
Chapter 5
Dual-System Learning Models and Drugs
of Abuse

Dylan A. Simon and Nathaniel D. Daw

Abstract Dual-system theories in psychology and neuroscience propose that a
deliberative or goal-directed decision system is accompanied by a more auto-
matic or habitual path to action. In computational terms, the latter is prominently
associated with model-free reinforcement learning algorithms such as temporal-
difference learning, and the former with model-based approaches. Due in part to
the close association between drugs of abuse and dopamine, and also between
dopamine, temporal-difference learning, and habitual behavior, addictive drugs are
often thought to specifically target the habitual system.

However, although many drug-taking behaviors are well explained under such a
theory, evidence suggests that drug-seeking behaviors must leverage a goal-directed
controller as well. Indeed, one exhaustive theoretical account proposed that drugs
may have numerous, distinct impacts on both systems as well as on other processes.

Here, we seek a more parsimonious account of these phenomena by asking
whether the apparent profligacy of drugs’ effects might be explained by a single
mechanism of action. In particular, we propose that the pattern of effects observed
under drug abuse may reveal interactions between the two controllers, which have
typically been modeled as separate and parallel. We sketch several different candi-
date characterizations and architectures by which model-free effects may impinge
on a model-based system, including sharing of cached values through truncated tree
search and bias of transition selection for prioritized value sweeping.

5.1 Introduction

Dual-system theories of decision making—involving, for instance, a deliberative
“goal-directed” controller and a more automatized or “habitual” one—are ubiq-
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uitous across the behavioral sciences (Blodgett and McCutchan 1947; Dickin-
son 1985; Verplanken et al. 1998; Kahneman and Frederick 2002; Loewenstein
and O’Donoghue 2004; Daw et al. 2005; Wood and Neal 2007). Many theo-
ries of drug abuse draw on this sort of framework, proposing that the compul-
sive nature of abuse reflects a transition of behavioral control from the volun-
tary system to the habitual one (Tiffany 1990; Ainslie 2001; Everitt et al. 2001;
Vanderschuren and Everitt 2004; Everitt and Robbins 2005; Bechara 2005). Such
a characterization may explain many drug-taking behaviors that become stereo-
typed and automatic, and dovetails naturally with models of the function of
the neuromodulator dopamine (a ubiquitous target of drugs of abuse) suggest-
ing a specific role for this neuromodulator in reinforcing habits (Di Chiara 1999;
Redish 2004). However, the view of abusive behaviors as excessively automatized
stimulus-response habits cannot easily explain many sorts of drug-seeking behav-
iors, which can involve novel and often increasingly inventive goal-directed acqui-
sition strategies (Tiffany 1990). Such theories also do not speak to more cognitive
phenomena such as craving.

Drug abuse is a dysfunction of decision making, acquired through learning.
In this domain, theories are often formalized in terms of reinforcement learning
(RL) algorithms from artificial intelligence (Sutton and Barto 1998). By provid-
ing a quantitative characterization of decision problems, RL theories have enjoyed
success in behavioral neuroscience as methods for direct analysis and interpreta-
tion of trial-by-trial decision data, both behavioral and neural (Schultz et al. 1997;
Daw and Doya 2006). Importantly, these theories also offer a putative computa-
tional counterpart to the goal-directed vs. habitual distinction, which may be useful
for characterizing either system’s role in drug abuse. In these terms, the more au-
tomatic, habitual behaviors are typically associated with so-called model-free RL,
notably temporal-difference (TD) methods such as the actor/critic, in which suc-
cessful actions are reinforced so that they may be repeated in the future. However, it
has more recently been proposed that goal-directed behaviors can be captured with
a categorically distinct type of RL known as model-based, in which actions may
be planned based on a learned associative model of the environment (Doya 1999;
Daw et al. 2005; Tanaka et al. 2006; Hampton et al. 2006; Pan et al. 2007;
Redish and Johnson 2007; Rangel et al. 2008; Gläscher et al. 2010).

