category and confidence response as in Figure 1b. (a) Blue and red curves show likelihood functions for the

category distributions under example levels of uncertainty. (b) The Bayesian model maps measurement and uncertainty

onto the decision variable, the log likelihood ratio (black curve). When the relative likelihood of category 1 is high, the

decision variable is large and positive; when the relative likelihood of category 2 is high, it is large and negative. Response is

determined by comparing the decision variable to boundaries that are fixed in log-likelihood-ratio space, but in measurement

space vary as a function of uncertainty.
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Figure S3: Category and confidence models. (a) Theoretical relation between orientation uncertainty and category and

confidence decision boundaries for all models. (b) Mean response as a function of orientation and cue validity, as in

Figure 3c. Stimulus orientation is binned to approximately equate the number of trials per bin. (c) Model comparison.

Black bars represent individual observer LOO score di�erences of each model from Fixed. Negative values indicate that

the corresponding model had a higher (better) LOO score than Fixed. Blue line and shaded region show median and 95%

confidence interval of bootstrapped mean LOO di�erences across observers.
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indicates that the true generating model was the best-fitting model, on average, in all cases.
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Figure S5: Category choice-only models. (a) Proportion of category 1 responses as a function of orientation and cue

validity. Error bars show mean and SEM across observers. Shaded regions are mean and SEM of model fits (Section
S3.8). Stimulus orientation is binned to approximately equate the number of trials per bin. (b) LOO model comparison,

as in Figure S3c. (c) Mean MCMC orientation uncertainty and category choice boundary parameter estimates for a

representative observer. Estimates are plotted as a function of attention condition (valid, neutral, invalid; filled circles),

along with their generating functions (curves), for the four main models fit to the category choice data only, plus a Bayesian

model with no noise on the decision variable d and a nonparametric model in which choice boundaries are unconstrained

(Free; parameter estimates from this model are plotted in gray for all subjects in Figure 4). The Bayesian curve is to

the left of the other curves, because noise attributed to orientation uncertainty in the other models is partially attributed

to decision noise in the Bayesian model; when the decision noise parameter is removed (Bayesian, no d noise), the curve

aligns with the others.
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Figure S6: RT and confidence data broken down by category and accuracy. RT did not depend strongly on category or

accuracy, though it was slightly longer for valid incorrect compared to valid correct trials. Confidence was higher overall for

correct compared to incorrect trials. Confidence was higher and RT slightly faster for category 2 incorrect trials compared

to category 1 incorrect trials, likely because there are more category 2 trials with high probability of being category 1 (which

would lead to a high confidence error) than category 1 trials with high probability of being category 2.
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Figure S7: Example plot used to determine per-observer stimulus contrast. Each curve shows the mean ±1 SD of the

posterior over psychometric functions for each attention condition. Error bars indicate the mean ±1 SD of the beta

distribution over correctness within log contrast bins. A dot indicates one correct or incorrect trial, located respectively at

the top or bottom of the plot, with vertical jitter. For this example observer, we selected a natural log contrast of -2.3

(i.e., a contrast of 10%).
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Supplementary Tables

Fixed Bayesian Linear Quadratic
Measurement noise ‡valid, ‡neutral, ‡invalid
Orientation-dependent noise Â

Decision boundaries k1≠7 k1≠7, m1≠7
d noise ‡d

Lapse rates ⁄1, ⁄4, ⁄confidence, ⁄repeat
Total number of parameters 15 16 22 22

Table S1: Parameters of category choice and confidence decision models.

15 pars. 16 pars. 22 pars.
Fixed Bayesian Linear

16 pars.
22 pars.
22 pars.

Bayesian
Linear

Quadratic

102 [45, 167]
124 [77, 177]
129 [65, 198]

21 [≠3, 48]
27 [0, 53] 5 [≠18, 28]

Table S2: Cross comparison of all category choice and confidence decision models. Cells indicate medians and 95% CI of

bootstrapped mean LOO score di�erences. A positive median indicates that the model in the corresponding row had a

higher score (better fit) than the model in the corresponding column.

Fixed Bayesian Bayesian,
no d noise* Linear Quadratic Free*

Measurement noise ‡valid, ‡neutral, ‡invalid
Orientation-dependent noise Â

Decision boundaries k k, m kvalid, kneutral, kinvalid
d noise ‡d

Lapse rates ⁄, ⁄repeat
Total number of parameters 7 8 7 8 8 9

Table S3: Parameters of category choice-only decision models. * indicates models that were used only for obtaining

parameter estimates (Figures 4, S5c), and not for model comparison.

7 pars. 8 pars. 8 pars.
Fixed Bayesian Linear

8 pars.
8 pars.
8 pars.

Bayesian
Linear

Quadratic

9 [≠2, 18]
11 [4, 19]
11 [5, 18]

2 [≠3, 10]
2 [≠2, 9] 0 [≠2, 3]

Table S4: Cross comparison of all category choice-only decision models. Conventions as in Table S2.
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