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The purpose of this handout is to go a bit beyond the discussion in Ch. 6 of The Book of
Genesis on synaptic input, and give some examples of how neurons compute things. Read that
chapter first.

In this handout, I consider membrane potential to be the key quantity. I take the point of
view that action potentials are just a way of encoding (for transmission) the continuous membrane
potential signals. In fact, the spike encoding/decoding process may perform important additional
processing functions in some neural systems, but I ignore this possibility here. Instead I think
of the neural membrane as the brain’s primary functional computing element, loosely analogous
to a transistor in computer. By wiring transistors together in different ways, you can compute
many different functions. Similarly, by using different combinations and spatial arrangements of
synapses, a dendritic tree can compute many different functions.

The inputs to the neural membrane are the synaptic conductances gj(t) evoked by the presy-
naptic spiking at a number of synapses, and the output is the membrane potential Vm(t). The neural
membrane performs two basic functions. First, it acts as a reconstruction filter that transforms the
presynaptic spike encoded signal back into a continuous/analog signal. Second, it computes an
output membrane potential signal by combining its inputs.

Linear Model of Synaptic Transmission

An approximate model of synaptic transmission is to assume that each spike evokes a change in the
conductance of the postsynaptic membrane with a characteristic time-course. For the simulation
results in this handout, I used the alpha function:

�(t) = u(t) gpeak
�

t
tpeak

�
exp

�
1� t

tpeak

�
; (1)

where �(t) is the conductance of the postsynaptic membrane, gpeak is the peak conductance change
evoked by a single spike, and tpeak is the time (after the spike) of the peak conductance change.
The u(t) function is the unit step function that makes �(t) causal, i.e., �(t) = 0 for all time before
t = 0. The alpha function is a parametric model that has been fit to approximate experimentally
observed synaptic conductance changes. It is not derived from considerations of how ion channels
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actually work. For some synapses, the alpha function is a poor approximation, so people sometimes
use more complicated formulae, but the basic idea is the same.

For a train of spikes, the postsynaptic conductance change is given by a sum of time-shifted
alpha functions:

gsyn(t) =
X
j

�(t� tj) (2)

where tj are the spike times. The spike train itself f(t) is considered to be a sum of impulses:

f(t) =
X
j

Æ(t� tj);

where the Æ(t � tj) function is the unit impulse signal that is nonzero only when there is a spike.
Putting this together with Eq. 2 we see that the postsynaptic conductance is given by a convolving
the spike train with an alpha function:

gsyn(t) = f(t) � �(t)

=
Z
f(s)�(t� s)ds

=
Z 2
4X

j

Æ(s� tj)

3
5 �(t� s) ds

=
X
j

�Z
Æ(s� tj)�(t� s) ds

�

=
X
j

�(t� tj):

The last line follows from the one above it because the integral is zero except when s = tj for one
of the spike times.

This linear model of synaptic transmission assumes that each and every spike evokes the same
characteristic conductance change. This not correct in detail for two reasons. First, the effect of
each spike is not really independent of the others; sometimes a pair or series of spikes spaced
closely in time will result in conductance changes that are either bigger or smaller than expected
by the linear model, phenomena known as synaptic facilitation and depression. Second, synapses
are unreliable; only a small fraction of spikes (sometimes less than one-tenth) evoke postsynaptic
conductance changes. In fact, recent evidence strongly suggests that changes in synaptic reliability
may be the cause of synaptic facilitation and depression (Allen and Stevens, 1994; Dobrunz and
Stevens, 1997; Tsodyks and Markram, 1997; Abbott et al., 1997). We will stick with the simple
linear model for the time being even though it is not completely accurate, but we will cover synaptic
reliability, facilitation, and depression later in the course.

