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Abstract
Pupil size is an easily accessible, noninvasive online indicator of various perceptual and cognitive processes. Pupil measurements
have the potential to reveal continuous processing dynamics throughout an experimental trial, including anticipatory responses.
However, the relatively sluggish (~2 s) response dynamics of pupil dilation make it challenging to connect changes in pupil size
to events occurring close together in time. Researchers have used models to link changes in pupil size to specific trial events, but
such methods have not been systematically evaluated. Here we developed and evaluated a general linear model (GLM) pipeline
that estimates pupillary responses to multiple rapid events within an experimental trial. We evaluated the modeling approach
using a sample dataset in which multiple sequential stimuli were presented within 2-s trials. We found: (1) Model fits improved
when the pupil impulse response function (PuRF) was fit for each observer. PuRFs varied substantially across individuals but
were consistent for each individual. (2) Model fits also improved when pupil responses were not assumed to occur simulta-
neously with their associated trial events, but could have non-zero latencies. For example, pupil responses could anticipate
predictable trial events. (3) Parameter recovery confirmed the validity of the fitting procedures, and we quantified the reliability
of the parameter estimates for our sample dataset. (4) A cognitive task manipulation modulated pupil response amplitude. We
provide our pupil analysis pipeline as open-source software (Pupil Response Estimation Toolbox: PRET) to facilitate the
estimation of pupil responses and the evaluation of the estimates in other datasets.
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Introduction

Pupil size depends strongly on light levels, but it also covaries
with an array of perceptual and cognitive processes—from
attention to memory to decision making (for recent reviews,
see Binda & Gamlin, 2017; Ebitz & Moore, 2018; Mathôt,
2018; Wang & Munoz, 2015). Pupil size can be measured
noninvasively and continuously, making pupillometry a
promising tool for probing the ongoing dynamics linked to

these processes. The pupil dilates in response to task-
relevant stimuli (Hoeks & Levelt, 1993; Kang, Huffer, &
Wheatley, 2014; Wierda, van Rijn, Taatgen, & Martens,
2012; Willems, Damsma, Wierda, Taatgen, & Martens,
2015; Willems, Herdzin, & Martens, 2015; Zylberberg,
Oliva, & Sigman, 2012) and arousing, interesting, or surpris-
ing stimuli (Allen et al., 2016; Hess & Polt, 1960;
Kloosterman et al., 2015; Knapen et al., 2016; Libby, Lacey,
& Lacey, 1973; Nassar et al., 2012; Preuschoff, 't Hart, &
Einhäuser, 2011), as well as in concert with internally driven
cognitive events, like mental calculation (Hess & Polt, 1964;
Kahneman, Beatty, & Pollack, 1967), memorization
(Kahneman & Beatty, 1966; Kang et al., 2014), and decision
formation (Cheadle et al., 2014; de Gee et al., 2017; de Gee,
Knapen, & Donner, 2014; Lempert, Chen, & Fleming, 2015;
Murphy, Boonstra, & Nieuwenhuis, 2016; Murphy,
Vandekerckhove, & Nieuwenhuis, 2014; Urai, Braun, &
Donner, 2017; van Kempen et al., 2019). Pupil dilation is
mediated by activity in the locus coeruleus (LC), hypothala-
mus, and superior colliculus, which interact with the pathways
that control pupillary dilation and constriction (Mathôt, 2018;
Wang & Munoz, 2015). The pupil time series may therefore
carry information about multiple events within an
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experimental trial, as well as about anticipatory neural re-
sponses not available from behavioral reports alone, which
provide retrospective rather than online measures.

A critical challenge in relating pupillary changes to specific
perceptual and cognitive processes is that pupillary dynamics
are relatively slow. Whereas perception and cognition unfold
over timescales of a few hundred milliseconds, the pupil takes
about 2 s to dilate and return to baseline in response to a single,
brief stimulus (Hoeks & Levelt, 1993). However, the limiting
factor in the speed of pupil dilation does not appear to be the
dynamics of the neural responses that drive the pupil. For
example, LC activity is tightly linked to pupil dilation
(Aston-Jones & Cohen, 2005; de Gee et al., 2017; Joshi, Li,
Kalwani, & Gold, 2016; Murphy, O’Connell, O’Sullivan,
Robertson, & Balsters, 2014; Reimer et al., 2016; Varazzani,
San-Galli, Gilardeau, & Bouret, 2015) and has much faster
dynamics. LC neurons fire with a latency of ≤ 100 ms after
a task-relevant stimulus, with a brief, phasic response (Aston-
Jones & Cohen, 2005; Foote, Aston-Jones, & Bloom, 1980;
Sara & Bouret, 2012). Therefore, the pupil size at a given time
may reflect the influence of multiple preceding or ongoing
internal signals related to distinct perceptual and cognitive
processes. The standard approach to pupillometry, namely
measuring the pupil size time series, cannot disentangle the
influences of these various signals on the pupil size.

To address this challenge, researchers have begun to use
models to link changes in pupil size to the distinct internal
signals elicited by specific trial events (de Gee et al., 2017; de
Gee et al., 2014; Hoeks & Levelt, 1993; Johansson &
Balkenius, 2017; Kang et al., 2014; Kang & Wheatley, 2015;
Knapen et al., 2016; Korn & Bach, 2016; Korn, Staib, Tzovara,
Castegnetti, & Bach, 2017; Lempert et al., 2015; Murphy et al.,
2016; Urai et al., 2017; van den Brink, Murphy, &
Nieuwenhuis, 2016; van Kempen et al., 2019; Wierda et al.,
2012; Willems, Damsma, et al., 2015; Willems, Herdzin, &
Martens, 2015; Zylberberg et al., 2012). These signals can be
thought of as the internal responses to trial events that drive
pupil dilation, and the goal of modeling is to infer the properties
of these internal signals, such as their amplitudes, from the pupil
time series. Under constant luminance conditions, it is typical to
model pupil dilations only, which are considered to be linked to
internal signals that drive the sympathetic pupillary pathway
(Mathôt, 2018).

Pupil response models typically incorporate two principles
based on the work of Hoeks and Levelt (1993). First, the
models assume a stereotyped pupil response function
(PuRF), which describes the time series of pupil dilation in
response to a brief event. These authors found that the PuRF is
well described by a gamma function, and they reported aver-
age parameters for that function, which have been used in
many studies (de Gee et al., 2017; de Gee et al., 2014; Kang
et al., 2014; Kang & Wheatley, 2015; Lempert et al., 2015;
Murphy et al., 2016; van Kempen et al., 2019; Wierda et al.,

2012; Willems, Damsma, et al., 2015; Willems, Herdzin, &
Martens, 2015; Zylberberg et al., 2012)—we refer to this spe-
cific form of the PuRF as the “canonical PuRF”. Second, the
models assume that pupil responses to different trial events
sum linearly to generate the pupil size time series; that is, they
are general linear models (GLMs). This assumption is based
on Hoeks and Levelt’s (1993) finding that, for the tested stim-
ulus parameters, the pupil responded like a linear system.
Incorporating these two principles, the pupil response to se-
quential trial events has been modeled as the sum of compo-
nent pupil responses, where each component response is the
internal signal time series associated with a single trial event
convolved with the PuRF. Using this approach, the pupil has
been found to track decision periods (de Gee et al., 2017; de
Gee et al., 2014; Lempert et al., 2015; Murphy et al., 2016;
Murphy, Vandekerckhove, & Nieuwenhuis, 2014; van
Kempen et al., 2019) and fluctuations in target identification
during a rapid stimulus sequence (Wierda et al., 2012;
Zylberberg et al., 2012)—findings that reveal the faster inter-
nal dynamics underlying the measured pupil time series.