Such theories hypothesize that goal-directed and habitual behaviors arise from
largely separate and parallel RL systems in the brain: model-based and model-free.
Model-free RL forms the basis for a well-known account of dopamine neurons in
the midbrain, as well as BOLD activity in dopamine targets in the basal ganglia
(Houk et al. 1994; Schultz et al. 1997; Berns et al. 2001; O’Doherty et al. 2003;
McClure et al. 2003). Since it is well established that drugs of abuse affect the
function of these systems, and that other problem behaviors such as compul-
sive gambling show evidence of related effects, it has been a natural and fruit-
ful line of research to apply TD-like theories to drug abuse (Di Chiara 1999;
Redish 2004). However, these more computational theories pose the same puz-
zle as their psychological counterparts: how to account for the role of more flex-
ible, drug-seeking behaviors apparently associated with goal-directed (in this case,
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model-based) control. Here, we consider how these behaviors might be understood
in terms of the less well characterized model-based system. We follow Redish et
al. (2008) in this endeavor, but focus more on what drug abuse phenomena suggest
about potential variants or elaborations of the standard model-based account. In par-
ticular, we relate these issues to a range of other data suggesting that the two hypoth-
esized RL systems are not as separate as they have been envisioned, but may instead
interact in some respects. We consider how different sorts of interaction might be
captured in modified forms of these theories in order to extend the computational
account of drug abuse.

5.2 Background: Reinforcement Learning and Behavior

As a framework for formalizing theories of drug abuse, this section lays out the
basics of RL, the study of learning optimal decisions through trial and error. For a
more detailed description of this branch of computer science, see Sutton and Barto
(1998) or, for its applications to psychology, Balleine et al. (2008).

5.2.1 The Markov Decision Process

Most decision problems in RL are based on Markov decision processes (MDPs),
which formalize real-world problems as a sequence of steps, each of which involves
a choice between actions affecting the resulting reward and the situation going for-
ward. Formally, an MDP is a set of states, S , and actions, A, which occur in some
sequence, st and at over timesteps t , such that st+1 depends stochastically on st
and at , but on no other information. This dependence is described by a transition
function specifying the probability distribution over possible next states given the
current state and chosen action:

T
(
s, a, s′) = P

[
st+1 = s′∣∣st = s, at = a

]

Rewards are similarly described by a stochastic reward function mapping each state
to the quantity of reward received in that state: R : S →R, such that rt = R(st ). The
transition and reward functions thus fully describe the process.

5.2.2 Values and Policies

The goal of an agent in an MDP is to select actions so as to maximize its reward, and
more specifically, to learn to do so by trial and error, using only information about
the underlying process observed during behavior (i.e., samples from the transition
and reward functions). Specifically, at a state, s, an agent aims to pick the action,
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a, that will maximize the cumulative, temporally discounted rewards that will be
received in the future, in expectation over future states and actions:

Q(s, a) = E

[∑

i=1

γ i−1rt+i |st = s, at = a

]

where γ < 1 is an exponential time discounting factor. This quantity is known as
the state-action value function, and many approaches to RL involve estimating it,
either directly or indirectly, so as to choose the action maximizing it at each state.

A key aspect of MDPs (indeed, what makes them difficult), is their sequential
nature. An agent’s future value prospects depend not only on the current state and
action, but on future choices as well. Formally, consider a policy by which an agent
selects actions, that is, a (possibly stochastic) function describing the action to take
in each state: π : S → A. From this, we can define the expected value of taking
action a in state s, and then following policy π thereafter:

Qπ(s, a) =
∑

s′
T

(
s, a, s′)

[
E
[
R

(
s′)] + γ

∑

s′′
T

(
s′,π

(
s′), s′′)[E

[
R

(
s′′)] + · · · ]

]

(5.1)
This value depends on the sequence of future expected rewards that will be obtained,
averaged over all possible future trajectories of states, s, s′, s′′, . . . , according to the
policy and transition function. One way of framing the goal, then, is to determine
the optimal policy, known as π∗, that will maximize Qπ∗

(st , π
∗(st )) at each step.

