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Abstract

Training can modify the visual system to produce a substantial improvement on perceptual

tasks and therefore has applications for treating visual deficits. Visual perceptual learning

(VPL) is often specific to the trained feature, which gives insight into processes underlying

brain plasticity, but limits VPL’s effectiveness in rehabilitation. Under what circumstances

VPL transfers to untrained stimuli is poorly understood. Here we report a qualitatively new

phenomenon: intrinsic variation in the representation of features determines the transfer of

VPL. Orientations around cardinal are represented more reliably than orientations around

oblique in V1, which has been linked to behavioral consequences such as visual search

asymmetries. We studied VPL for visual search of near-cardinal or oblique targets among

distractors of the other orientation while controlling for other display and task attributes,

including task precision, task difficulty, and stimulus exposure. Learning was the same in all

training conditions; however, transfer depended on the orientation of the target, with full

transfer of learning from near-cardinal to oblique targets but not the reverse. To evaluate the

idea that representational reliability was the key difference between the orientations in deter-

mining VPL transfer, we created a model that combined orientation-dependent reliability,

improvement of reliability with learning, and an optimal search strategy. Modeling suggested

that not only search asymmetries but also the asymmetric transfer of VPL depended on pre-

existing differences between the reliability of near-cardinal and oblique representations.

Transfer asymmetries in model behavior also depended on having different learning rates

for targets and distractors, such that greater learning for low-reliability distractors facilitated

transfer. These findings suggest that training on sensory features with intrinsically low reli-

ability may maximize the generalizability of learning in complex visual environments.

Author summary

Training can modify the visual system to produce improvements on perceptual tasks

(visual perceptual learning), which is associated with adult brain plasticity. Visual percep-

tual learning has important clinical applications: it improves the vision of adults with
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visual deficits, e.g. amblyopia and cortical blindness, and even presbyopia (aging eye). A

critical issue in visual perceptual learning is its specificity to the trained stimulus. Specific-

ity gives insight into the processes underling experience-dependent plasticity but can be

an obstacle in the development of efficient rehabilitation protocols. Under what circum-

stances visual perceptual learning transfers to untrained stimuli is poorly understood.

Here we report a qualitatively new phenomenon: specificity in visual search depends on

intrinsic variations in the reliability of feature representations; e.g., vertically oriented

lines are represented in V1 with greater reliability than tilted lines. Our data and computa-

tional model suggest that training on sensory features with intrinsically low reliability can

maximize the generalizability of learning, particularly in complex natural environments

in which task performance is limited by low-reliability features. Our study has possible

implications for the development of efficient clinical applications of perceptual learning.

Introduction

Training in fundamental visual perceptual tasks can lead to substantial improvement, a phe-

nomenon known as Visual Perceptual Learning (VPL), which is associated with adult brain

plasticity. VPL has powerful real-word applications [1–3] including improving the vision of

adults with cortical blindness [4], amblyopia [5–7] and presbyopia [8].

VPL is often specific to the trained feature and location (reviewed by [9]). From a theoreti-

cal point of view, specificity can provide important insight into the neuronal mechanisms that

underlie VPL. For example, specificity has been taken to imply plasticity in early-stage visual

processing (e.g., [10,11]). However, from a practical or clinical viewpoint, specificity can be a

major obstacle in the development of effective training protocols, and it is therefore critical to

understand the factors that determine VPL specificity and the conditions that lead to transfer.

For complete transfer to occur, the visual system needs to apply learning for one stimulus

to another stimulus. The ability to generalize improvements across stimuli may be most likely

when the representation of the stimuli is intrinsically similar. However, the visual system has

intrinsic variations in its representation of different feature values. In particular, the reliability

with which different feature values are represented can vary considerably within a feature

dimension. For example, the reliability of orientation representation in V1 strongly depends

on the orientation value. Cells responding to orientations around cardinal are larger in num-

ber and have smaller response variability compared to cells responding to orientations around

oblique [12,13]. In human V1-V3, sensory uncertainty estimated from the fMRI BOLD signal

is higher near oblique orientations than near cardinal orientations, which correlates with ori-

entation estimation behavior [14]. These studies show a gradual variation in representational

reliability as a function of orientation, with higher reliability for orientations closer to cardinal

(especially horizontal) and lower reliability for more oblique orientations.

These intrinsic differences have been linked to substantial behavioral effects unrelated to

learning. They explain the advantage that observers have in discriminating orientations

around cardinal compared to around oblique [13–16]: the oblique effect [17]; and in detecting

oblique targets among cardinal [18–20] or near-cardinal [21] distractors over the reverse: ori-

entation search asymmetry [22]. Explanations of search asymmetry propose that oblique dis-

tractors have less reliable representations than cardinal distractors and thus hinder target

detection more [19,20]. Intrinsic variations in representational reliability are not limited to ori-

entation; for example, stimulus processing also varies across spatial frequency [23]. Thus far,
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however, no study has directly investigated the effect of these preexisting variations in repre-

sentational reliability on VPL transfer and specificity.