Post-Synaptic Potential

The membrane equation, for a passive neural membrane, with a number of synapses is:

C
dVm

dt
+gl[Vm(t)�El]+g1(t)[Vm(t)�E1]+g2(t)[Vm(t)�E2]+: : :++gN(t)[Vm(t)�EN ] = 0; (3)
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Figure 1: Steady-state postsynaptic potential as a function of postsynaptic conductance. Solid
curve: gl = 0:01 uS. Dashed curve: gl = 0:04 uS. Other paramaters: Esyn = 0 mV, El = �70 mV.

where Vm(t) is the membrane potential, C is membrane capacitance, gj(t) is the postsynaptic con-
ductance evoked by each synapse, Ej is the reversal potential of the ion channels in that syanpse,
gl is the constant leak conductance, and El is the reversal potential of the leak channel.

In general, the output membrane potential depends nonlinearly on the input conductances. For
a simple example, let’s assume that there is one synapse with a reversal potential of 0 mV, and that
we can hold the conductance of that synapse at a fixed level for some relatively long period of time
(long relative to the membrane time constant). Then the membrane potential reaches the following
steady state value:

Vm =
gsynEsyn + glEl

gsyn + gl
: (4)

This function comes from the membrane equation (Eq. 3) by setting dVm=dt = 0, and it is plotted
for two different values of gl in Fig. 1. When gsyn is large, the membrane potential saturates:

Vm � Esyn:

This, of course, must be the case. There is no way that a synapse could drive the membrane beyond
the reversal potential of that synapse. When gsyn = gl, the membrane potential is at half the
saturating level. When gsyn � gl, the membrane potential fluctuation is very nearly proportional
to gsyn:

Vm �
gsynEsyn

gl
+ El:

In general, for time-varying synaptic conductances, there is no closed form solution to the
membrane equation, Eq. 3. There are closed-form solutions for a handful of interesting special
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cases (see below), but otherwise we have no recourse but to resort to numerical methods and
computer simulations.

Once you know the postsynaptic membrane potential, it is a simple matter to compute the
synaptic current:

Isyn(t) = gsyn(t)[Vm(t)� Esyn]

Temporal Integration and Reconstruction

The inputs to most neurons (other than those in the retina) are in the form of trains of action
potentials. But for the purposes of this handout, I do not want to get too hung up on exact timing
of individual spikes in spike trains. So I will consider the inputs to be instantaneous firing rate
signals, denoted r(t), and expressed in units of impulses per second. For example, let’s say that
a particular input neuron is driven to spike very regularly, at 10 msec intervals, over an extended
period of time. Then its instantaneous firing rate is constant over time, r(t) = 100 imp/sec.

In most cases, however, we will want to work with time-varying signals. There are (at least) two
ways that we could construct an instantaneous firing rate signal from spike trains. The first way to
construct an instantaneous firing rate signal is called a post-stimulus time histogram (PSTH), and
it involves recording from a neuron for many repeated presentations of the same stimulus (e.g.,
injected current, visual stimulus, whatever). Break the stimulus presentation period into short time
bins, and count the number of spikes that occur in each time bin, collapsed across many repeats of
the stimulus. The second way to construct an instantaneous firing rate signal is to record the time
of each spike along with its interspike interval (the time interval until the next spike occurs) and
plot one over the interspike interval as a function of spike time.

A third method for constructing an instantaneous firing rate signal, available only to the theo-
retical/computational neuroscientist, is to make it up. That is what we’ll do in what follows.