A key insight relevant to solving this problem is that the state-action value may
be written recursively:

Qπ(s, a) =
∑

s′
T

(
s, a, s′)[R

(
s′) + γQπ

(
s′,π

(
s′))]

Since the optimal policy must maximize Q at each step, the optimal value satisfies:

Q∗(s, a) =
∑

s′
T

(
s, a, s′)[R(s′) + γ max

a′ Q∗(s′, a′)] (5.2)

This is known as the Bellman equation, which provides a recursive relationship
between all the action values in the MDP.

The optimal policy can be extracted directly from the optimal value function,
if it is known. That is, an agent can achieve maximal expected reward by simply
choosing the maximally valued action at each step: π∗(s) = argmaxaQ

∗(s, a). Ac-
cordingly, we next consider two different approaches to learning to choose actions,
which each work via learning to estimate Q∗(s, a).
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5.2.3 Algorithms for RL

5.2.3.1 Model-Free RL

The recursive nature of the state-action value motivates one approach to RL, often
exemplified by temporal-difference learning (Sutton 1988). Here, an agent attempts
directly to estimate the optimal value function Q∗. (A closely related variant, the
actor/critic algorithm, estimates the policy π∗ itself using similar methods.)

The recursion in Eq. (5.2) shows how such an estimate may be updated, by chang-
ing it so as to reduce the observed deviation between the left and right hand sides of
the equation, known as the prediction error. Specifically, consider any step at which
an action, a, is taken in state s, and a new state, s′, and reward, r , are observed.
From Eq. (5.2), it can be seen that the quantity r + γ maxa′ Q(s′, a′) is a sample of
the value of the preceding state and action, Q(s, a), where the state s′ samples the
transition distribution T (s, a, s′), and the agent’s own estimate of the new state’s
value, Q(s′, a′), stands in for the true Q∗. We can then update the estimated value
toward the observed value, with learning rate α:

Q(s, a) ← Q(s, a) + α
(

Q sample
︷ ︸︸ ︷
R

(
s′) + γ max

a′ Q
(
s′, a′)−Q(s, a)

︸ ︷︷ ︸
prediction error, δ

)

Algorithms of this sort are known as model-free approaches because they do
not directly represent or make use of the underlying MDP transition or reward func-
tions, but instead learn the relevant summary quantity directly: the state-action value
function.

5.2.3.2 Model-Based RL

A second approach to RL is model-based learning. Here, representations of the tran-
sition and reward functions are themselves learned, which function as a model of the
MDP, thus giving rise to the name. This is quite straightforward; for instance, the
transition function may be estimated simply by counting state-action-state transi-
tions. Given any estimate of these functions, the state-action value function may
be computed directly, for example, through the iterative expansion of Eq. (5.1) to
explicitly compute the expected rewards over different possible trajectories.

Such a recursive computation can be laborious, in contrast to and thus motivat-
ing model-free methods which involve minimal computation at choice time (e.g.,
simply comparing learned state-action values). The flip side of this trade-off is that
computing these values on the basis of a full world model, rather than simply relying
on a previously learned summary, offers more flexible possibilities for combining
information learned at different times, and enables the agent to respond more dy-
namically under changing situations.
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5.2.4 RL and Behavioral Neuroscience

These two frameworks for solving an MDP, one (model-free) computationally fast
and reactive, and the other (model-based) involving more deliberative or proactive
consideration of possibilities, are closely related to the psychological concepts of
habits and goal-directed actions, respectively.

In psychology, these two sorts of instrumental behavior are envisioned as rely-
ing on different underlying representations (Balleine and Dickinson 1998). Goal-
directed actions are supposed to be based on a representation of the action-outcome
contingency (e.g., that pressing a lever produces a certain amount of cheese; or, in
a spatial task, a ‘cognitive map’ of the maze), allowing deliberative choice by ex-
amining the consequences of different possible actions. Habits are instead assumed
to be based on direct stimulus-response associations, which may be learned by a
simple reinforcement rule (i.e., if a response in the presence of some stimulus is
followed by reward, strengthen it, as proposed by Thorndike 1898) and embody a
very simple, switchboard-like choice strategy.