Despite the promise of using such models to link distinct
pupillary responses to specific trial events, there is currently
no standard procedure for modeling the pupil time series.
Hoeks and Levelt (1993) estimated the number, timing, and
amplitudes of impulse signals that drove pupil dilations. Later
studies assumed that every stimulus presentation was associ-
ated with a concurrent impulse signal and estimated only their
amplitudes. Some studies have also included longer, cognitive
events, like a decision period (de Gee et al., 2017; de Gee
et al., 2014; Lempert et al., 2015; Murphy et al., 2016; van
Kempen et al., 2019), or extra parameters to account for slow
drifts in pupil size across the trial (Kang et al., 2014; Kang &
Wheatley, 2015;Wierda et al., 2012;Willems, Damsma, et al.,
2015; Willems, Herdzin, & Martens, 2015; Zylberberg et al.,
2012). Most studies have used the canonical PuRF (de Gee
et al., 2017; de Gee et al., 2014; Kang et al., 2014; Kang &
Wheatley, 2015; Lempert et al., 2015; Murphy et al., 2016;
van Kempen et al., 2019; Wierda et al., 2012; Willems,
Damsma, et al., 2015; Willems, Herdzin, & Martens, 2015;
Zylberberg et al., 2012), but others used more complicated
PuRFs that could also capture pupil dilations and constrictions
in response to changes in illumination (Korn & Bach, 2016;
Korn et al., 2017), or that separately modeled transient and
sustained components of the pupil dilation (Spitschan et al.,
2017). Importantly, these pupil-modeling methods have not
been systematically evaluated or compared, hindering the
adoption of a field-wide standard.

Here we evaluate GLM procedures for modeling the pupil
time series for trials with multiple rapid sequential events,
under constant illumination. We conduct factorial model com-
parison to determine which parameters should be included,
and we perform several validation and reliability tests using
the best model. Based on the results, we recommend a specific
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model structure and fitting procedure for more general adop-
tion and future testing. Critically, we found that timing param-
eters not typically included in pupil GLMs substantially im-
prove model fits. Our findings indicate that PuRF timing
should be estimated for each observer, rather than assuming
the canonical PuRF, and that the internal signals driving the
pupil response are not necessarily concurrent with stimulus
onsets. We provide an open-source MATLAB toolbox, the
Pupil Response Estimation Toolbox (PRET), which fits pupil
GLMs to obtain event-related amplitudes and latencies, esti-
mates parameter reliabilities, and compares models.

As a case study, here we analyzed data for a study on
temporal attention – the prioritization of sensory information
at specific points in time (Denison, Heeger, & Carrasco,
2017). Combining information about the expected timing of
sensory events with ongoing task goals improves our percep-
tion and behavior (review by Nobre & van Ede, 2018). By
studying the effects of temporal attention on perception, we
can better understand the dynamics of visual perception. To
understand these dynamics, a critical distinction must bemade
between temporal attention—prioritization of task-relevant
time points—and temporal expectation—prediction of stimu-
lus timing regardless of task relevance. Here, we manipulated
temporal attention while equating expectation by using
precues to direct voluntary temporal attention to specific stim-
uli in predictably timed sequences of brief visual targets
(Denison et al., 2017; Denison, Yuval-Greenberg, &
Carrasco, 2019; Fernandez, Denison, & Carrasco, 2019).
Within the temporal attention dataset, we also compared two
kinds of tasks—orientation discrimination and orientation
estimation—which involved identical stimulus sequences
and only differed in the required report. It is likely that esti-
mation has a higher cognitive demand than discrimination, as
it requires a precise response, as opposed to a two-alternative
forced choice. Thus, the physical stimuli were fixed while the
cognitive demand varied between tasks. This dataset provided
a good case study to evaluate GLM procedures for modeling
the pupil time series as it had multiple rapid sequential events,
required temporally precise cognitive control to attend to a
relevant time point that varied from trial to trial, and included
an orthogonal task manipulation that involved different cog-
nitive demands for identical stimuli.

Methods

Data set

We reanalyzed eye-tracking data collected in a recent study on
temporal attention by Denison et al. (2017). Thus, behavioral
procedures were identical to those previously reported
(Denison et al., 2017; Denison et al., 2019). To maximize
the power of the pupil analysis, we combined the data from

the two experiments in that study with identical stimulus se-
quences (Experiments 1 and 3). Experiment 1 used an orienta-
tion discrimination task, so we refer to it here as the
Discrimination experiment. Experiment 3 used an orientation
estimation task, so we refer to it here as the Estimation exper-
iment. The stimuli were similar across experiments: on each
trial, human observers were presented with a predictably timed
sequence of two target gratings—which we refer to as T1 and
T2—and judged the orientation of one of these gratings. An
auditory precue before each sequence directed temporal atten-
tion to one or both grating times, and an auditory response cue
after each sequence instructed observers which grating’s orien-
tation to report (see Fig. 1 and Behavioral procedures).

Observers

The observers were the same as in Denison et al. (2017), except
that eye-tracking data from four observers in the Discrimination
experiment could not be used for pupil analysis for technical
reasons (e.g., excessive blinking: blink overlapped with re-
sponse cue in > 20% of trials). To better equate the number of
observers in each experiment for the present study, we collected
data from three new observers for theDiscrimination experiment
(as also reported in Denison et al., 2019). This gave 21 total
observer data sets: nine in Discrimination and 12 in
Estimation. Three observers participated in both experiments,
including author R.N.D. Therefore, 18 unique observers (ten
female, eightmale; aged 19–43 years) are included in the present
study. All observers provided informed consent, and the
University Committee on Activities involving Human Subjects
at New York University approved the experimental protocols.
All observers had normal or corrected-to-normal vision.

Stimuli

Stimuli were generated on an Apple iMac using
MATLAB (The MathWorks, Inc., Natick, MA, United
States) and Psychophysics Toolbox (Brainard, 1997;
Kleiner, Brainard, & Pelli, 2007; Pelli, 1997). They were
displayed on a gamma-corrected Sony Trinitron G520 CRT
monitor with a refresh rate of 100 Hz at a viewing distance of
56 cm. Observers’ heads were stabilized by a chin-and-head
rest. A central white fixation “x” subtended 0.5° visual angle.
Visual target stimuli were 4 cpd sinusoidal gratings with a 2D
Gaussian spatial envelope (standard deviation 0.7°), presented
in the lower right quadrant of the display centered at 5.7°
eccentricity (Fig. 1a). Stimuli were high contrast (64% or
100%, which we combined as there were no behavioral dif-
ferences). Placeholders, corners of a 4.25° x 4.25° white
square outline (line width 0.08°) centered on the target loca-
tion, were present throughout the display to minimize spatial
uncertainty. The stimuli were presented on a medium gray
background (57 cd/m2). Auditory precues were high (precue
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T1: 784 Hz; G5) or low (precue T2: 523 Hz; C5) pure sine
wave tones, or their combination (neutral precue). Auditory
stimuli were presented on the computer speakers.