Investigation of VPL has focused instead on the manipulation of task properties. By varying

task difficulty [10,24] and task precision (e.g., orientation difference in a discrimination task;

[25]), researchers varied the representational precision required to successfully perform the

task, and studied its effect on VPL specificity. However, variability in task demands is distinct

from initial variability in the underlying representation and may invoke different learning

mechanisms. For example, increased specificity in difficult or high-precision tasks has been

attributed to changes in the modulated level of representation in the visual processing hierar-

chy [10,24], whereas intrinsic differences in representational reliability are present within the

same hierarchical level.

Here, we asked whether variations in representational reliability alone can explain VPL and

its specificity and transfer, when task properties such as difficulty and precision are the same.

Our results show that near-cardinal and oblique orientations not only yield an orientation

search asymmetry [18–22] but also show asymmetric transfer of VPL in visual search. Con-

versely, task difficulty, which was independently manipulated by varying the stimulus onset

asynchrony (SOA) between a mask and the search display, did not affect the pattern of trans-

fer. To test the sufficiency of a reliability-based account, we fit a computational model that

combines learning-related increases in the reliability of stimulus representations with a Bayes-

ian search strategy based on Ma et al. [26]. This Bayesian search model was well-suited to test

our hypothesis, because it explicitly represents orientation reliability. Using an unchanging

optimal decision rule, the model accounts for both search and transfer asymmetry via initial

differences in near-cardinal and oblique orientation reliability.

Results

We trained observers in visual search for an odd orientation (Fig 1A & 1B). One group of

observers trained with a near-cardinal target and oblique distractors (near-cardinal group)

and the other group trained with an oblique target and near-cardinal distractors (oblique

group). Near-cardinal was 80˚ counter-clockwise from vertical and oblique was 50˚ from verti-

cal. In both groups, the search stimulus color (task irrelevant) was either green or red. Follow-

ing training, observers completed an orientation test and a control, color test. In the

orientation test, only the orientation swapped with respect to training, i.e. the near-cardinal

group was tested with the oblique target and the oblique group was tested with the near-cardi-

nal target (Fig 1C). In the color test, only the color of the stimulus was different with respect to

training, i.e. observers that trained with red stimuli were tested with green stimuli and vice

versa. Comparing these tests controlled for the involvement of high-level cognitive factors dur-

ing test sessions (e.g. observers are more engaged due to any new aspect of the stimuli). Per-

ceptual sensitivity (d0) and bias (c) were calculated for each SOA in each session. Incorrect

trials and trials with reaction time (RT)�4 SDs above the observer’s mean (�0.5% of the tri-

als) were removed from the RT analysis.

Training sessions

To test for learning, we compared the first and the last training days. For all three dependent

measurements (sensitivity, bias and RT) we conducted a (2X2X2) three-way mixed design

analysis of variance (ANOVA) with training effect (training day 1 vs. 6) and SOA (35, 59, 94

and 129 ms) as within-observers factors and group (near-cardinal vs. oblique training) as a

between-observers factor.

Feature reliability and learning specificity
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Perceptual sensitivity. The main effect of training was significant, F(1, 8) = 93.30,

p<0.001, Z2
p = 0.92, with higher perceptual sensitivity on the last compared to the first training

day (Fig 1D), indicating learning. The main effect of SOA was significant, F(3, 24) = 39.73,

p<0.001, Z2
p = 0.43, with higher sensitivity for longer SOAs. The main effect of group was sig-

nificant, F(1, 8) = 5.41, p = 0.048, Z2
p = 0.47, with higher sensitivity in the oblique group than in

the near-cardinal group (orientation search asymmetry). Only the interaction between train-

ing and SOA was significant, F(3, 24) = 7.21, p = 0.001, Z2
p = 0.40, indicating more benefit from

Fig 1. Experimental design and results. (A) The search stimulus in the near-cardinal target, 80˚ (left) and the oblique target, 50˚ (right) conditions.

Stimulus color was either red or green on training days and for the orientation test (green in the example shown) and the other color for the color test. (B) The

sequence of events within a trial. (C) Training protocol: the near-cardinal group was trained with a near-cardinal target and tested with an oblique target and

vice versa for the oblique group. The order of the color and orientation test days was counterbalanced. (D) Mean sensitivity, bias and RT (y-axis top, middle

and bottom panels respectively) as a function of training day (x-axis) and SOA, for both near-cardinal (left) and oblique (right) groups. Performance increased

with training. (E) Mean sensitivity, bias and RT as a function of SOA (x-axis) and color and orientation transfer tests, for both near-cardinal (left) and oblique

(right) groups. Performance was lower in the orientation test compared to the color test only in the oblique group. Error bars are within-subject ±1 standard

error of the mean [27]. (F) Scatterplot for individual observers (mean across SOAs), d0 for orientation training performance during the color transfer test (color

test) and orientation transfer performance (orientation test) for the near-cardinal and oblique groups. Data points near the unity line indicate transfer, while

data points below the unity line indicate specificity.

https://doi.org/10.1371/journal.pcbi.1005882.g001
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training for longer compared to shorter SOAs. None of the effects interacted with group, all

ps>0.1, indicating that the learning and SOA effects were similar in both groups. To confirm that

learning was the same across groups, we estimated the learning rate for each observer as the slope

of a linear regression for d’ across the six training days. Learning rates were the same for the near-

cardinal group (mean slope: 0.28 ±0.03) and the oblique group (mean slope: 0.28 ±0.04), t<1.