However, since the stimulus-response association lacks any representation of the
specific outcome (e.g., cheese) that originally reinforced it, a choice mechanism of
this sort predicts odd inflexibilities and insensitivities to certain shifts in circum-
stances. For instance, it predicts that a rat who is trained to lever-press for food
while hungry, but then fed to satiety, will continue to work for food given the oppor-
tunity, at least until given enough experience to unlearn or relearn the association.
In contrast, since choosing a goal-directed action involves examining the action-
outcome association, this approach can adjust behavioral preferences instantly to
comply with new situations such as changes in outcome values. Another important
capability of a goal-directed approach is the ability to plan novel actions to obtain
new goals or react to new information. For instance, in a maze, an animal might use
a cognitive map to plan a route not previously followed, such as a shortcut between
two locations (Tolman 1948). Such flexibility is not possible using only stimulus-
response associations (since such a route will not have previously been reinforced).

All this motivates standard experimental procedures, such as outcome devalua-
tion, for distinguishing these two sorts of behaviors. The results of such tests (specif-
ically, whether actions are or are not sensitive to devaluation under different circum-
stances) indicate that the brain uses both approaches (Dickinson and Balleine 2002).

The two sorts of RL algorithms directly mimic these psychological theories in
key respects (Daw et al. 2005; Balleine et al. 2008). Like habits, model-free ap-
proaches support easy choices by relying on a summary representation of an imme-
diately relevant decision variable: the value function or policy. For the same reason,
these representations lack information about outcome identity and are insensitive to
changes; they can be updated only following additional experience with the conse-
quences of a state and action, and often through its repetition. Conversely, model-
based algorithms formalize the idea of an associative or cognitive search in which
possible outcomes are explicitly considered in relation to their likelihood of achiev-
ing some goal (i.e., reward). These forms of reasoning depend on representations of
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outcomes and state transitions (analogous to a cognitive map or action-outcome as-
sociation), and, like their psychological counterparts, can adjust rapidly to changes
in the worth or availability of outcomes and can combine previously experienced
sequences of actions in novel ways to reach goals.

RL approaches have also been associated with specific neural systems. Model-
free algorithms in particular have been a valuable tool for explaining the func-
tion of the dopamine system, as the firing rates of midbrain dopamine neurons
closely match the error signals predicted by these algorithms (Houk et al. 1994;
Schultz et al. 1997). There is also evidence for representation of state-action values
in other areas of the brain, including prefrontal cortex, striatum, and parietal regions
(Delgado et al. 2000; Arkadir et al. 2004; Tanaka et al. 2004; Samejima et al. 2005;
Plassmann et al. 2007; Tom et al. 2007; Kable and Glimcher 2007; Hare et al. 2008;
Kim et al. 2009; Wunderlich et al. 2009; Chib et al. 2009).

Less is known about the neural substrate for model-based or goal-directed ac-
tions, though there are now a number of reports of potentially model-related activity
throughout the brain (Hampton et al. 2006, 2008; Pan et al. 2007; Bromberg-Martin
et al. 2010). In general, these actions are not envisioned to involve dopamine, since
model-based approaches rely on quite different learning mechanisms with error sig-
nals that do not match the dopaminergic response (Gläscher et al. 2010) and be-
cause lesions of the dopaminergic system appear to spare goal-directed action while
affecting habits (Faure et al. 2005). More generally, the use of the reward devalua-
tion procedure together with numerous brain lesions has allowed the demonstration
of an anatomical double-dissociation, wherein different areas of striatum (and as-
sociated parts of cortex and thalamus) support each learning strategy even under
circumstances when the other would be observed in intact animals (Killcross and
Coutureau 2003; Yin et al. 2004, 2005; Balleine et al. 2007). These findings have
suggested that the brain implements both model-based and model-free approaches
as parallel and, to some extent, independent systems.