Behavioral procedures

Basic task and trial sequenceObservers judged the orientation
of grating patches that appeared in short sequences of two
target stimuli per trial (T1 and T2). Targets were presented
for 30 ms each at the same spatial location, separated by stim-
ulus onset asynchronies (SOAs) of 250 ms (Fig. 1b). An au-
ditory precue 1000 ms before the first target instructed ob-
servers to attend to one or both of the targets. Thus, there were
three precue types: attend to T1, attend to T2, or attend to both

targets. Observers were asked to report the orientation of one
of the targets, which was indicated by an auditory response
cue 500 ms after the last target. The duration of the precue and
response cue tones was 200 ms. The timing of auditory and
visual events was the same on every trial.

Discrimination task In the Discrimination experiment, ob-
servers performed an orientation discrimination task (Fig.
1b). Each target was tilted slightly clockwise (CW) or coun-
terclockwise (CCW) from either the vertical or horizontal ax-
is, with independent tilts and axes for each target. Observers
pressed a key to report the tilt (CW or CCW) of the target
indicated by the response cue, with unlimited time to respond.
Tilt magnitudes were determined separately for each observer
by a thresholding procedure before the main experiment.
Observers received feedback at fixation (correct: green “+”;
incorrect: red “-”) after each trial, as well as feedback about
performance accuracy (percent correct) following each exper-
imental block.

Estimation task In the Estimation experiment, observers per-
formed an orientation estimation task (Fig. 1b). Target orien-
tations were selected randomly and uniformly from 0 to 180°,
with independent orientations for each target. Observers esti-
mated the orientation of the target indicated by the response
cue by adjusting a grating probe to match the perceived target
orientation. The probe was identical to the target but appeared
in a new random orientation. Observers moved the mouse
horizontally to adjust the orientation of the probe and clicked
the mouse to submit the response, with unlimited time to re-
spond. The absolute difference between the reported and pre-
sented target orientation was the error for that trial. Observers
received feedback at fixation after each trial (error < 5°, green
“+”; 5–10°, yellow “+”; ≥ 10°, red “-”). Additional feedback
after each block showed the percent of trials with < 5° errors,
which were defined to observers as “correct”.

Training and testing sessions All observers completed one
session of training prior to the experiment to familiarize them
with the task and, in the Discrimination experiment, determine
their tilt thresholds. Thresholds were selected to achieve ~79%
performance on neutral trials. Observers completed 640 trials
across two 1-h sessions. All experimental conditions were
randomly interleaved across trials.

Eye data collection

Pupil size was continuously recorded during the task at a
sampling frequency of 1000 Hz using an EyeLink 1000 eye
tracker (SR Research). Raw gaze positions were converted
into degrees of visual angle using the 5-point-grid calibration,
which was performed at the start of each experimental run.
Online streaming of gaze positions was used to ensure central

Fig. 1 Task and pupil time series. a Setup of visual display and eye
tracker. b Trial sequence. In the Discrimination task, observers reported
whether the target stimulus was tilted CWor CCW. In the Estimation task,
a grating probe (not shown) appeared after the response cue, and
observers adjusted it to report the exact orientation of the target
stimulus. c Pupil time series (colored lines), mean across trials in each
condition for each observer. Filled lines are observers in the
Discrimination experiment, and open lines are observers in the
Estimation experiment. Each observer has a unique color, and three
observers participated in both experiments (same color filled and
empty). Three lines per observer and experiment show different
precuing conditions (precue T1, T2, neutral), i.e., independent sets of
trials. Time series were baseline-normalized per trial (baseline period
shaded yellow). Gray shaded regions are trial events.
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fixation (< 1.5° from the fixation cross center) throughout the
experiment. Initiation of each trial was contingent on fixation,
with a 750-ms minimum inter-trial interval. Observers were
required to maintain fixation, without blinking, from the onset
of the precue until 120ms before the onset of the response cue.
If observers broke fixation during this period, the trial was
stopped and repeated at the end of the block.

Preprocessing

Data files from the eye tracker were imported to MATLAB to
perform all preprocessing and modeling with custom
software (Pupil Response Estimation Toolbox, PRET). The
raw time series from each session was epoched into trials span-
ning from –500 to 3500 ms, relative to the precue at 0 ms.
Blinks were interpolated trial by trial using a cubic spline inter-
polation method (Mathôt, 2013). All trials were individually
baseline normalized by calculating the average pupil size over
the region from –200 to 0 ms, then calculating the percent
difference from this baseline at each point along the time series:

xnorm ¼ x−baseline
baseline

� 100%; ð1Þ

where xnorm is the normalized data and x is the raw
data. We normalized the time series in this way to ob-
tain meaningful units of percent change from baseline,
but we note there are also arguments for a purely sub-
tractive baseline correction procedure (Mathôt, Fabius,
Heusden, & Stigchel, 2018; Reilly, Kelly, Kim, Jett, &
Zuckerman, 2018). Trials were grouped into conditions
depending on the precue (T1, T2, neutral), and the
mean time series was calculated across trials in each
condition for each observer.

Pupil modeling

GLM modeling framework Measured pupil size time series
were modeled as a linear combination of component pupil
responses (Fig. 2). A component pupil response is the predict-
ed pupil size time series associated with a single internal
(neural) signal that leads to pupil dilation. Mathematically,
an internal signal was represented as a time series concurrent
with the measured pupil size time series. The component pupil
response for a given internal signal was calculated by con-
volving the signal time series with a PuRF. The general
PuRF takes the form

h tð Þ ¼ tne−nt=tmax ; ð2Þ
where h is the pupil size, t is the time in ms, n controls the
shape of the function, and tmax controls the temporal scale
of the function and is the time of the maximum (Hoeks &
Levelt, 1993) (Fig. 2a). For a given measured pupil size

time series, each internal signal was convolved with the
same PuRF. Each component pupil response was assumed
to be dilatory.

