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Humans use continuous visual feedback from the hand to control
both the direction and distance of pointing movements
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Abstract Vision of the hand during reaching provides
dynamic feedback that can be used to control move-
ment. We investigated the relative contributions of
feedback about the direction and distance of the hand
relative to a target. Subjects made pointing movements
in a 3-D virtual environment, in which a small sphere
provided dynamic visual feedback about the position of
their unseen fingertip. On a subset of trials, the position
of the virtual fingertip was smoothly shifted by 2 cm
during movement, either (1) in the direction of move-
ment, which would require adjustments to the distance
moved, or (2) orthogonal to the direction of movement,
which would require adjustments to the direction
moved. Despite not noticing the perturbations, subjects
adjusted their movements to compensate for both types
of visual shifts. Corrective responses to direction per-
turbations were observed within 117 ms, and response
latencies were invariant to movement speed and per-
turbation onset time. Initial corrections to distance
perturbations were smaller and appeared after longer
delays of 130–200 ms, and both the speed and magnitude
of responses were reduced for early onset perturbations.
Simulations of a feedback control model that optimally
integrates visual information over time show that the
results can be explained by differences in the sensory
noise levels in the visual dimensions relevant for direc-
tion and distance control.

Keywords Hand movements Æ Motor control Æ
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Introduction

The question of whether movement direction and dis-
tance are controlled jointly or independently has been

the topic of considerable study. Evidence for the in-
dependence of these dimensions has been observed for
movement planning (Gordon et al. 1994; Chieffi and
Allport 1997; Sainburg et al. 2003), and for sensory-
motor adaptation (Krakauer et al. 2000). Independent
control of direction and distance is also observed in re-
sponses to unexpected target perturbations (Turrell et al.
1998). Whether these movement dimensions are pro-
cessed differently for on-line visual feedback control
remains unknown, however. In previous studies ad-
dressing control of direction and distance, visual feed-
back from the hand was either absent (Turrell et al.
1998) or maintained a constant relationship with the
physical hand across many trials (Krakauer et al. 2000).
In the latter case, it is difficult to distinguish between
effects due to movement planning and on-line feedback
control.

We recently reported evidence that humans use con-
tinuous visual feedback from the hand to guide reaching,
even for relatively fast movements (Saunders and Knill
2003). Figure 1 illustrates the perturbation method used
in that experiment and in the one reported here. Subjects
performed reaches in a virtual environment (Fig. 1a) in
which a sphere was rendered at the visual position of the
fingertip. On a proportion of the trials, the visual posi-
tion of the fingertip was smoothly perturbed by a small
amount (Fig. 1b), unnoticed by subjects. In the previous
study, we found corrective responses that were detect-
able within 160 ms of perturbation onset. The response
latency was invariant to both the speed of movement
and to the timing of the perturbation (early versus
midway during the movement), suggesting that visual
feedback from the hand is used continuously during the
movement.

In the previous study, the fingertip perturbations
were applied perpendicular to the path of movement.
Sarlegna et al. (2003) recently performed a similar ma-
nipulation of visual feedback from the hand, but in the
principle direction of movement. They did not observe
fast corrective responses. On the perturbed trials in their
study, visual feedback about the location of the hand
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was displaced relative to the hand during subjects’ initial
orienting saccades to the target. Responses during the
primary movement phase only partially compensated
(�20%), and began after relatively long latencies, aver-
aging 470 ms. The difference between the two results
suggests that the visuomotor system may rely on visual
feedback about the direction of the hand relative to the
target, but not its distance from the target, at least early
in a movement.

There are a number of reasons to expect different
contributions from feedback about movement direction
and distance. First, as mentioned earlier, there is con-
siderable evidence that direction and distance are pro-
cessed separately for other aspects of movement control,
such as planning and adaptation. Second, perturbations
in different directions applied to visual feedback from
the hand produce effects that likely differ in perceptual
salience. Since hand movements tend to follow straight
paths, uncertainty about hand position would be ex-
pected to be greatest along the axis of movement, such
that there would effectively be more noise in feedback
about target distance than direction. Similarly, the hu-
man visual system is much more sensitive to changes in
velocity orthogonal to an objects’ motion path than to
changes in velocity along the path (Mateef et al. 2000).
Finally, the control problem for these dimensions differs.
Once movement is initiated, the direction of movement
is relatively constant, and even small errors are

diagnostic of future errors in the final position of the
hand. In contrast, target distance and hand speed both
change markedly throughout the movement. If initial
kinematics are only weakly predictive of final movement
extent, as was observed by Messier and Kalaska (1999),
there might be less incentive for early online feedback
control of movement extent, and consequently greater
need for later feedback control.