5.2.5 RL and Drugs of Abuse

In this light it seems natural to interpret the strongly habitual behaviors associ-
ated with drug taking as an effect of drug abuse specifically on model-free val-
uations (Redish 2004; Redish et al. 2008; Schultz 2011). In particular, compul-
sive behaviors have been attributed to overly strong habitual responses (or state-
action values), whereby learned responses persist despite contrary evidence of
their value available to a contemplative, model-based system (Everitt and Rob-
bins 2005). A candidate mechanism for such uncontrolled reinforcement is ef-
fects of drugs on the dopaminergic signal carrying the reward prediction error sup-
posed to train model-free values or policies (Redish 2004; Panlilio et al. 2007;
Redish et al. 2008). This interpretation is consistent with the fact that most if not
all drugs of abuse share effects on dopamine as a common mechanism of their rein-
forcing action.
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However, it has also been pointed out that such an account is necessarily in-
complete, and in particular that drug abusers demonstrate highly elaborate and of-
ten novel drug-seeking behaviors (Tiffany 1990; Olmstead et al. 2001; Kalivas and
Volkow 2005; Root et al. 2009). Just as with short cuts in mazes, such flexible plan-
ning cannot be explained by the model-free repetition of previously reinforced ac-
tions. Therefore, the remainder of this chapter considers algorithmic possibilities for
ways a model-based system could be affected by drug abuse. These considerations
have consequences for theories of appetitively motivated behavior more generally,
since they strongly suggest some sort of integration or cooperation between the sys-
tems in commonly valuing drug outcomes.

5.3 Drugs and Model-Based RL

The problem facing us is that, under a standard theory (e.g., Daw et al. 2005), drugs
of abuse affect valuations only in the model-free system, via effects on a dopamin-
ergic prediction error. Valuations in a model-based system have been presumed to
be entirely separate and independent, and in particular, to be unaffected by manip-
ulations of dopamine. However, if the effects of drugs are isolated to a model-free
system (and drugs are not, by comparison, disproportionately valued in a model-
based system) then actions motivated by drugs should exclusively constitute simple
repetitions of previously reinforced actions. Such a system has no mechanism for
planning novel drug-seeking actions.

In this section, we consider a number of potential solutions to this issue, focusing
on effects either via inflation of values per se, or biasing them via changes in the
search process by which they are computed.

5.3.1 Drugs and Model-Based Reward

A typical application of model-free theories to drug abuse depends on drugs affect-
ing the learned value or policy function, for example, by inflating the state-action
values leading to drug rewards. Is there some simple analogy in a model-based sys-
tem for such inflation? While model-based systems typically construct a value func-
tion on demand, rather than maintaining a representation of one, they do maintain a
representation of rewards in some other form, often as an approximation to the state
reward function. This reward function could theoretically be learned through pre-
diction errors just as state-action values are, and similarly be inflated as an effect of
drug abuse (Redish et al. 2008; Schultz 2011). In this case, an increased reward as-
sociated with the attainment state would flexibly elicit a wide range of goal-directed
behaviors, as any actions likely to eventually reach that state would themselves have
a higher computed action value, even along novel paths. However, this explanation
raises a problematic question: what is the process by which drugs of abuse could
inflate the reward function?
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By analogy with the TD account, the natural answer would seem to be that the
inflation happens in much the same way as model-free value inflation is supposed
to occur: via effects on dopaminergic responses effectively exaggerating the predic-
tion error used to learn these representations. However, as previously mentioned, the
representations learned in a model-based system (notably, the reward function, R)
require different sorts of prediction errors (Gläscher et al. 2010). On available ev-
idence, the responses of dopaminergic neurons appear consistent with a prediction
error appropriate for training future (discounted) value (Q), not immediate reward
(R). In particular, the signature phenomenon whereby dopamine responses transfer
with training to cues predicting upcoming reward is inconsistent with a prediction
error for the one-step reward R: there are no immediate rewards and no errors in
their predictions tied to this event (Schultz et al. 1997). Moreover, although reward
values for the model-based system are likely represented in a dissociable location
in the brain from model-free values, it is unlikely that this learning is driven by
some atypical dopaminergic signal, since reports suggest at least anecdotally that
dopamine neurons are consistent in this respect, regardless of where they project
(Schultz 1998).

