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This handout is a review of some basic concepts in linear algebra. For a detailed in-
troduction, consult a linear algebra text. Linear Algebra and its Applications by Gilbert
Strang (Harcourt, Brace, Jovanovich, 1988) is excellent.

1 Singular Value Decomposition and the Four Fundamen-
tal Subspaces

The SVD decomposes a matrix into the product of the three components:

where means transpose. Here, is the original NxMmatrix, is anNxN orthonormal
matrix, is anMxM orthonormal matrix, and is anNxMmatrix with non-zero elements
only along themain diagonal. The number of non-zero elements in is (at most) the lesser
of M and N. The rank of a matrix is equal to the number of non-zero singular values.

We think of as a linear transform, , that transforms (M-dimensional vec-
tors) into (N-dimensional vectors). If the matrix is singular then there is some collec-
tion of (some subspace of M-space) that is mapped to zero, . This is called the
”row nullspace” of . There is also a subspace of M-space that can be reached by , i.e.,
the set of vectors for which there is some where: . This is called the ”column
space” of . The dimension of the column space is called the rank of .

The SVD explicitly constructs orthonormal bases for the row nullspace and column
space of . The columns of , whose same-numbered elements in are non-zero, are an
orthonormal set of basis vectors that span the column space of . The remaining columns
of span the row nullspace of (also called the column nullspace of ). The columns of
(rows of ), whose same-numbered elements in are zero, are an orthonormal set of

vectors that span the row nullspace of . The remaining columns of span the column
space of (also called the row space of ).

Here’s a simple example:

In this example:

The matrix size is 3x3 (M and N are both 3).
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The rank of the matrix is 2.

is in the row nullspace. So is any scalar multiple of this vector.

is in the column nullspace. So is any scalar multiple of this vector.

and are in the row space. So is any linear combination of these
two vectors.

and are in the column space. So is any linear combination of
these two vectors.

It is easy to see that has rank 2 by noting that you can get the third column of by
summing the first 2 columns and then multiplying by -1. The vector (1,1,-1) is in the
column nullspace. It is called the column nullspace because it takes to columns to zero:

.

The vector is in the row nullspace of A. It is called the row nullspace because
it takes to rows to zero: .

How about the column space? Consider all possible combinations of the columns,
, coming from all choices of . Those products form the column space of . In our

example, the column space is a 2-dimensional subspace of 3-space (a tilted plane), linear
combinations of: and . Check that all 3 columns of can be written
as linear combinations of these two vectors. In general, the column space of a matrix
is orthogonal to the column nullspace. This is easy to see in our example:

and .

How about the row space? Consider all possible combinations of the rows, , com-
ing from all choices of . Those products form the row space of . In our example, the
row space is another 2-dimensional subspace of 3-space (a different tilted plane), linear
combinations of: and . Check that all 3 rows of can be written as lin-
ear combinations of these two vectors. In general, the row space of a matrix is orthogonal
to the row nullspace. In our example: and .

2 Linear Systems of Equations

Matrices are a convenient way to solve systems of linear equations, . Consider the
same matrix, , we used above. The product, is always a combination of the columns
of :

To solve is to find a combination of the columns that gives . We consider
all possible combinations , coming from all choices of . Those products form the
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column space of . In the example, the columns lie in 3-dimensional space, but their
combinations fill out a plane (the matrix has rank 2). The plane goes through the origin
since one of the combinations has weights . Some (in fact, most) vectors
do not lie on the plane, and for them, , can not be solved exactly. The system,

, has an exact solution only when the right side is in the column space of .

The vector is not in the column space of so for this choice of there
is no that satisfies . The vector, , on the other hand, does lie in the
plane (spanned by the columns of ) so there is a solution. In particular, is
a solution (try it). However, there are other solutions as well; will work. In
fact, we can take and add any scalar multiple of since (1,1,1) is in
the row nullspace of . For any scalar constant, , we can write:

If an NxN matrix has linearly independent columns then:

1. The row nullspace contains only the point .

2. The solution to (if there is one) is unique.

3. The rank of is N.

In general any two solutions to differ by a vector in the row nullspace.

3 Regression

When is not in the column space of , we can still find a vector that comes the closest
to solving .

Figure 3 shows a simple example in which and are both 3x1 vectors and is a
scalar. In other words, is a point in 3-space and the column space of is a line in 3-
space (different values of put you at different points along that line). Everything that
we do next is true for ’s and ’s of any size or length. But it’s worthwhile keeping this
simple picture in mind, because we can’t draw diagrams in higher dimensions.

Here’s the game. I give you and . You pick an such that comes as close as
possible to . That is, you pick to minimize:

The solution, of course, is the orthogonal projection of onto . This is clear for the
simple example in figure 3; the shortest distance from the point, , to the line, , is the
perpendicular distance.
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Figure 1: Regression: find the vector such that comes as close as possible to . The
solution is the orthogonal projection of onto . The error vector is perpendicular to
.
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Given a value for , the error vector (labeled in the figure) is given by the difference:

Given the right choice of , this error vector is perpendicular to the column space of :

This is true for every , i.e., it is true for all in the column space of . There is
only one way in which this can happen: The vector in square brackets has to be the zero
vector:

i.e.,

Here the matrix is called the pseudo-inverse of .