Fig. 2 General linear modeling of the pupil time series. a Pupil response
function (PuRF), which describes the pupillary response to an impulse
event. The canonical PuRF, an Erlang gamma function with n = 10.1 and
tmax = 930 ms (vertical dashed line), is shown. b Internal signals
hypothesized to drive pupil dilation. The internal signal associated with
each trial event (brief auditory and visual stimuli, gray shaded regions) is
modeled as a delta function (vertical colored lines) with some amplitude
and some latency with respect to the event. A sustained, task-related
signal could also be modeled. Shown here is a boxcar (black line),
which starts at the onset of the precue and lasts until the median RT of
the modeled trials. c The mean pupil time series across trials (yellow line)
is modeled in two steps. First, each internal signal time series is
convolved with the PuRF to form component pupil responses (colored
lines, legend in panel b). Second, the component pupil responses are
summed to calculate the model prediction (gray dashed line).
Parameters of the model, such as the amplitudes and latencies of the
internal event signals, are fit using an optimization procedure
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We assumed there was a transient internal signal (de Gee
et al., 2014; Hoeks & Levelt, 1993; Wierda et al., 2012) asso-
ciated with each event in the trial sequence: the precue, T1,
T2, and the response cue. Each of these event-related signals
took the form of a Dirac delta function. An additional internal
signal could be included to model a constant, sustained signal
associated with task engagement (de Gee et al., 2014). This
task-related signal took the form of a boxcar function, with
nonzero values starting at the precue and ending at the median
response time of the observer being modeled. Thus, we
modeled our measured pupil size time series as the linear
combination of up to four event-related and one task-related
component pupil responses.

Model parameters We fit models of up to 11 parameters to a
given pupil size time series. The possible parameters were:
internal signal amplitudes and latencies for each trial event;
internal signal amplitude for the task-related response or alter-
natively a slope parameter specifying a linear drift across the
trial; one parameter specifying the timing of the PuRF; and
one baseline shift parameter. The details were as follows:

Each event-related signal had an amplitude parameter and a
latency parameter associated with it. The amplitude parameter
was the value of the nonzero point of the delta function and
indicated the magnitude of the internal signal, and thus deter-
mined the magnitude of the component pupil response asso-
ciated with it. The latency parameter was the time (in ms) of
the nonzero value, relative to the time of its corresponding
event. The pupil latency could be positive, after the event, or
negative, before the event. As the timing of the stimuli was
perfectly predictable—observers knew in advance when the
stimuli would appear—we allowed for the possibility that ob-
servers could start attending before the stimulus appeared,
driving pupil dilation in advance of the stimulus. The task-
related signal only had an amplitude parameter associated
with it because it was assumed to start at the beginning of
the trial.

The PuRF that was convolved with each signal had two
parameters: tmax, which controls the temporal scale and time
of the peak, and n, which controls the shape of the function.
Only tmax was estimated while nwas set to the canonical value
of 10.1 (Hoeks & Levelt, 1993). The tmax parameter can be
interpreted as the time it takes an observer’s pupil to dilate
maximally in response to an internal signal. The PuRF was
normalized such that the event-related and task-related ampli-
tude parameters indicated the percentage increase in pupil size
attributable to the corresponding signal. The PuRF was nor-
malized to a maximum value of 1, so that an amplitude value
of 1 corresponded to a 1% increase in pupil size from baseline.
For the task-related amplitude, the PuRF was normalized such
that the PuRF convolved with the boxcar had a maximum
value of 1. Thus, a task-related amplitude of 1 also

corresponded to a 1% increase in pupil size from baseline to
peak size.

The final parameter was a baseline shift parameter we
termed the y-intercept (y-int). The y-int parameter was simply
a shift along the y-axis of the entire predicted pupil size time
series. We included this in the model because we noticed that
for some observers, although all trials were baseline-
normalized during preprocessing based on a time window
before the precue, pupil size was decreasing during this win-
dow and continued to decrease until shortly after the precue.
This meant that pupil dilations during the trial sequence
started from a value below the calculated baseline. Without
accounting for this shift in baseline with the y-int parameter,
the model would underestimate the amplitude of the compo-
nent pupil responses.

Model comparison and selection Previous linear models
based on the PuRF only estimated the amplitude of compo-
nent pupil responses (e.g., de Gee et al., 2014; Wierda et al.,
2012). The component responses were assumed to onset at the
time of the corresponding trial event, and PuRFs were as-
sumed to be identical across observers. However, these as-
sumptions have never been systematically evaluated. Here,
we asked whether introducing additional timing parameters
would allow more accurate modeling of the pupil response.
In addition, the characteristic slow pupil dilation throughout a
trial has been modeled in different ways, as either a linear drift
(Wierda et al., 2012) or a sustained task-related response con-
volved with the PuRF (de Gee et al., 2014). We compared
these two possibilities.

We compared 24 different models (Table 1). These models
included all permutations of latency, tmax, and y-int as fixed vs.
free parameters and three different forms of the task-related
component. Fixed values are reported in Table 1. The three
task-related components tested were a boxcar function con-
volved with the PuRF, a linear function, and no task-related
component. The boxcar function was nonzero from 0 ms (the
onset of the precue) to the median response time for a given
observer and had one amplitude parameter for the height of
the boxcar. The linear function had a slope parameter and a
fixed intercept of 0%. It represented a linear drift throughout
the whole trial and did not depend on response time.
Amplitude parameters for each trial event were always esti-
mated. Each model was fit to the mean time series for each
condition and observer. We also checked that the results held
when fitting to the single trial time series; in this case,
baseline-corrected single trial time series were concatenated
and fit to concatenated model time series.

To compare models, the Bayesian information criterion
(BIC) was calculated for each model and observer across con-
ditions and averaged at the group level to get one metric per
model. The model with the lowest metric for most observers
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was selected as the best model and used for further analysis.
The BIC was chosen as the comparison metric to account for
the differing numbers of parameters among models.

We also assessed cross-validated R2 for each model using a
fourfold cross-validation procedure, in which models were fit
to 75% of the data and tested on the remaining 25%. Cross-
validated R2 was calculated by comparing the model predic-
tion to the mean across trials of the held-out data for each fold
and averaging across folds. A noise ceiling for R2 was calcu-
lated by comparing the mean across trials of the fitted data to
the mean across trials of the held-out data for each fold and
averaging across folds. R2 values were computed for each
model for each observer and then averaged across observers.

Parameter estimation Model parameters were estimated for
the mean pupil time series for each condition and observer
using a two-phase procedure. In both phases, the cost function
for determining goodness of fit was defined as the sum of the
squared errors between the measured pupil time series and the
predicted (model-generated) pupil time series in the time win-
dow from 0 to 3500 ms. First, the cost function was evaluated

at 2000 sets of parameter values sampled from independent
uniform distributions of each parameter. These distributions
were bounded by the parameter constraints described below.
Second, constrained optimizations (MATLAB fmincon) were
performed starting from the 40 sets of parameter values with
the lowest cost from the first phase. The set of optimized
parameter values minimizing the cost function was selected
as the best estimate.

Parameter constraints were selected to ensure parameters
could vary meaningfully within physiologically feasible
ranges. Event and task-related amplitudes were constrained
to the range of 0 to 100, meaning that any single internal signal
could not evoke a pupil response in excess of 100% change
from baseline. This range also enforces that pupil responses
refer to dilation as opposed to constriction. Event-related la-
tencies were constrained to a range of –500 to 500 ms. The
tmax value was constrained to a range of 0 to 2000 ms. The y-
int parameter was constrained to a range of –20 to 20% change
from baseline. The slope parameter during model comparison
was constrained to a range of 0 to 50% change over the trial
window of 3500 ms.