Bias. The main effect of SOA was significant, F(3, 24) = 33.30, p<0.001, Z2
p = 0.80, with

more conservative bias with shorter SOAs. Neither the interaction between SOA and training,

p>0.05, nor the remaining comparisons, ps>0.3, were significant.

RT. Training speeded RT, F(1, 8) = 19.74, p = 0.002, Z2
p = 0.71, as did longer SOAs, F(3,

24) = 19.61, p<0.001, Z2
p = 0.71 (Fig 1D). None of the other effects were significant for RT, all

ps>0.05. These results confirm that the effects on perceptual sensitivity were not due to trade-

offs with RT.

Testing sessions

To test for the transfer of learning for each of the three dependent measurements, we con-

ducted a (2X2X2) three-way mixed design ANOVA with tests (color test vs. orientation test)

and SOA (35, 59, 94 and 129 ms) as within-observers factors and group (near-cardinal vs. obli-

que group) as a between-observers factor. As Fig 1E reveals, whereas color test performance

was very similar to the last day of learning in both groups, orientation test performance was

dependent on the group.

Perceptual sensitivity. The main effect of test was significant, F(1, 8) = 31.45, p = 0.004,

Z2
p = 0.79, with higher sensitivity in the color test than in the orientation test. Again, the main

effect of SOA was significant, F(3, 24) = 27.56, p<0.001, Z2
p = 0.90, with higher perceptual sen-

sitivity for longer SOAs. The main effect of group was not significant, F(1, 8) = 1.6, p>0.2.

Importantly, the interaction between test and group was significant, F(1, 8) = 20.30, p = 0.002,

Z2
p = 0.70, indicating that transfer across tests was dependent on training target orientation.

Paired t-tests revealed that sensitivity in the orientation test was lower than in the color test

only in the oblique group, t(4) = 8.53, p = 0.001, Cohen’s d = 2.6, and not in the near-cardinal

group, t<1. None of the other interactions was significant, all ps>0.3. Individual data show

consistent specificity of improvement in the oblique group and transfer in the near-cardinal

group (Fig 1F). In both groups, VPL completely transferred to a new color (Fig 1D & 1E), con-

firming that observers learned orientations independent of their colors. Importantly, the

group effect on orientation transfer remained the same even when task difficulty was equated

by selecting an SOA for each group that yielded similar performance (d0) for the two groups

during training (Fig 2A).

Bias. The main effect of SOA was significant, F(3, 24) = 20.31, p<0.001, Z2
p = 0.71, with

more conservative bias with shorter SOAs. Although both test and group effects were not sig-

nificant F<1, the interaction between the two factors approached significance levels, F(1, 8) =

5.19, p = 0.052, Z2
p = 0.39. Paired comparisons between the orientation test and the color test

for each group revealed a test effect that approached significance levels in the oblique group, t

(4) = 2.55, p = 0.063, with more conservative bias in the orientation test than in the color test,

M = 0.49 and 0.24, respectively. No such effect was found in the near-cardinal group, t<1.

RT. RTs were faster in the color than in the orientation test, F(1, 8) = 48.24, p<0.001, Z2
p =

0.87, and for longer SOAs, F(3, 24) = 33.96, p<0.001, Z2
p = 0.81. The main effect of group was

not significant, F(1, 8) = 1.6, p>0.2. The interaction between test and group was significant, F

(1, 8) = 92.51, p< .001, Z2
p = 0.93. Paired t-tests between color and orientation tests revealed

that in the oblique group RTs were slower in the orientation than in the color test, t(4) = 8.56,

Feature reliability and learning specificity
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p = 0.001, Cohen’s d = 1.1. Conversely, in the near-cardinal group RTs were slightly slower in

the color than in the orientation test, t(4) = 3.48, p = 0.02, Cohen’s d = 0.2.

Transfer and specificity

Because baseline performance (training day 1) for the near-cardinal condition was lower than

for the oblique condition, it may be that during the orientation test (when target and distractor

orientations swapped) specificity was inflated by the baseline difference. In order to control for

this possibility, we additionally assessed transfer and specificity by comparing performance (d0)

in the orientation transfer test from one group with the baseline performance (training day 1)

and trained performance (training day 6) of the other group, such that the orientation condition

was the same within each comparison (Fig 2B). First we tested whether transfer performance is

higher than baseline, which would indicate that at least some learning partially transferred to the

untrained orientation. Two independent sample one-tailed t-tests revealed significant transfer

both to near-cardinal and to oblique orientations, t(8) = 3.08, p = 0.007, Cohen’s d = 1.94, t(8) =

2.01, p = 0.039, Cohen’s d = 1.28, respectively. Next we tested whether transfer performance is

different than trained performance; a difference would indicate specificity, while no difference

would indicate full transfer of learning to the untrained orientation. Two independent sample t-

tests revealed significant partial specificity following oblique orientation training, t(8) = 2.96,

p = 0.018, Cohen’s d = 2.05, but not following near-cardinal orientation training, t<1. The same

results were obtained when a nonparametric test was used (S1 Table). Thus, learning only partly

transferred to the near-cardinal orientation but fully transferred to the oblique orientation.