If dopamine controls these secondary incentives or motivational values and not
representations of one-step rewards, then the latter are unlikely to be a mechanism
by which drugs of abuse impact model-based valuations.

5.3.2 Drugs and Model-Based Value

In order to solve this problem, we return to the Bellman equation (5.2) which con-
nects model-free and model-based approaches by defining the state-action value that
they both compute in different ways. A key claim of the model-free approaches is
that the brain maintains internal (“cached” or stored) estimates of the state-action
values, which are updated in place by prediction error and are putatively inflated by
drugs of abuse via their effects on this prediction error signaling. The model-based
approach is assumed instead to compute the state-action values anew at decision
time by evaluating the Bellman equation, deriving them from more elemental infor-
mation (the reward and transition functions).

If indeed both systems operate in the brain and aim to compute equivalently de-
fined state-action values, then the Bellman equation suggests an obvious possibility
for their interaction: a model-based system could make use of the cached state-
action values maintained by the model-free system. In particular, because of the
recursive form of the Bellman equation, at any point in its iterative, tree-structured
expansion, it is possible to substitute a cached (e.g., model-free) estimate of the
right-hand value, Q, to terminate the expansion. One motivation for this “partial
evaluation” is that the full reevaluation of the Bellman equation at each decision
step is computationally laborious; moreover, repeating this computation each step
may have diminishing returns if, for instance, the learned estimates of transition
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and reward functions change little between each evaluation (Moore and Atkeson
1993).

If a model-based search immediately terminated with cached action values (i.e.,
on the first step) it would simply revert to a model-free system, while each addi-
tional step of evaluation using the model’s transition and reward functions would
provide a view of value which is model-based out to a horizon extended one step
further into the future, at the cost of additional computation. Thus, if a model-
based system engaged in such partial evaluation by terminating its search at states
with model-free state-action values inflated by the theorized dopamine mechanisms
(such as states associated with drug attainment), the model-based system would
be similarly compromised, with this exaggeration carried back to other computed
action values that may reach such a state. The combination of the two sorts of
evaluation would allow the model-based system to plan novel action trajectories
aimed at attaining states with high (potentially drug-inflated) value in the model-
free system’s estimates. In this sense, the model-free estimates can serve as sec-
ondary incentives for guiding the model-based system’s preferences, an idea remi-
niscent of “incentive salience” accounts of drug motivation (Robinson and Berridge
2008).

The foregoing considerations suggest a new perspective on the joint contribution
of model-based and model-free evaluations to behavior. Whereas previous work
(Daw et al. 2005) envisioned that the brain must select between separate model-
based and model-free values, the partial evaluation approach suggests that the key
question is instead where to integrate the values: at each step, whether to further
evaluate a decision branch or to truncate the trajectory using cached values. With this
extension, the traditional story of a shift from goal-directed to automatic processing
can make a broader range of behavioral predictions as a shift towards more limited
searches under model-based evaluation (Nordquist et al. 2007).

Also, interacting architectures of this broad sort may help to explain numerous
indications from the neuroscientific literature that model-free and model-based eval-
uation may be more interacting than separate. For instance, goal-directed learning
appears to involve a subregion of striatum, dorsomedial, which is adjacent to the
part apparently responsible for habits, and which also receives heavy dopaminergic
innervation (Yin et al. 2005). Moreover, indications of model-based computations
(such as devaluation sensitivity) have been observed throughout areas of the brain
traditionally thought to be part of the model-free system including ventral striatum
(Daw et al. 2011; Simon and Daw 2011; van der Meer et al. 2010), downstream
ventral pallidum (Tindell et al. 2009), and even dopaminergic neurons (Bromberg-
Martin et al. 2010).

In the drug context, this view also raises a new set of questions, surrounding
how drugs might affect search termination. For instance, if drug-inflated estimates
of state-action values serve as secondary incentives for model-based search, why
would the model-based system terminate with them, rather than planning past the
contaminated states?
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5.3.3 Drugs and Model-Based Search

If a model-based search process were biased at search time to adopt exaggerated
cached values rather than pursuing further evaluation, the resulting behavior would
show strong preferences for actions (even novel ones) that tend to lead to such out-
comes. The question is why such a bias would arise. That is, the concept of partial
evaluation explains how inflated values in the model-free system could affect the
model-based system, but may not adequately account for the particular fixations
drugs of abuse engender, whereby goal-directed behaviors may operate to fulfill the
craving to the exclusion of other goals.