Table 1 Factorial model comparison

1 LYT-B Boxcar (1) 11 0
2 LYT-L Linear (1) 11 -49
3 LYT-0 None 10 3,328
4 LY-B Boxcar 10 7,939
5 LY-L Linear 10 7,006
6 LY-0 None 9 19,196
7 LT-B Boxcar 10 8,840
8 LT-L Linear 10 10,946
9 LT-0 None 9 12,344
10 L-B Boxcar 9 14,069
11 L-L Linear 9 14,609
12 L-0 None 8 25,178
13 YT-B Boxcar 7 14,688
14 YT-L Linear 7 20,564
15 YT-0 None 6 20,296
16 Y-B Boxcar 6 27,319
17 Y-L Linear 6 26,392
18 Y-0 None 5 40,876
19 T-B Boxcar 6 22,556
20 T-L Linear 6 25,720
21 T-0 None 5 27,568
22 0-B Boxcar 5 30,585
23 0-L Linear 5 31,841
24 0-0 None 4 45,679

Parameter

930 ms

0 ms

Parameter

Parameter

930 ms

0%

Parameter

930 ms

tmax Task-related # params BIC

Parameter (4)

Parameter (4)

Parameter (1)

Parameter (1)

930 ms

0%

Model # Model code Amplitude Latency y-int

All models tested are shown with their parameters. Rows are models; columns including gray shading are factors. Gray shading indicates parameters
were fit, with number of parameters in parentheses.No shading indicates parameters were fixed, with the fixed value given.Model code: L = latency, Y =
y-int, T = tmax, 0 = none; task component: B = boxcar, L = linear, 0 = none
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Bootstrapping procedure for parameter estimation To obtain
robust parameter estimates, and to quantify the uncertainty
in the parameter estimates due to both noise in the data and
variability in the fitting procedure, we used bootstrapping.
Parameter estimation was performed on 100 bootstrapped
mean time series for each condition and observer. Each
bootstrapped time series was formed by randomly resam-
pling the underlying set of trials with replacement, with the
number of trials per sample equal to the original number of
trials. This produced 100-element distributions of each
model parameter for each condition and observer. The me-
dian of a given parameter distribution was taken as the
bootstrapped estimate of that parameter. The uncertainty
of this estimate was quantified as the 95% confidence
interval.

Parameter recovery To evaluate the parameter estimation pro-
cedure, we fit the model to artificial data generated by the
model, with no noise. Because the form of the noise in pupil
data is unknown, we relied on the bootstrapping procedure (in
which the noise comes from the data itself) to quantify the
uncertainty of parameter estimates and performed parameter
recovery only to verify the accuracy of the fitting procedure
and check for redundancies within the model structure. A set
of 100 artificial time series was simulated by generating 100
sets of model parameters independently sampled from uni-
form distributions and calculating the resulting time series
for each. Event and task-related amplitude values were sam-
pled from a range of 0 to 10%, latency values were sampled
from –500 to 500 ms, tmax values were sampled from 500 to
1500 ms, and y-int values were sampled from –4 to 4%.
Response time values used in the boxcar function for the
task-related component varied from 2350 to 3350 ms after
the precue. The parameter estimation procedure was per-
formed on each artificial time series (without bootstrapping),
producing an output set of parameters for each input set of
parameters. To evaluate the parameter recovery, input param-
eters were plotted against output parameters and the Pearson
correlation coefficient was calculated.

Statistical testing

Hypothesis testing was performed using the median of the
parameter estimates from the bootstrapping procedure. A lin-
ear mixed effects model was used to analyze the combined
data across two experiments, each with a within-observer de-
sign, and in which three observers completed both experi-
ments. A linear mixed effects model was created using the
lme4 package in R, with experiment and precue condition as
fixed effects and observer as a random effect. We tested for
main effects and interactions by approximating likelihood ra-
tio tests to compare models with and without the effect of
interest.

Results

We evaluated the ability of general linear models (GLMs) to
capture pupil area time series during experimental trials with
rapid sequences of events. We tested the model on a sample
data set in which four sequential stimuli were presented within
2.25 s on each trial (Fig. 1a, b, see Methods). Given that 2 s is
the approximate length of a typical PuRF (Hoeks & Levelt,
1993), we asked whether pupil responses to the successive
events within a trial can be meaningfully recovered and what
model formwould best describe the pupil area time series over
the course of a trial.

The data set included two experiments with the same stim-
ulus sequence but different types of behavioral reports (orien-
tation discrimination or orientation estimation) at the end of
each trial. The experiments were previously reported with
only the behavioral analysis (Denison et al., 2017) and with
microsaccade analysis (Denison et al., 2019). Pupil area time
series, averaged across trials for each experimental condition,
were highly consistent within individual observers but varied
considerably across observers (Fig. 1c), motivating an
individual-level modeling approach.

The modeling framework assumed that the pupil response
time series is a linear combination of component responses to
various trial events, along with a task-related pupil response in
each trial (Fig. 2) (de Gee et al., 2014; Hoeks & Levelt, 1993;
Wierda et al., 2012). Each trial event was modeled as an im-
pulse of variable amplitude (Fig. 2b), which was convolved
with a PuRF (Fig. 2a) to generate the corresponding compo-
nent response (Fig. 2c). The sum of all component responses
was the predicted pupil time series (Fig. 2c).

Model comparison: Timing parameters improve fits

We compared 24 alternative models to determine what model
structure would allow the best prediction of the pupil response
time series. In particular, we asked whether the addition of two
timing parameters would improve model fits over that of the
standard model. The first timing parameter was event latency:
a trial event impulse could have a non-zero latency with re-
spect to its corresponding event, rather than being locked to
the event onset. The second timing parameter was tmax: the
time-to-peak of the PuRF could vary across individuals. We
also tested different forms of the sustained, task-related pupil
response, as well as the inclusion of a baseline parameter (y-
int) to account for differences not removed by pre-trial base-
line normalization. We used factorial model comparison
(Keshvari, van den Berg, & Ma, 2012; Ma, 2018; van den
Berg, Awh, & Ma, 2014) to test the contribution of each of
these parameters to predicting pupil response time series
(Table 1).

All four tested parameters (event latency, tmax, task-related
component, and y-int) significantly improved model fits (Fig.
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3; multi-way within-observers ANOVA on BIC scores, main
effects of latency: F(1,20) = 143.39, p = 1.4e-10, mean across
observers and modelsΔBIC = –5,466; tmax: F(1,20) = 76.59,
p = 2.8e-08,ΔBIC = –10,324; task-related: F(2,40) = 19.88, p
= 1.0e-06, ΔBIC (box minus linear) = –1,379, ΔBIC (box
minus none) = –8,558; y-int: F(1,20) = 20.53, p = 2.0 e-04,
ΔBIC = –6,865). We also observed interactions between
some factors, task-related component by tmax: F(2,40) =
23.66, p = 1.7e-07; tmax by y-int: F(1,20) = 8.27, p = 9.4e-
03; task-related component by latency: F(2,40) = 3.25, p =
4.9e-02; tmax by latency: F(1,20) = 7.00, p = 1.6e-02. The best
model for most observers (Model 1, best for 11 out of 21
observers) included all the tested parameters, with the task-
related component modeled as a boxcar convolved with the
PuRF. The model fit the mean time series data well (mean
across observers, R2 = 0.99; cross-validated R2 = 0.67, 98%
of noise ceiling). The single-trial R2 was 0.20; this value re-
flects the noise at the single-trial level. Model 2 (best for six
out of 21 observers), in which the task-related component was
modeled as a linear function of time but which was otherwise
identical to Model 1, performed similarly (R2 = 0.99; cross-
validated R2 = 0.68, 98% of noise ceiling; single-trial R2 =
0.20). These two types of task-related components also