Model

Because we found that VPL specificity and transfer depended on the trained orientation–

despite equated task difficulty and task precision–we hypothesized that differences in the

Fig 2. Orientation specificity and transfer: between-group comparisons. (A) Sensitivity for each group

as a function of training day and orientation test. Training performance was equated by choosing SOA of 129

ms and 94 ms for the near-cardinal and oblique groups, respectively. (B) Sensitivity averaged across SOAs as

a function of session (D1: first training day, D6: last training day, Or: orientation test) and target orientation

(near-cardinal and oblique). Certain comparisons are across groups (yellow vs. blue bars). ns = p>0.4,

* = p<0.05. Error bars are within-subject ±1 standard error of the mean [27].

https://doi.org/10.1371/journal.pcbi.1005882.g002

Feature reliability and learning specificity

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005882 December 14, 2017 6 / 18

https://doi.org/10.1371/journal.pcbi.1005882.g002
https://doi.org/10.1371/journal.pcbi.1005882


representational reliability of near-cardinal and oblique orientations may lead to both

search and VPL transfer asymmetries. To investigate this possibility, we used computational

modeling. We developed a model that consists of two parts: optimal orientation search

[26,28] and reliability improvement over the course of learning. The goal was to determine

whether orientation reliability and its improvement with learning could explain the behav-

ioral data.

We compared four models to test different hypotheses about the role of orientation reli-

ability in learning and transfer in the orientation search task. We tested whether initial reli-

ability differences between near-cardinal and oblique orientations alone (Reliability

model), different learning rates for targets and distractors alone (Learning model), both of

these factors together (Reliability-and-Learning model), or these factors with independent

learning rates for the two groups (Reliability-Learning-Group model) best accounted for

the data. Detailed descriptions of the models can be found in the Methods, and all model

fits are shown in S1 Fig.

Model comparison using the AICc metric indicated that initial reliability differences

between near-cardinal and oblique orientations were critical to explain the data. The Reli-

ability model (three parameters, AICc = 10.61) and the Reliability-and-Learning model

(four parameters, AICc = 13.00) outperformed the Learning model (three parameters,

AICc = 21.05) and the Reliability-Learning-Group model (six parameters, AICc = 24.56).

When we compared cross-validated r2, the Reliability-and-Learning model fit the data

better than the Reliability model. For the Reliability-and-Learning model, cross-validated

r2 was 0.81 (SD 0.09), falling within the noise ceiling (lower and upper bounds, [0.75

0.84]), Model performance was therefore as good as possible given the noise in the data.

For the Reliability model, cross-validated r2 was 0.70 (SD 0.24), falling below the noise

ceiling.

To determine whether transfer and specificity in the two best models could be predicted

based only on the learning phase, we fit the models to the training days only and predicted the

transfer test performance for each group. For the Reliability-and-Learning model, the pre-

dicted orientation test performance was similar to the observed performance, namely, transfer

in the near-cardinal group and specificity in the oblique group (Fig 3A, stars). The Reliability

model predicted more transfer in the oblique group than was observed in the data (Fig 3A,

plus signs), similar to its fit to all data points (S1 Fig). The pattern of transfer and specificity

therefore did not depend on including the test session data when fitting the model, and the

Reliability-and-Learning model better explained transfer behavior.

The Reliability-and-Learning model, then, captured the three key features of the data: 1) the

search asymmetry at baseline, 2) the performance improvement with learning, and 3) the ori-

entation dependence of VPL specificity and transfer (Fig 3A). Learning in the oblique group

maintained the difference in reliability between the near-cardinal and oblique orientations,

thereby maintaining the search asymmetry present at baseline and preventing full transfer.

Conversely, learning in the near-cardinal group decreased the reliability difference between

orientations, effectively overcoming the search asymmetry and allowing similar near-cardinal

and oblique performance by the end of training.

Fig 3B shows Reliability-and-Learning model estimates of near-cardinal and oblique reli-

ability as a function of training session for each group. The model estimated greater sensory

uncertainty (lower reliability) for the oblique than for the near-cardinal orientation, consistent

with physiological and behavioral findings [12,13]. For the best-fitting parameter estimates,

the distractor learning rate was 0.65 and the target learning rate was 0.24.
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Discussion

Learning and specificity

Existing models of VPL predict the same level of specificity across the same levels of task-diffi-

culty [24], task precision [25,29] and feature exposure during training [30]. The demonstration

that a mere difference in the trained feature value, near-cardinal vs. oblique orientation, deter-

mined VPL specificity challenges these views. Supported by computational modeling, we sug-

gest that intrinsic differences in the representational reliabilities of near-cardinal and oblique

orientations governed VPL specificity and transfer in orientation search.

Our design enabled us to control for the involvement of task-related factors and to assess the

effect of representational reliability per se. In both groups the equal orientation difference

between targets and distractors (30˚), equated performance controlled by SOA, and identical

exposure to the transfer feature insured independence from task precision [25], difficulty [24],

and feature exposure [30], respectively. Our analyses confirmed that both learning rate and mag-

nitude were equal for the two groups. In addition, our results cannot be explained in terms of

differences in number of difficult trials during training. A larger number of difficult trials during

training has been found to increase specificity [31]. This relationship would predict a result

opposite to ours: specificity in the near-cardinal group, which was more difficult on average

(across SOAs). Thus, stimulus-related properties, rather than task, determined specificity here.