To begin to address this question, we consider how search progress and search
termination might be affected by drugs of abuse. A more general and flexible frame-
work for reasoning about these issues is Sutton’s Dyna architecture (Sutton 1990),
which provides a framework by which model-based and model-free RL can coex-
ist and dynamically trade-off their contributions to learning. This architecture has
also been employed in theories of model-based learning in the brain (Johnson and
Redish 2005). The Dyna-Q algorithm envisions that an agent will maintain a single
set of cached state-action values, but that these can be updated by both model-based
and model-free updates in any mixture. As with standard model-free learning, state-
action values may be updated directly by prediction errors according to actual ex-
perience. A learned world model can also be used to produce simulated experience
(i.e., state, action and reward trajectories sampled from the modeled transition and
reward functions), which can train the cached state-action values in the same way
as real experience. Full model-based value updates (i.e., averaging rather than sam-
pling over possible successor states for an action using the Bellman equation) can
also be applied in place.

As opposed to the traditional view of a tree-structured search, Dyna-Q has the
freedom to apply these model-based updates in arbitrary orders. All these up-
dates may be interleaved during behavior, at decision time, or off-line. Given suf-
ficient updates, the values learned will approach the same model-based values a
fully expanded search would. Because of the possibility of learning from simu-
lated sample trajectories, the theory also exposes the connection between model-
based valuation and simulation. Intuitively this idea comports well with ideas that
search may be implemented by cognitive simulation (Buckner and Carroll 2007;
Buckner 2010) as well as evidence for various sorts of on- and off-line replay or pre-
play over spatial trajectories in hippocampal place cells (Johnson and Redish 2005;
Foster and Wilson 2006; Hasselmo 2008; Koene and Hasselmo 2008; Davidson
et al. 2009; Lansink et al. 2009; Derdikman and Moser 2010; Carr et al. 2011;
Dragoi and Tonegawa 2011).

The question of drug abuse now can be further refined to which trajectories are
simulated, as well as where these trajectories are terminated. One principled ap-
proach to this question is the prioritized sweeping algorithm (Moore and Atkeson
1993). In its original form, it is fully model-based (i.e., no direct TD updates from
experience are used) but the same principle is equally applicable within Dyna. The
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general idea is that if new experience or computation changes the value (or transi-
tion and reward functions) at a state, then these changes will have the most extreme
effects on the state-action values for actions leading up to those states, and so those
predecessors should have the highest priority for simulated updates. For example, if
a novel reward is experienced following an action, with the standard TD algorithm,
this reward will not have an effect on other actions that may lead to the reward
state until those actions are taken, while a model-based system will be able to up-
date other action values accordingly, but only with extensive computation. Under a
Dyna algorithm, however, this reward value could be propagated to other cached,
model-free action values through simulated sampling of actions. By sampling states
in reverse order along trajectories leading to the reward state, for instance, ‘back-
ing up’ the values to more distant states, this can happen quite efficiently without
requiring any additional real experience (Foster and Wilson 2006).

A neural system that implements such an algorithm suggests a mechanism for
exploitation by drugs of abuse, whereby values inflated by distorted prediction
errors could preferentially be selected for backing up. In particular, the princi-
ple that model-based updates are prioritized toward areas of the state space with
new learning will be directly compromised by inflated prediction errors, since
these will drive new learning and thereby attract more priority for model-based
updates. Thus, the standard dopamine-mediated drug abuse story, whereby effec-
tive prediction errors are enhanced by drug experiences even when no new re-
ward information is available, now cleanly predicts such prioritized model-based
value updates as well. The action values associated with drug-taking would con-
tinue to increase in such a scenario, and thus always be given high priority for
backups. As a result, these inflated values would propagate throughout the model,
even to actions not previously resulting in drug attainment that have some prob-
ability of leading to other inflated states, to the exclusion of other potential goals
or even negative experiences that may occur subsequent to fulfillment. This may
constitute a computational description of phenomena associated with drug abuse,
such as salience-driven sensitization or motivational magnets (Di Ciano 2008;
Robinson and Berridge 2008), and can also explain suggestions that even goal-
directed drug-seeking actions are insensitive to devaluation (Root et al. 2009). Here,
the high priority given to such continually changing values is analogous to high
salience for drug-associated stimuli.