performed similarly at the factor level (ΔBIC = –1,379).
Otherwise, Model 1 was significantly better than every other
model (paired t-tests ofModel 1 BIC vs. eachmodel’s BIC, all
t > 3.09, all p < 5.8e-03 uncorrected; with Bonferroni correc-
tion for 23 pairwise comparisons, all but Model 3 had p <
0.05). Model 3, which was identical to Models 1 and 2 but
with no task-related component, was the only other model that
was best for some individuals, four out of 21 observers. We
found a similar pattern across models for cross-validated R2 as
well as when we fit to single-trial data. Model 1 was consis-
tently the best model, and latency, tmax, and task-related pa-
rameters improved model fits. Therefore, the addition of
timing parameters to the standard model substantially im-
proved model fits.

Our final test of the model’s structure was to ask wheth-
er modeling all trial events was needed to predict the pupil
area time series. In particular, the two visual target events
were separated by only 250 ms, which is short compared
to the dynamics of the pupil response. To test whether the
model captured separate pupil responses to the two targets,
we compared models that included either two target events
(Model 1) or only one target event. The two-target model
outperformed the one-target model, ΔBIC = –1,206, t(20)

Fig. 3 Model comparison. Difference in BIC score for each observer and
model with respect to Model 1, the best model for most observers. Each
color corresponds to an individual observer. The black square with error

bar corresponds to mean difference in BIC score across all observers.
Crosses in the table indicate that the parameter type was fit for that
model. In the task row, B indicates boxcar and L indicates linear function
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= 4.23, p = 4.1e-04, consistent with separate pupil re-
sponses to the two rapidly presented targets.

Validation of the fitting procedure: Parameter
recovery and tradeoffs

We evaluated the best model (Model 1) and fitting proce-
dures in several ways. First, we sought to validate the
model and fitting procedures by performing parameter re-
covery on simulated data. Redundancies in the model or
lack of precision to resolve the unique contributions of
different trial events to the pupil time series would result
in parameter tradeoffs, and noise in the fitting procedure
from stochastically searching a high-dimensional parame-
ter space would result in variability in the parameter esti-
mates. We performed parameter recovery to assess these
possibilities by generating 100 simulated time series with
known parameter values and then fitting the model.
Parameter estimates from simulated data tended to be sim-
ilar to the true values for the entire range of tested values
(strong diagonals on the 2D histograms in Fig. 4 and
correlations in each panel). This was also the case when
the range of T1-T2 SOAs was restricted to ± 100 ms
around the experimental SOA of 250 ms (Fig. S1), as well
as when noise on single trials was simulated (Fig. S2).
Parameter recovery accuracy was lowest for the T1 and
T2 amplitudes, likely because of their close temporal prox-
imity. Figure S1 indicates the level of recovery precision
that can be expected for the shortest SOA range tested (r =
0.52–0.54 vs. r = 0.60–0.69 for all SOAs). Accuracy for
the timing parameters was generally high.

We assessed parameter tradeoffs first by examining corre-
lations between estimated values for pairs of parameters in the
simulated data. No correlations were significant after
Bonferroni correction for multiple comparisons (Fig. S3).

The lack of significant correlations between parameters in
the simulated data indicates that parameter tradeoffs are not
inherent to the structure of the model or the fitting procedure.

We next assessed parameter tradeoffs by examining corre-
lations between pairs of parameter values (bootstrap medians)
estimated from the real data. All event-related amplitudes
were positively correlated with each other (r > 0.61, p <
1.2e-07). Certain event latencies were also positively correlat-
ed with each other (T1 with T2, T2 with response cue; r >
0.44, p < 2.7e-04). These correlations are likely to arise from
true statistical dependencies in the data; e.g., some observers
have generally stronger pupil dilation responses, across all
events. In addition to these positive correlations, T1 latency
negatively correlated with event-related amplitudes (precue,
T1, T2; r < –0.44, p < 3e-04) and precue latency negatively
correlatedwith task-related amplitude (r = –0.48, p < 6.1e-05).
tmax negatively correlated with y-int (r = –0.43, p = 4.7e-04)
and positively correlated with response cue latency (r = 0.53,
p = 6.4e-06). The negative correlations could arise from pa-
rameter tradeoffs driven by noise in the real data, or from true
statistical dependencies in the pupil responses.

Reliability of parameter estimates for individual
observers

We next evaluated the reliability of the parameter esti-
mates in real data. Real data have multiple sources of
noise, some of which are unknown, so to estimate the
reliability of parameter estimates given such noise, we
used a bootstrapping procedure. This procedure allowed
us to estimate the reliability of parameter estimates for
individual observers. Parameter estimates and their reli-
abilities for an example observer are shown in Fig. 5.
We define “reliability” as the range of the 95% confi-
dence interval. The reliability for each parameter
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estimate from the example observer is shown in Fig. 5.
The mean reliabilities of different event types across
observers were: trial event amplitude: 2.21%; task-
related amplitude: 2.75%; trial event latency: 342 ms;
tmax: 334 ms; y-int: 0.74%. Due to this variability across
bootstrap samples, we recommend using the median of
the bootstrapped distribution as a robust parameter esti-
mate, and we have adopted this practice here.

Consistency of parameter estimates within observers
and variability across observers

We next investigated the consistency of parameter estimates
within each observer as well as their variability across ob-
servers. To do this, we measured the consistency of parameter
estimates for a given observer across independent sets of trials
(Fig. 6). We split the trials for each observer based on the
experimental condition (three conditions per observer: precue
T1, T2, neutral). Parameter estimates were generally consis-
tent for individual observers, though latency was less consis-
tent than the other parameters. In contrast to the within-
observer consistency, all parameters varied substantially
across observers. In particular, the tmax parameter, which de-
scribes the dynamics of the PuRF, was highly consistent

within individual observers but varied over a large range
across observers (from ~700 to ~1600 ms). These findings
underscore the importance of modeling individual pupil re-
sponse time series rather than only considering a group aver-
age time series, and they further show the importance of
modeling individual observer pupil response dynamics rather
than assuming a fixed PuRF. Averaging observers’ time series
would blur the distinct individual dynamics; using a single
PuRF for all observers would result in misleading parameter
estimates due to model mismatch.

Parameter estimates for the temporal attention
experiment: Amplitude depends on task

To demonstrate how modeling can reveal cognitive modula-
tions of the pupil response, we used the developed modeling
procedure to evaluate the parameter estimates in the experi-
mental data. We calculated separate estimates for each precue
type (T1, T2, neutral), separately for the Discrimination and
Estimation experiments, which had the same stimulus se-
quence but different types of behavioral reports (Fig. 7). No
differences were found among the different precue types
(χ2(2) < 5.77, p > 0.05 for all parameters). There were also
no interactions between precue and experiment (χ2(2) < 3.70,
p > 0.15). So here we report the mean across precues for each
experiment.