The dependence of transfer on the specific orientation value has implications for the inves-

tigation and interpretation of VPL transfer and specificity using oriented stimuli. Indeed such

stimuli have been commonly used to investigate VPL, including in orientation discrimination

tasks (e.g., [25,30,32–34]), visual search (e.g., [10,30,35,36]) and texture discrimination tasks

(e.g., [37–41]). Some VPL studies have varied orientation values to manipulate task properties,

such as task difficulty, and then linked those task properties to the resulting feature specificity

Fig 3. Model performance and estimated reliability for the near-cardinal (left column) and oblique

(right column) groups. (A) Curves show the Reliability-and-Learning model fit to the sensitivity data

(diamonds) averaged across SOAs for each training day (1–6) and orientation transfer test (Or). Reliability-

and-Learning (stars) and Reliability (plus signs) show transfer test predictions based on fits to the training

days only. Error bars are within subject ±1 standard error of the mean [27]. (B) Estimated inverse reliability (σ)

for the target and distractor stimulus representations as a function of training day and orientation test. RL:

Reliability-and-Learning model; R: Reliability model.

https://doi.org/10.1371/journal.pcbi.1005882.g003
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(e.g., [10,30,37]). Our study suggests that orientation differences alone can affect the pattern of

feature specificity and transfer and therefore should be controlled, particularly in displays with

more than one orientation.

Researchers have inferred the site of the underlying plasticity in VPL based on specificity

and transfer results (reviewed by [42]). Specificity and transfer have been taken to indicate

learning in early and late visual areas, respectively [10,11,24,30]. Here we show that preexisting

variation in representational reliability, which can occur within the same level of processing,

can determine VPL transfer. Our findings, therefore, suggest that specificity and transfer are

not always appropriate diagnostic tools for the level of VPL plasticity.

Implications of the model

Our model combined orientation-dependent reliability, improvement of reliability with learn-

ing, and an optimal search strategy. We based the search strategy on the optimal visual search

model by Ma et al. [26], because that model provides a parsimonious explanation of orienta-

tion search with minimal parameters. We found that a single change to the model–letting reli-

ability depend on orientation–captured orientation search asymmetry prior to learning.

According to the model, the lower reliability of oblique compared to near-cardinal stimuli

leads to more uncertainty during the local decision regarding the identity of an item. The dis-

rupting effect of this uncertainty on visual search performance is larger with oblique distrac-

tors (near-cardinal target) than with near-cardinal distractors (oblique target), simply because

there are many distractors but only one possible target in any given display.

The improvement of reliability across training days captured the behavioral pattern of both

learning and transfer. Importantly, the model uses the same optimal decision rule throughout

training and during the transfer tests. Search asymmetry and learning, therefore, could be

attributed to variation in sensory reliability only, rather than changes in decision strategy and

rule based learning [30].

Comparing alternative versions of the model allowed us to determine which factors were

critical to explain the behavioral data. Preexisting differences in reliability were essential–a

model without this component failed to fit the data–but independent learning for targets and

distractors also improved model performance, particularly in capturing transfer behavior. This

result is consistent with a previous study that found independent target and distractor learning

in an orientation search task [43,44]. Our learning rate estimates correspond well to that

study’s finding of about twice as much learning for distractors as for targets [43]. It is therefore

the combination of preexisting reliability differences and greater learning for distractors than

targets that best explained behavior, in this family of models. Specifically, greater learning for

the initially low-reliability oblique distractors eliminated the search asymmetry and enabled

full transfer for the near-cardinal group.

Accounts of orientation search asymmetry

Our model follows the account that differences between the reliabilities of the cardinal (or

near-cardinal) and oblique representations cause orientation search asymmetry [18–20]. A key

component of these accounts is the ratio of target signal to background noise, which depends

on the target and distractor identities [18,19,45]. Alternative accounts have also been proposed.

One influential theory explains visual search asymmetries by considering a map of feature

dimensions and their interactions [46]. This theory suggests that targets with larger feature val-

ues (e.g. more oriented, i.e. oblique) are inherently more detectable than targets with smaller

values (e.g. less oriented, i.e. cardinal) (e.g., [46,47]). Based on this theory, a neural computa-

tional model was developed that explains search asymmetry in terms of a salience map in V1
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[48]. However, it is unclear how the elimination of search asymmetry following near-cardinal

training could be predicted if search asymmetry arises from inherent feature properties like

“more tilted” [46,48,49]. Moreover, no previous model addresses VPL in orientation search.

Feature reliability and its improvement in neural systems

Analogous to the reliability differences between orientation values represented by our model, neu-

rons responding to oblique orientations have larger tuning curve widths than those responding to

near-horizontal orientations in macaque V1 [13], and there is more cortical area tuned to near-

cardinal orientations than to oblique orientations in ferret cortex [12]. Higher sensory uncertainty

has also been estimated for oblique compared to near-cardinal orientations in human V1-V3

[14]. The Ma et al. [26] model on which the orientation search component of our model is based

has been implemented as a biologically plausible neural network model, strengthening the con-

nection between the physiological literature and our current computational results.