Finally, a related phenomenon observed in drug abuse that might be similarly
explained in this framework is cue-specific craving, in which stimuli associated
with drug-taking result in increased drug-seeking motivation (Meil and See 1996;
Garavan et al. 2000; Bonson et al. 2002; See 2005; Volkow et al. 2008). A potentially
related effect in psychology is known as outcome-specific Pavlovian-instrumental
transfer (PIT), in which presentation of cues associated with a particular reward
increase the preference for instrumental actions associated with the same reward
(Lovibond 1983; Rescorla 1994). A pure model-free learning system has no way to
explain these effects, as action values abstract specific outcomes, and so while cues
could generally enhance motivation, they cannot do so in an outcome-specific way.
Further, it is unclear why cues in themselves should change an agent’s action prefer-
ences or valuations, since the cues do not in fact carry information relevant to action
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valuation. A model-based system, however, stores specific outcomes as part of the
reward function. These, in the Dyna framework, may be used to drive simulation
priorities for value updates. Through a priority mechanism, and since this approach
allows on-the-fly updating of model-free values based on model-driven updates, it
could theoretically drive updates preferentially toward a cued goal, ignoring other
rewards to effect an updated value map more biased toward that outcome. Simi-
larly, a drug-associated cue could simply trigger further updates back from objective
states, pushing the values for related actions higher.

5.4 Conclusion

Drug abuse is a disorder of decision making, and as such its phenomena are rel-
evant to and can be informed by the established computational theories of the do-
main. Building on two-system theories of learned decision making (Dickinson 1985;
Balleine and Dickinson 1998; Poldrack et al. 2001; Daw et al. 2005; Wood and Neal
2007) and on the broad taxonomy of their potential vulnerabilities to drugs of abuse
by Redish et al. (2008), we have considered the implications of drug-seeking be-
havior for algorithms and architectures hypothesized to comprise such a system.
Drugs of abuse are commonly thought to target a habit learning system, specifically
via their effects on dopamine and resultant amplification of model-free prediction
errors. That they appear to serve as incentives for goal-directed behavior as well
strongly suggests that the two decision systems interchange information rather than
operating independently. We suggest this interchange might be captured within a
modified architecture, such as Dyna or tree search with partial evaluation, allow-
ing model-free and model-based influences to converge within a single representa-
tion. Importantly, such a mechanism, coupled with a scheduling principle for model-
based searches like prioritized-sweeping, allows the single, ubiquitous, model-free
mechanism of drug action to account for the range of behavioral phenomena.

The implications of these hypothesized mechanisms for decision making theories
more generally remain to be developed. In particular, previous work has addressed
a range of data on how animals’ behaviors are differentially sensitive to devaluation
in different circumstances by assuming two separate RL algorithms whose prefer-
ences were arbitrated according to relative uncertainty (Daw et al. 2005). It remains
to be seen whether the same phenomena can be understood in the more integrated
architectures suggested here, either in terms of prioritized sweeping heuristics or,
alternatively, by developing the uncertainty explanation in this setting. That said,
indications are accumulating rapidly, beyond the context of drugs of abuse, that
the systems are more interactive than was assumed in previous theories (Root et
al. 2009; Bromberg-Martin et al. 2010; van der Meer et al. 2010; Daw et al. 2011;
Simon and Daw 2011). This accumulation of evidence strongly motivates the in-
vestigation of hybrid algorithms and interacting architectures of the type discussed
here to expand our understanding of the range of strategies by which humans make
decisions.
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