Regardless of how we construct the instantaneous firing rate signals for each of the input neu-
rons, the point I want to make here is that the instantaneous firing rate signals are really all we
need because the postsynaptic neural membrane acts as a lowpass, reconstruction filter. Figure 2A
shows an example of a theoretical (made-up) instantaneous firing rate signal, and Fig 2B shows
a spike train computed from Fig 2A assuming an ideal Poisson spike generator (see the Poisson
Spike Model handout). Figure 2C shows the postsynaptic conductance computed using the linear
(alpha function) model of synaptic transmission discussed above. The thin, noisy curve shows the
postsynaptic conductance computed by convolving an alpha function with the spike train (from
Fig. 2B). And the bold line shows the postsynaptic conductance computed by convolving an alpha
function with the instantaneous firing rate (from Fig. 2A). Finally, Fig. 2D shows the postsynaptic
membrane potential computed from both conductances in Fig. 2C. The membrane potential evoked
by the spike train is noisy, but otherwise very similar to that computed from the continuous/analog
instantaneous firing rate signal. The time constant of the membrane is long relative to the spike
and alpha function durations. This results in a temporal summation of the series of inputs. This
lowpass filtering property of the membrane acts to reconstruct a continuous, analog signal from
the discrete spike events.
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Figure 2: A: Continuous/analog instantaneous firing rate signal. B: Spike train computed from A
assuming an ideal Poisson spike generator. C: Postsynaptic conductance. Bold line computed by
convolving the instantaneous firing rate signal from A with an alpha function. Thin, noisy curve
computed by convolving the spike train from B with the alpha function. D: Postsynaptic membrane
potentials computed from C using the membrane equation. Due to the low-pass filtering properties
of the membrane, the two curves are very similar. Parameters: El = �70 mV, gl = 0:01 uS,
C = 0:5 nF, Esyn = 0 mV, gpeak = 0:0184 uS, tpeak = 1 msec.
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Figure 3: A: Postsynaptic membrane potential, computed as in Fig. 2, except with C = 0:1 nF,
hence reducing the membrane time constant by a factor of 5. Other parameters are the same as
in Fig. 2, e.g., gpeak = 0:0184 uS. With a short membrane time constant, the evoked membrane
potential is much noisier. B: Same as A except with 20 inputs, each an independent Poisson spike
process, and each with gpeak = 0:9 nS, 1/20th as big as in A. With 20 inputs instead of one, the
noise is greatly attenuated.

If the time constant is reduced, as demonstrated in Fig. 3A, the evoked membrane potential
is very noisy. The noise can be attenuated again by having muliple “copies” of the input. In
Fig. 3B there are 20 inputs, each with the same average firing, but generated as independent Poisson
processes. Since there are now 20 inputs, each of the synapses has a gpeak that is 1/20th as big.
This new value, gpeak = 0:9 nS is close to the actual conductance change at individual synapses.

Computing With Synapses

In this section I give some simple examples of how a neural membrane can do computations. In
particular, I show how to compute a linear combination (via addition and subtraction) of a pair
of input signals and I show how to multiply/divide a pair of input signals. These examples are
not meant to be physiologically realistic. Rather, they should be taken as simplified exercises of
working with the equations.

I will use the convention that Vm(t) denotes voltage with respect to the extracellular potential,
whereas V (t) denotes voltage with respect to the resting potential. The resting potential in what
follows depends both on a leak conductance and on a tonic level of background activity.

Adding and subtracting. We want to use a neural membrane to compute a linear sum of two
input signals,

V (t) = �1r1(t) + �2r2(t);
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where �2 and �2 are constants. Equivalently, we can write the desired output membrane potential
with respect to the extracellular potential,

Vm(t) = �1r1(t) + �2r2(t) + Vrest: (5)

The output, V (t) or Vm(t), is the membrane potential with units of mV. The inputs, r1(t) and r2(t),
might be instantaneous firing rate signals with units of spikes/sec, or they might be the membrane
potentials of a pair of presynaptic neurons (e.g., in the retina where there are no spikes). We’ll
assume the former (instantaneous firing rates) in what follows.

Equation 5 seems like a relatively simple goal. The inputs give rise to postsynaptic conductance
changes which in turn combine to produce the postsynaptic membrane potential. The problem is
that the membrane potential is not a linear function of the synaptic conductance (see Eq. 4 above).
Synaptic currents are summed, but then divided by the total membrane conductance.

The trick is to use a complementary (push-pull) arrangement of inputs to hold the total con-
ductance at a fixed constant level even though the synaptic currents are varying over time. Such
a push-pull arrangement of inputs has been used to model the linearity of retinal ganglion cell
responses (e.g., Gaudiano, 1994), and the receptive field properties of V1 simple cells (e.g., Caran-
dini and Heeger, 1994).