Learning was modeled as an increase in the representational reliability of the stimulus ori-

entations. This increase could be implemented either as a reduction of the tuning curve width

of V1 or V4 neurons with training [50–53] or as an improvement in readout from the early

sensory response [29]. Both mechanisms have been proposed previously for an orientation dis-

crimination task. Our model, therefore, applies VPL principles derived from orientation dis-

crimination tasks to explain VPL for more complex visual search tasks.

Limitations

Our findings are limited to VPL in orientation search, and more study is required to determine

whether they generalize to other stimuli and tasks. Our study also does not rule out alternative

models for orientation search asymmetry and VPL in visual search, but it shows that a parsi-

monious optimal decision rule, preexisting differences in orientation reliability, and reliability

learning suffice to explain both search and transfer asymmetry.

For simplicity our model assumes the same representational reliability for all stimulus loca-

tions. However, stimulus reliability can vary as function of eccentricity (e.g., [18,23]) and polar

angle [54,55]. It will be interesting to test the relation between location-dependent feature reli-

ability and VPL transfer and specificity.

Conclusions

Researchers have sought to understand the perceptual and neuronal processes that underlie

VPL by studying how task demands affect VPL specificity. In the present study we control for

task while testing the effect of the intrinsic reliability of feature representations on VPL speci-

ficity in visual search. We found a striking difference in VPL transfer depending on the orien-

tation of the trained target, which we interpret as an effect of representational reliability. This

interpretation is supported by both previous neurophysiological findings and computational

modeling of the present data. We conclude that preexisting variation in the reliability of fea-

ture representations within a single level of processing may have a critical effect on VPL trans-

fer and specificity, calling into question the logic that the degree of feature specificity can be

used to infer the neural level at which VPL occurs, especially for complex visual displays.

A growing body of research demonstrates the potential benefits of VPL in clinical (e.g., [4–

8,56,57]) and professional (e.g., [58]) applications. Our study suggests a testable hypothesis: to

increase the generalizability of perceptual learning in real-world applications, efficient training

protocols should focus training on low-reliability features–oblique orientations and motion

directions [59], peripheral spatial locations [60], and so forth–which may limit performance in

a variety of natural tasks.
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Methods

Experimental procedures

Ethics statement. The Tel Aviv University Institutional Review Board approved this study.

Observers. Ten Tel-Aviv University students participated in the experiment (8 females,

age range: 19–28 years) for course credit. All observers were naïve to the purposes of the study.

All reported having normal or corrected-to-normal visual acuity and normal color vision.

Apparatus. Observers were tested individually in a dimly lit room. An Intel Core 2 Duo

computer connected to a 17” CRT monitor (LG, with resolution of 768x1024 and refresh rate

of 85 Hz). Stimuli were programmed in E-prime [61]. Responses were collected via the com-

puter keyboard. A chin-rest was used to set viewing distance at 50 cm from the monitor.

Stimuli. Sample stimulus displays are presented in Fig 1A & 1B. The fixation display was

a gray 0.38 x 0.38 degree of visual angle (dva) cross sign (+), in the center of a black back-

ground. The stimulus consisted of 49 tilted line-elements, drawn with 2 pixel stroke and sub-

tending 0.58 dva in length. The lines were arranged in a 7X7 matrix centered on a black

background. Each cell subtended 1.5 dva in side and each line was centered in its cell with a

random jitter of ±0.01 dva. On target present trials (half of the trials) one line (the target) had a

unique orientation and the remaining 48 lines (distractors) had a uniform orientation. On tar-

get absent trials (half of the trials) all 49 lines had the same orientation. Target position was ran-

domly selected out of the 5X5 inner matrix cells (i.e. the target could not appear in the most

peripheral rows and columns of the matrix). Target orientation always differed by 30˚ from that

of distractors. There were two target conditions. Following Ahissar and Hochstein [62], in the

near-cardinal target condition target and distractor orientations were 80˚ and 50˚ counterclock-

wise from vertical, respectively. In the oblique target condition target and distractor orientations

were 50˚ and 80˚ counterclockwise from vertical, respectively (Fig 1A). Note that exact cardinal

orientations (e.g., 0˚) are at ceiling performance and do not improve with training in basic ori-

entation discrimination tasks [63–65]. To avoid possible ceiling effects we used orientation val-

ues that differed from exact cardinal and oblique values by 10˚ and 5˚, respectively. Such values

still maintain a substantial variation in the representational reliability in V1-V3 [12–14] and as

can be estimated from psychophysical measurements [21,65]. All lines were uniformly colored,

ether red (CIE coordinates 0.63/0.34, 18.75 cd/m2) or green (CIE coordinates 0.28/0.593, 18.44

cd/m2). The mask consisted of 49 asterisk-like elements: a superposition of four line-elements

each with different orientation (0˚, 50˚, 80˚, 90˚, counterclockwise). The positions and the color

of the mask elements were the same as that of the stimulus lines.