We have to worry about one more thing: When is invertible? One case is easy:
If has linearly independent columns, then is a square, symmetric, and invertible
matrix.

What if is not full rank (i.e., what if it does not have linearly independent columns)?
We still might be OK. Imagine that is a 3x2 matrix, but that the two columns are iden-
tical. The columns are clearly not independent. We can proceed by dumping one (either
one) of them. Make , a new 3x1 vector that contains the first column of . Proceed as
above to find the scalar to minimize: . The solution to our original problem
is simply: .

Generally, we use the SVD to compute the pseudo-inverse, of a matrix, . The
SVD decomposes:

where is anNxMmatrix with non-zero entries, , along themain diagonal. The pseudo-
inverse is computed:

where is an MxN matrix with non-zero entries, :

for
otherwise

Here is a threshold that is typically chosen based on the round-off error of the computer
you’re using. If one of the ’s is very small (essentially zero), then the matrix is not full
rank and we want to ignore one of the columns. Using the SVD is a very reliable method
for inverting a matrix.

5



d0
0

d1
0

d0
1

d1
1

d0
M-1

d1
M-1

...( )D =

d0

d1
.

..
.

..
.

.
.

.
....

.

.
.

d0

d1
1st principal
component2nd principal

component.
..

.
..

Figure 2: Top-left: Scatter plot of 2-dimensional data set. There are M data points. Each
data point is represent by a vector, , for from 1 to M. Top-right: Scatter plot
of data set after subtracting the mean. The first principal component is a unit vector in the
elongated direction of the scatter plot.

4 Covariance, Eigenvectors, and Principal ComponentsAnal-
ysis

This section of the handout deals withmulti-dimensional data sets, and explains principal
component analysis (also called the Karhonen-Loeve Transform).

Each data point represents one test condition, e.g., a data point might be the height and
weight of a person represented as a vector: (height,weight). Or each data point might
include the intensity values of all of the pixels in an image represented as a very long
vector , where is the intensity at the th pixel.

Let’s say we have M such data points, each an N-dimensional vector. The average of
all the data (the average of the columns) is itself an N-dimensional vector. Subtracting
the mean vector from each data vector gives us a new set of N-dimensional vectors. In
what follows, we’ll be dealing exclusively with these new vectors (after subtracting out
the mean); doing it this way makes the notation much simpler. We can put these vectors
into a big NxM matrix, , where each column of this matrix corresponds to a single data
point. Figure 4 shows an example in which N=2.

The covariance of the data is:

This definition of the covariance is correct for data sets of arbitrary dimenion, . For our
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simple 2-dimensional data set, we get:

... ...

Here is the variance of the data along the axis, is the variance of the data along
the axis, and is the covariance (or correlation coefficient):

For the data set illustrated in figure 4, the diagonal ( and ) entries in the covari-
ance matrix are about equal, and the off-diagonal( and ) entries are reasonably large
(about equal to 0.8) because the data is pretty elongated in that direction.

Using the SVD,

the columns of span the column space of . It turns out that these are also the eigen-
vectors of the covariance matrix, .

An eigenvector, , of a square matrix, , satisfies:

for some scalar , that is called an eigenvalue. In other words, the direction of is un-
changed by passing it through the matrix; only the length will change.

Let be the th column of . For to be an eigenvector of , we need:

Using the SVD,

Since is orthonormal, is an identity matrix. Then,
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The second line follows from the fact that is orthonormal. The last line says that the
square of the th element of is the eigenvalue corresponding to the th eigenvector of

, and that the eigenvector is given by the th column of .

The eigenvector corresponding to the largest eigenvalue is called the first principal
component of the covariance matrix. Most implementations of the SVD return the eigen-
values and eigenvectors in order so (the first column of ) is the first principal compo-
nent. The second principal component is the eigenvector with the second largest eigen-
value (that is, the second column of ), and so on.

The key property of the principal components (that we state here without proof) is
that they capture the structure of the data. In particular, the first principal component is
the unit vector with the largest projection onto the data set, i.e., the following expression
is maximized for :

As usual, it is helpful to draw the shape of the matrices on a piece of paper. For the simple
example illustrated in figure 4, the first principal component is a unit vector in the (1,1)
direction, the elongated direction of the scatter plot. In this case, is a 2xM matrix, and
is 2x1 vector, so is a 1xM row vector. Each element of this row vector is the length

of the projection of a single data point onto the unit vector .

The point is that you know a lot about a data point by knowing only the projection
of that data point onto . In fact, if you have to characterize each data point with only
1 number, you should use the projection onto the first principal component. That will
give you the best approximation for the entire data set (given that you are only using 1
number for each data point).

What about the other principal components, the other columns of . The second
principal component is the unit vector, in the subspace orthogonal to the first principal
component, that has the largest projection onto the data set. The third principal compo-
nent is the unit vector, in the subspace orthogonal to both the first and second principal
components, that has the largest projection. And so on. If you have to characterize each
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data point with 3 numbers, you should use the projections onto each of the first three
principal components.
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