In an idealized push-pull model we replace our two inputs with a set of four inputs, two exci-
tatory and two inhibitory:

re1(t) = s+ r1(t) ri1(t) = s� r1(t)

re2(t) = s+ r2(t) ri2(t) = s� r2(t)

where s is the spontaneous firing rate of all four input neurons. Choosing s > r1(t) and s > r2(t)
guarantees that the four input signals are positive, as firing rates must be. Each of the four inputs
gives rise to a postsynaptic conductance:

ge1(t) = g1 + �
0

1 r1(t) gi1(t) = g1 � �
0

1 r1(t)

ge2(t) = g2 + �
0

2 r2(t) gi2(t) = g2 � �
0

2 r2(t)

where �
0

1, and �
0

2 are new constants, and where g1 = �
0

1s and g2 = �
0

2s are the conductances that
result from the spontaneous firing.

The membrane equation is:

C
dVm

dt
+ gl[Vm � El] + ge1[Vm � Ee] + gi1[Vm � Ei] + ge2[Vm � Ee] + gi2[Vm � Ei] = 0

Here Ee and Ei are, respectively, the reversal potentials of the excitatory and inhibitory synaptic ion
channels. In addition, gl and El are, respectively, the leak conductance and leak reversal potential.

The goal now is to show that Vm is a linear summation of the inputs (Eq. 5). To simplify matters,
let’s begin by assuming that the inputs and the postsynaptic conductances are constant over time.
We will return to the general (time-varying) case below. When the postsynaptic conductances are

7



constant over time, then the membrane potential is also constant over time, dVm
dt

= 0, hence,

Vm =
ge1Ee + gi1Ei + ge2Ee + gi2Ei + glEl

ge1 + gi1 + ge2 + gi2 + gl

=
�
0

1r1(Ee � Ei) + �
0

2r2(Ee � Ei) + (g1 + g2)(Ee + Ei) + glEl

2g1 + 2g2 + gl

= �1r1 + �2r2 + Vrest

where

�1 = �
0

1

Ee � Ei

2g1 + 2g2 + gl
�2 = �

0

2

Ee � Ei

2g1 + 2g2 + gl
;

and where

Vrest =
(g1 + g2)(Ee + Ei) + glEl

2g1 + 2g2 + gl
:

Or,
V = �1r1 + �2r2;

as desired.

The solution for time-vary input signals is:

Vm(t) = [u(t) 1
C
e
�(t=�)] � [�1r1(t) + �2r2(t)] + Vrest;

where � = C=g as usual, and g = 2g1 +2g2+ gl is the total conductance. The membrane potential
is simply a lowpass filtered version of the linear sum of the two inputs. It would be a good exercise
for you to try to derive this result from the above equations. In deriving this result, it is critical
that the total conductance is constant over time even though the conductances of the 4 individual
synapses change over time.

The additional lowpass filter is unavoidable because of the capacitance of the membrane. It
is, however, a feature, not a bug. In the brain (excluding in the retina), the input signals are
spike trains, not the continuous/analog instantaneous firing rate signals that I have used here. The
lowpass filtering property of the membrane acts to reconstruct a continuous, analog signal from
the discrete spike events (see above).

Figure 4 shows an example. Panel A shows two of the four continuous (instantaneous firing
rate) input signals. Panel B shows the spike trains computed from A assuming a Poisson spike
generator. Panel C shows the synaptic conductances computed in two ways: (1) using the in-
stantaneous firing rates as inputs, and (2) using the spike trains as the inputs. Panel D shows
the postsynaptic membrane potentials computed from C. Notice in comparing C and D how the
membrane’s lowpass filter greatly attenuates the noise in the postsynaptic conductance.

Multiplying/Dividing. We want to use a neural membrane to compute a ratio of two input
signals,

V (t) =
�1r1(t)

�2r2(t) + 
;
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Figure 4: A: Instantaneous firing rates of two of the input signals. B: Spike trains computed from
A using a Poisson spike generator. C: Synaptic conductances computed by convolving A and B
and an alpha function. D: Postsynaptic membrane potentials computed from A and B. Parameters:
El = �70 mV, gl = 0:01 uS, C = 0:5 nF, Ee = 0 mV, Ei = �70 mV, gpeak = 0:0184 uS,
tpeak = 1 msec.
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for some constants, �1, �2, and . Equivalently, we can write the desired output membrane potential
with respect to the extracellular potential,

Vm(t) =
�1r1(t)