Procedure. Each trial began with a 500 ms fixation display followed by the presentation of

the stimulus for 12 ms, after which the screen went blank (Fig 1B). The mask stimulus was

then presented for 118 ms. Stimulus onset asynchrony (SOA) between the search stimulus and

the mask stimulus was 35 ms, 59 ms, 94 ms or 129 ms, a manipulation of task difficulty that

would allow us to match difficulty for the two orientation conditions. All SOAs had the same

number of trials, which were randomly interleaved within a session. Following the mask, the

screen went blank until the observer made a response, with a maximum response window of

5000 ms. The task was a present/absent detection task. Observers were asked to report the

presence of the target by pressing one of two designated keyboard keys (‘3’ for present and ‘z’

for absent target). Error trials were followed by a 500-ms feedback sound. Observers were

instructed to respond as accurately as possible without speed stress. There was a 500-ms inter-

trial interval. Observers were instructed to maintain fixation throughout each trial, and they

had no time to make eye movements while the display was presented.

Design. There were eight experimental sessions of ~30-min each. Each session was held on

a different day over the course of two weeks (4 sessions per week). Each session consisted of 540
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trials. The first six days were training sessions and the last two days were test sessions (color test

and orientation test). There were two groups of five observers each: One group trained with the

near-cardinal target (near-cardinal group) and the other group trained with the oblique target

(oblique group). In the color test, only the color (task irrelevant) of the stimulus was different

with respect to training, i.e. observers that trained with red stimuli were tested with green stimuli

and vice versa. In the orientation test, only the orientation swapped with respect to training, i.e.

the near-cardinal group was tested with the oblique target and the oblique group was tested with

the near-cardinal target (Fig 1C). The color of the training stimuli and the order of the test ses-

sions were counterbalanced across observers. To reacquaint observers with the task, each session

began with nine practice trials starting with long display duration (600 ms, 20 ms, and 12 ms for

the first, middle, and last three trials of practice). During practice trials stimulus and mask were

colored gray and target and distractor orientations were 160˚ and 100˚ counterclockwise respec-

tively. Throughout the experiment observers were allowed a short break every 30 trials.

Model

We developed a model that consisted of two parts: optimal search (based on Ma et al. [26])

and reliability improvement over the course of learning. We compared alternative versions of

the model to determine which parameters were required to explain, in a single fit, the data

from both observer groups, including the initial search asymmetry, performance improvement

over the course of training, and the transfer asymmetry.

Optimal search. We adopted an optimal model of visual search developed by Ma et al.

[26] that explains human behavior in an orientation search task similar to ours. The decision

variable used to determine whether the target is present (T = 1) or absent (T = 0) on each trial

is given by the log likelihood ratio

d ¼ log
pðx1; . . . ; xN jT ¼ 1Þ

pðx1; . . . ; xN jT ¼ 0Þ
ð1Þ

where xi is the maximum-likelihood estimate of the stimulus orientation at location i, which

we also call the orientation measurement. The total number of stimuli in the display is N,

which was equal to 25 in our experiment and simulations (the inner 5x5 array where the target

could appear). Because the target has a 0.5 probability of being present, the optimal strategy is

to report that the target is present whenever d>0.

Each location is equally likely to contain the target. The decision variable for each trial can

therefore be expressed as a combination of local decision variables, di, for each stimulus loca-

tion, as described by Ma et al. [26]:

d ¼ log
1

N

XN

i¼1

edi ð2Þ

Each local decision variable is the log likelihood ratio of the probability that the stimulus in

that location is a target (si = sT) compared to the probability that it is a distractor (si = sD):

di ¼ log
pðxijsi ¼ sTÞ

pðxijsi ¼ sDÞ
ð3Þ

The value of s is 80˚ for near-cardinal orientations and 50˚ for oblique orientations.

The probability that the orientation measurement xi for a given stimulus comes from a tar-

get or distractor depends on the orientation uncertainty (inverse reliability) of that stimulus,

σi. In the model of Ma et al. [26], σi depended only on stimulus contrast. Here, to model search
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asymmetries, we let σi depend on the orientation of the stimulus [20]. Near-cardinal orienta-

tions are expected to have lower uncertainty than oblique orientations [12,13]. We define σT as

the orientation uncertainty of target stimuli and σD as the orientation uncertainty of distractor

stimuli.

We assume that each of these probability distributions is Gaussian:

xiðtargetÞ ¼ NðsT ; s
2

TÞ

xiðdistractorÞ ¼ NðsD; s
2

DÞ ð4Þ

As derived in the Supplementary Methods in S1 Text, the local decision variable di is

di ¼
1

2
log

s2
D

s2
T

�
1

2

ðxi � sTÞ
2

s2
T

�
ðxi � sDÞ

2

s2
D

� �

ð5Þ

Learning. We modeled perceptual learning as a decrease in orientation uncertainty over

time, according to an exponential function,

s ¼ s0ð1þ e� ttÞ ð6Þ

where σ is the uncertainty, σ0 is the initial (pre-training) uncertainty, τ is the learning rate, and

t is time in sessions. Exponential functions are commonly used to describe the time course of

perceptual learning (e.g., [44,66,67]).

Model d0. To calculate d0 for the search model, we simulated an experiment with 4,000 tri-

als (50% target present) by randomly generating orientation measurements (xi) for each stimu-

lus in the display for each trial. The orientation measurements were drawn from normal

distributions with means and standard deviations that depended on whether the stimulus was

near-cardinal or oblique (mapped to target or distractor depending on the group, Eq 4).

From the simulated orientation measurements and search model values for σT and σD, we

calculated the decision variable d on each trial according to Eqs 2 and 5. If d>0, the model

response was classified as target present; otherwise it was classified as target absent. The simu-

lated responses were used to calculate d0 according to the standard formula (the same as for

the behavioral data).