Amplitude estimates for trial events were 1–7%
change from baseline, and the amplitude of the
decision-related signal was 2.18% (Discrimination) or
3.44% (Estimation). The mean y-int was slightly below
zero, driven by a few observers with larger negative y-int
values (Fig. 6), and did not differ between experiments
(–0.50% for Discrimination, –0.54% for Estimation).
Interestingly, amplitude estimates were higher for all trial
events in the Discrimination experiment compared to the
Estimation experiment (Fig. 7a, χ2(1) > 32.62, p < 1.3e-
7 with Bonferroni correction for multiple comparisons
across parameters). To assess whether this effect was
present at an individual observer level, we examined
the trial event amplitudes of the three observers who
participated in both experiments. We found that two out
of the three observers, like the group data, had higher
event amplitudes for Discrimination compared to
Estimation (differences of 6.20% and 8.49%), whereas
one had similar amplitudes (difference of –0.24%). No
other task differences survived correction for multiple
comparisons.

Latency estimates were similar for the two experiments
(Fig. 7b, χ2(1) < 1.75, p > 0.18). The latency estimate for
T2 was similar to the event onset, (51 ms for Discrimination,
19 ms for Estimation, comparison to zero latency: χ2(1) =
2.62, p = 0.11). However, the latency estimate for T1 was well
before T1 onset (–290 ms for Discrimination, –182 ms for
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Fig. 5 Reliability of individual parameter estimates for a representative
observer. a Amplitude and y-int estimates. Box and whisker plots show
bootstrap median along with 50% and 95% bootstrapped confidence
intervals. b Latency and c tmax estimates, plotted as in panel a
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Estimation, comparison to zero: χ2(1) = 65.88, p = 1.9e-15
corrected). The precue latency estimate was also well before
the precue onset (–157 ms for Discrimination, –221 ms for
Estimation, comparison to zero: χ2(1) = 32.13, p = 5.8e-8
corrected). Meanwhile, the response cue latency estimate
was delayed relative to the response cue onset (169 ms for
Discrimination, 292 ms for Estimation, comparison to zero:
χ2(1) = 89.84, p < 8e-16 corrected). The mean tmax was
1,053 ms for Discrimination and 1,296 for Estimation, with
no significant difference (χ2(1) = 0.12, p = 0.73). Thus, the
two experiments had similar latency but different amplitude
profiles, with larger event-related pupil responses in the
Discrimination than the Estimation experiment.

Discussion

Pupil size is an accessible, continuous measure that re-
flects rapidly changing internal states, but the pupil re-
sponse itself is relatively slow. Linear modeling has
shown promise for inferring the dynamics of internal
signals that drive pupil responses, but as has been noted
(Bach et al., 2018), these methods have not been system-
atically evaluated. To work toward a standard pupil

modeling approach, here we compared different pupil
models, validated modeling procedures, and evaluated
the reliability of the best model. Based on the results,
we recommend a specific pupil model and fitting proce-
dure, and we quantify the uncertainty of the resulting
parameter estimates. The best model includes timing pa-
rameters that are not usually fit, indicating that more
precise modeling of pupil dynamics may improve the
estimation of pupillary responses to rapid events.

Model validation

Despite the increasing use of linear models of pupil size to
capture pupillary time series to multiple sequential events,
such methods have not been well validated. Our best model
and fitting procedures performed well on simulated data, with
reasonably accurate parameter recovery. Themodel also fit the
real data well. The unknown nature of noise in the pupil data
limited our ability to simulate the impact of noise on parame-
ter recovery, so we also quantified the uncertainty of the pa-
rameter estimates in the real data. Note that these uncertainty
estimates are expected to depend on the number of trials. We
also identified a few parameter tradeoffs in the real data. Both
uncertainty and tradeoffs should be considered when

Fig. 6 Consistency of parameter estimates across independent sets of
trials. a Amplitude and y-int estimates. Each point is one condition
(precue T1, T2, neutral) for one observer; each condition was fit

separately. Each observer has a unique color. Filled points are from the
Discrimination experiment and empty points are from the Estimation
experiment. b Latency and c tmax estimates, plotted as in panel a
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interpreting parameter estimates and potentially when design-
ing experiments. For example, given the ~350 ms 95% confi-
dence interval on latency estimates, it may be helpful to sep-
arate successive trial events by at least that interval, if possible.
The results suggest that the current model is reasonable as a
current standard and can serve as a starting point for future
work.

Temporal properties

The inclusion of two timing parameters, event latency and
tmax, improved the model’s ability to fit the pupil size time
series. With respect to latency, internal signals related to the
precue and T1 events were estimated to occur before the
events themselves. This finding suggests that these internal
signals anticipated the stimulus onsets, which were predict-
able. Pupil dilation in advance of a predictable stimulus has
been observed previously and found to depend on temporal
expectation (Akdoğan, Balcı, & van Rijn, 2016; Bradshaw,
1968) and upcoming task demands (Irons, Jeon, & Leber,
2017). Allowing for variable latency in pupil models may

therefore be particularly important when observers have ex-
pectations about the timing of upcoming events. More broad-
ly, latency estimates can provide information about anticipa-
tory processes related to the observer’s task.

Most previous pupil modeling studies (de Gee et al., 2017;
de Gee et al., 2014; Kang et al., 2014; Kang & Wheatley,
2015; Lempert et al., 2015; Murphy et al., 2016; van
Kempen et al., 2019; Wierda et al., 2012; Willems,
Damsma, et al., 2015; Willems, Herdzin, & Martens, 2015;
Zylberberg et al., 2012) have used the canonical PuRF pro-
posed by Hoeks and Levelt (1993), which assumes that all
observers have identical pupil dynamics. We found, on the
contrary, that fitting the time-to-peak (tmax) of the PuRF im-
proved model fits. The value of tmax varied widely across
observers but was highly consistent for a given observer, sug-
gesting that tmax is an observer-specific property. The tmax

values we estimated for individual observers were in line with
Hoeks and Levelt’s original estimates using a single stimulus
event, which ranged from 630–1300 ms and showed some
variability between auditory vs. visual events (Hoeks &
Levelt, 1993). van den Brink et al. (2016) also varied tmax,
but did so by setting it to the latency of the maximum dilation
in the time series, rather than fitting it. Here we found that
individual PuRFs can be estimated from a multi-event time
series and should be used instead of the canonical PuRF to
improve pupil modeling.

Despite the sluggishness of the pupillary response, a model
with two target events outperformed a model with only one
target event. This suggests that the two target events were
associated with separate pupil dilations, even though they
were separated by only 250 ms. Due to the early response to
T1, however, the estimated dilations occurred further apart in
time, closer to 500 ms. Individual observer latency estimates
had a reliability of ~350 ms, indicating that while separate
pupillary responses to events close in time seem to be recov-
erable, one should take care in interpreting their exact timing.
The interpretation of some estimated latencies in the current
data set was also limited by the fact that they fell at the bound-
ary of the allowed range, –500 ms.