�2r2(t) + 
+ Vrest: (6)

As before we replace r1(t) with a pair of complementary inputs:

ge(t) = g1 + �
0

1r1(t) gi(t) = g1 � �
0

1r1(t);

for a new constant � 0

1, so that the sum of these two conductances ge(t) + gi(t) = 2g1 is constant
over time. For the second input, we choose the conductance to be proportional to the presynaptic
firing rate:

gsh(t) = �2r2(t);

where the subscript in gsh stands for shunting. The membrane equation is:

C
dVm

dt
+ gl[Vm � El] + ge[Vm � Ee] + gi[Vm � Ei] + gsh[Vm � Esh] = 0

As before, we begin by assuming that the inputs are constant over time, and solve for the steady
state membrane potential,

Vm =
geEe + giEi + gshEsh + glEl

2g1 + gsh + gl

=
�
0

1r1(Ee � Ei) + �2r2Esh

�2r2 + 2g1 + gl
+ Vrest;

where the resting potential (when r1 = r2 = 0) is:

Vrest =
g1(Ee + Ei) + glEl

2g1 + gl
:

Now we assume that the reversal potential of the shunting synapse is equal to the resting potential,
Esh = Vrest, and write the membrane potential with respect to Vrest:

V =
�
0

1r1(Ee � Ei)

�2r2 + 2g1 + gl

=
�1r1

�2r2 + 
;

where
�1 = �

0

1(Ee � Ei)  = 2g1 + gl:

The trick here is that I chose Esh = Vrest = 0. Shunting inhibition refers to this situation
in which the reversal potential of the synaptic ion channel equals the resting potential, and it is
a widely cited proposal for how neurons might perform division (Coombs et al., 1955; Koch and
Poggio, 1987). Because the equilibrium potential for chloride, Ecl, is close to a cell’s resting
potential, the GABA-A receptor has been proposed as a potential shunting channel. Chloride
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shunting, however, only approximates division because Ecl is not exactly equal to Vrest. Exact
division can be implemented with two synaptic conductances, one excitatory and one inhibitory,
that increase (and decrease) in proportion. For example, let’s assume that shunting is subserved by
a combination of chloride and sodium. The synaptic current combining both ion species is the sum
of the two (chloride, sodium) components:

gsyn(V � Esyn) = gK(V � Ek) + gNa(V � ENa);

i.e.,
gsyn = gK + gNa;

and
gsynEsyn = gKEk + gNaENa

With Esyn = Vrest = 0,
gKEk + gNaENa = 0;

i.e.,
gNa

gK
= �

EK

ENa

:

In words, we can get a perfect shunting channel by choosing the two conductances so that their
ratio equals minus the ratio of their reversal potentials (noting that EK and ENa are specified with
respect to Vrest, and hence have opposite sign).

Unfortunately, there is no exact solution to the above equations when r2(t) varies arbitrarily
over time. However, we can get an solution by assuming that r2(t) is piecewise constant, i.e., that
it is constant for some period of time (long relative to the membrane time constant), and then it
swtiches instantaneously to a new constant value. Then the time-varying solution is:

V (t) = [u(t) 1
C
e
�(t=�)] �

"
�1r1(t)

�2r2(t) + 

#
;

where � = C=g as usual, and g = gsh + 2g1 + gl is the total conductance. Having r1(t) vary over
time is not problematic because the complementary inputs ge and gi guarantee that r1 has no effect
on the total membrane conductance.

The membrane potential is simply a lowpass filtered version of the quotient: r1=(r2 + ). The
r2(t) input controls the total conductance of membrane. This has two effects: (1) it changes the
gain (sensitivity to the r1 input) since r1 is scaled by r2 + , and (2) it changes the dynamics since
the cell’s time constant (� = C=g) is also scaled by conductance.

This link between gain and dynamics is one of the signatures of shunting inhibition. Changes
in gain and dynamics are linked in a variety of neural systems including: vestibulo-ocular reflex
(Lisberger and Sejnowski, 1992), turtle photoreceptors (Baylor et al., 1974), and in V1 neurons
(Carandini and Heeger, 1994).
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