Model parameters. We assumed that the two groups started with the same levels of

uncertainty about the stimulus orientations. The uncertainty could be different for near-cardi-

nal and oblique orientations but did not depend on which one was assigned to be the target,

modeling the preexisting reliability of each orientation.

We fit four different versions of the model:

1. Reliability (R) model. Initial reliability can differ for near-cardinal and oblique orienta-

tions, but learning is the same for all orientations in the two groups. This model has three

parameters: the initial uncertainties of near-cardinal and oblique orientations, σcardinal

and σoblique, and the single learning rate, τσ. Table 1 shows the orientation uncertainties

used for the different groups.

Table 1. Mapping for target and distractor orientation uncertainties.

σT σD

Near-cardinal group σcardinal σoblique

Oblique group σoblique σcardinal

https://doi.org/10.1371/journal.pcbi.1005882.t001
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2. Learning (L) model. Initial reliability is fixed to the same value for cardinal and oblique

orientations, but the learning rate can differ for target and distractor stimuli. Note that

learning rates depend only on the role of the stimulus in the task (target vs. distractor

[43]) and not on orientation per se. This models the idea that the learning rate depends

only on the amount of exposure to a given stimulus orientation. The model has three

parameters: the initial uncertainty σ, and the learning rates for the target and distractor,

τσT and τσD.

3. Reliability-and-Learning (RL) model. Initial reliability can differ for near-cardinal and

oblique orientations, and learning rates can differ for targets and distractors. This model

has four parameters: the initial uncertainties of near-cardinal and oblique orientations,

σcardinal and σoblique, and the learning rates for each sigma: τσT and τσD.

4. Reliability-Learning-Group (RLG) model. Initial reliability can differ for near-cardinal

and oblique orientations, and learning rates are independent for the two groups of

observers. Thus, learning rates depend on whether the near-cardinal or oblique orienta-

tion is the target or distractor. This model has six parameters: the initial uncertainties of

near-cardinal and oblique orientations, σcardinal and σoblique, and the learning rates for

each sigma in each group: τσTcardinal, τσDcardinal, τσToblique, and τσDoblique.

Model fitting. We simultaneously fit the behavioral data from the two groups of observers

(near-cardinal group and oblique group) from seven experiment sessions: the six training ses-

sions and the orientation transfer test. We took the behavioral d0 for each session, averaged

across SOAs and across observers, as our measure of visual search performance, resulting in 14

data points. We averaged across SOAs, because the transfer asymmetries we were interested in

explaining were independent of SOA and because the model did not have a dynamic compo-

nent that would be appropriate to capture SOA effects. To fit the data, we minimized the sum

of squared errors between the model d0 and the behavioral d0 using the Matlab function fmin-

search. On each iteration of the optimization, a full experiment was stochastically simulated to

calculate the model d0, as described above. Several starting points for the parameters were used

to check the consistency of the model fits (S2 Fig).

Model evaluation and noise ceiling. We used AICc for model comparison and cross-vali-

dated r2 to measure a model’s goodness of fit, free from overfitting [68]. To calculate cross-val-

idated r2, we used a leave-one-out procedure. On each iteration, one observer was held out

and the model was fit to the two group means based on the remaining 9 observers. This fit

served as the prediction for the held out observer. We then computed r2 for each observer

from a Pearson’s r correlation between the predicted and true data from that observer, and

took the group mean as our measure of cross-validated r2.

The maximum achievable cross-validated r2 is limited by measurement noise, individual

variability, and other sources of noise in the data. Therefore, to provide a benchmark for our r2

values, we calculated a noise ceiling (a lower and upper bound for the maximum achievable

cross-validated r2) according to the procedure described by [69]. The upper bound is defined

as the mean r2 for the correlation of each observer’s data with the group mean. The lower

bound is defined as the mean r2 for the correlation of each observer’s data with the group

mean when that observer is left out. We computed separate means for each group and corre-

lated each observer’s data with the appropriate group mean; so group means were based on 5

observers for the upper bound and 4 observers for the lower bound.
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Supporting information

S1 Table. Wilcoxon rank sum tests for transfer and specificity.

(PDF)

S1 Fig. Model performance for the near-cardinal (left column) and oblique (right column)

groups. Curves show the Reliability (R), Learning (L) and Reliability-Learning-Group (RLG)

model fits to the sensitivity data (black points) averaged across SOAs for each training day.

Error bars are standard error of the mean.

(PDF)

S2 Fig. Reliability-and-Learning model fitting. Scatter plots for each pair of the Reliability-

and-Learning model parameter values for each optimization starting point. Dot color corre-

sponds to the R2 of the fit. The red star represents the best fit, which is reported in the main

text. The starting points for σc and σo were uniformly sampled from 1 to 20. Values of σ above

20 always resulted in zero hit-rate in the first session so could not be used. The starting points

for τσT and τσD were uniformly sampled from 0 to 2. Bars show marginal parameter distribu-

tions for each R2 level, normalized to sum to 1. c = near-cardinal, o = oblique, T = target,

D = distractor.

(PDF)

S1 Text. The derivation of the optimal decision rule di for a single display element.

(PDF)
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