Dependence on task and temporal attention

The event-related pupil response amplitude depended on the
task observers were performing, with larger amplitudes in the
Discrimination compared to the Estimation task. This finding
demonstrates that even when the stimulus sequence is identi-
cal, cognitive factors can influence the pupil response, consis-
tent with a large body of research (Ebitz & Moore, 2018;
Einhäuser, 2017; Mathôt, 2018). Here, a relatively modest
change in task instruction—discrimination vs. estimation—
changed the amplitudes of pupillary responses to sensory
stimuli. The larger amplitude effect for Discrimination could
have been due, at least in part, to a larger baseline pupil size in

Fig. 7 Group parameter estimates. a Amplitude and y-int estimates.
Colored points show mean of bootstrap medians across observers and
conditions. Filled points are from the Discrimination experiment, empty
points are from the Estimation experiment. Thin colored error bars show
mean 95% confidence intervals across observers. Thick black error bars
show SEM across observers. b Latency and c tmax estimates, plotted as in
panel a
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the Estimation task, perhaps related to a higher cognitive load,
as tonic size and phasic response amplitudes are inversely
related (Aston-Jones, Rajkowski, Kubiak, & Alexinsky,
1994; de Gee et al., 2014; Gilzenrat, Nieuwenhuis, Jepma,
& Cohen, 2010; Murphy, Robertson, Balsters, O'Connell, &
G., 2011). We were unable to directly compare baseline pupil
size across tasks, however, because the tasks were performed
in separate sessions. Task affected pupil response amplitudes
to trial events more than the sustained, task-related amplitude,
and had no effect on pupil response latencies. These results
show how models can help specify the effects of cognitive
manipulations on pupillary responses.

In contrast, we found no reliable impact of temporal atten-
tion on any model parameter, despite finding overall effects of
temporal expectation in the form of anticipatory responses to
the predictably timed stimuli, as well as behavioral effects of
temporal attention in the same experiments (Denison et al.,
2017). While it is difficult to draw any strong conclusions
from a null result, our findings suggest that the effects of
voluntary temporal attention on pupil size may be subtle, if
not absent. Previous research has linked changes in pupil size
to temporal selection during the attentional blink, in which
observers identify targets embedded in a rapid visual sequence
(Wierda et al., 2012; Willems, Damsma, et al., 2015; Willems,
Herdzin, &Martens, 2015; Zylberberg et al., 2012). One mod-
el of the attentional blink explains the phenomenon as arising
from the dynamics of the LC (Nieuwenhuis, Gilzenrat,
Holmes, & Cohen, 2005), according to the idea that phasic
LC responses act as a temporal filter (Aston-Jones & Cohen,
2005). Temporal selection during the attentional blink—in
which target timing is unpredictable—may be different, how-
ever, from voluntary temporal attention—the prioritization of
specific, relevant time points that are fully predictable. In con-
trast to our findings for the pupil, microsaccade dynamics are
modulated by both temporal expectation (Amit, Abeles,
Carrasco, & Yuval-Greenberg, 2019; Dankner, Shalev,
Carrasco, & Yuval-Greenberg, 2017; Denison et al., 2019;
Hafed, Lovejoy, & Krauzlis, 2011; Pastukhov & Braun,
2010) and temporal attention (Denison et al., 2019).

Limitations and extensions

The best model was determined based on a sample dataset in
which ~ 2-s trials contained multiple sequential events. This
dataset was therefore suited to ask about the estimation of
rapid internal signals driving pupil dilation. Nevertheless, oth-
er models may perform better for different datasets. For ex-
ample, Murphy et al., 2016, showed that the task-related com-
ponent, which we found to be best modeled as a boxcar, was
better described as boxcar or linear depending on the task. van
Kempen et al., 2019, also found support for a linear task-
related component. Note that all of these best-fitting boxcar
and linear regressors were dependent on RT, unlike the linear

regressor we tested, which modeled linear drift across the
whole trial following Wierda et al., 2012.

Future work could extend the current model in multiple
ways. In the main analyses, we modeled average pupil time
series across trials in a given experimental condition, using the
median RT to define the task-related boxcar component.
Another approach would be to model single trial time series
and define the boxcar for each trial using that trial’s RT (e.g.,
de Gee et al., 2014). In the present study, we tested only the
tmax parameter of the PuRF, leaving the second parameter, n,
fixed. The motivations for this choice were that (1) tmax is
easily interpretable as the time-to-peak of the PuRF, whereas
n governs the shape of the PuRF in a more complex way, and
(2) Hoeks and Levelt reported that n could vary considerably
without a large impact on the other parameter estimates.
However, future work could test whether fitting n would fur-
ther improve the model fits. Future work could also add co-
variates to the model such as tonic pupil size (de Gee et al.,
2014), model pupil modulations associated with blinks and
microsaccades (Knapen et al., 2016), and model pupil con-
strictions as well as dilations (Korn & Bach, 2016). A recent
pupil model included both transient and sustained components
of the pupil dilation response (Spitschan et al., 2017), which
could be compared to the unitary PuRF used here and in most
previous work. Furthermore, it will be important to test this
model on a variety of perceptual and cognitive tasks, includ-
ing those known to modulate pupil responses (Einhäuser,
2017). The PRET toolbox will facilitate tests to address gen-
eralization of the present study to multiple tasks and observer
populations.

General linear models have also been used to model
BOLD fMRI time series. A common strategy for accom-
modating individual variations in hemodynamic response
function (HRF) timing has been to use temporal derivatives
of the canonical HRF to generate extra regressors in the
model. Such an approach could also be used to model the
PuRF, with the practical advantage that the models could
then be fit using regression, which is less computationally
demanding than the optimization procedure used here. We
chose to parameterize the latency and tmax of the PuRF
instead of introducing separate temporal derivative regres-
sors for two reasons. The first is interpretability. We can
read out the latency and tmax parameter estimates directly
from our model, whereas they would have to be derived if
multiple PuRF regressors were used. The second reason is
theoretical: Latency and tmax have different underlying
sources so they should be decoupled in the model.
Specifically, tmax is due to pupillary mechanics, whereas
latency also depends on the latency of the neural response
that drives the pupil dilation. Letting these parameters be
independent therefore allowed us to fit a single tmax per
observer but separate latency parameters for each event,
better reflecting their different underlying sources.
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Pupil Response Estimation Toolbox (PRET)

We provide a MATLAB toolbox, PRET, that performs all the
analyses reported here, including basic preprocessing (blink
interpolation and baseline correction), model specification,
model fitting, bootstrapping of parameter estimates, data sim-
ulation and parameter recovery, and model comparison. The
toolbox is open-source and freely available onGitHub (https://
github.com/jacobaparker/PRET). Importantly, PRET can be
readily employed for model comparison and uncertainty
estimation in other data sets to continue to work toward a
field-standard pupil modeling approach.

Open Practices Statement

The code for the pupil analyses is available at https://github.
com/jacobaparker/PRET. The data for all experiments are
available upon request. None of the experiments was
preregistered.
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