On the other hand, there is evidence that the visual
motor system is at least capable of fast online adjust-
ments to both direction and distance movement para-
meters. Perturbations of the visual target of a reach have
been tested both in the direction of movement (Pelisson
et al. 1986), requiring adjustment to movement distance,
and in a nearly orthogonal direction (Prablanc and
Martin 1992), requiring adjustment to movement di-
rection. In both experiments, similar fast corrective re-
sponses were observed. While this does not imply that
analogous perturbations to visual feedback from the
hand would have similar effects, it does demonstrate that
both movement direction and distance are potentially
subject to online control. Furthermore, the results of the
Sarlegna et al. study cannot be directly compared to
those of the Saunders and Knill study due to metho-
dological differences. Perturbed feedback occurred ear-
lier in movements in the Sarlegna et al. experiment, and
pointing movements were directed to points in space
rather than to targets on a solid surface. Finally, as we

Fig. 1 Left: experimental apparatus. Subjects were presented with
stereo images using shutter glasses and a monitor viewed through a
mirror. The mirror prevented the hand from being viewed, and
allowed artificial visual feedback to be presented in the subjects’
manual workspace. Subjects moved their fingers to visual targets
that were aligned with a tabletop. An Optotrak 3020 system
tracked infrared markers attached to a subject’s finger, and this
data was used to render a virtual sphere representing the subject’s
fingertip (virtual finger). Right: illustration of the task. Views show
a top-down projection onto the tabletop. At the start of a trial (top
panel), a target and the virtual fingertip appeared. The target was

positioned 26 cm away from the initial position of the finger, and
the target’s direction was randomly chosen within a range of ±15�
around the horizontal midline. The subject’s task was to move their
virtual fingertip to touch the target. During initial movement, the
virtual fingertip coincided with the actual location of the subject’s
unseen finger. On perturbed trials, the position of the virtual
fingertip was smoothly shifted at some point during the movement,
so that it no longer matched the actual finger (middle panel). To
successfully reach the target with the perturbed virtual fingertip,
subjects would have to compensate for the displacement (bottom
panel)
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will describe later, the analysis method used by Sarlegna
et al. was significantly less sensitive than that used by
Saunders and Knill.

In the experiment reported here, we used the pertur-
bation method illustrated in Fig. 1 to explicitly compare
the contributions of online visual feedback about
movement direction and extent. We distinguished these
components by comparing responses to perturbations
along two different axes relative to the movement path.
In the direction-perturbation condition, the virtual fin-
gertip was displaced orthogonal to the main direction of
movement (Fig. 2a), requiring subjects to adjust the di-
rection of movement. This was the type of perturbation
used in our previous study (Saunders and Knill 2003). In
the distance-perturbation condition, the virtual fingertip
was displaced in the direction of movement (Fig. 2b),
requiring subjects to adjust the extent of movement.

We observed online corrections to both direction and
distance perturbations, but with differing magnitudes
and latencies. To test whether these differences could be
attributed to the amounts of visual noise in the direction
and distance feedback signals, we simulated a feedback
control model that optimally integrates noisy visual in-
formation during movements, and compared its per-
formance to human data for the conditions tested in the
experiment. Under plausible noise assumptions, mostly
determined from human psychophysics on motion and
position acuity, the model exhibited qualitatively similar
effects to the experimental subjects.

Methods

Design and conditions

Subjects performed a simple pointing task in a virtual
environment (Fig. 1a), with visual feedback provided

by a small sphere that moved in real-time with their
unseen fingertip. On half of the trials, the virtual
fingertip was perturbed during the reach, as illustrated
in Fig. 1b. On these trials, the virtual finger initially
coincided with the actual finger position, but at some
point along the movement it was shifted in one of four
directions. Perturbations were small (2 cm) and
smooth, appearing as a blurred step that extended over
4 cm of the movement. Subjects uniformly reported
that they were unaware of any unusual changes in the
perceived movement of the virtual finger during the
experiment, even when told later about the perturba-
tions.

The main experimental manipulation was the axis of
perturbation displacements, which was either aligned
with the direction between the initial hand location and
the target (distance perturbations, Fig. 2a) or orthogonal
to that direction (direction perturbations, Fig. 2b). We
also varied the time of perturbation onset and the
movement speed. In the early onset condition, pertur-
bations occurred when the finger had moved 25% the
distance to the target, while in the mid-reach onset con-
dition, perturbations occurred when the position of the
fingertip had moved 50% of the distance to the target.
We ran subjects in one of two speed conditions: a fast
condition, in which subjects were given feedback to keep
their movement durations within a range around 450
ms, and a slow condition, in which subjects were given
feedback to keep their movement durations in a range
around 600 ms. These speeds spanned the range of what
pilot subjects subjectively reported as natural movement
speeds for the distances used. Each type of perturbation
was presented in both possible directions (up or down,
forward or backward). Direction and distance pertur-
bations were presented in separate blocks, and the two
movement speeds were tested in separate subject sets.
Other parameters, including the presence, onset and sign
of perturbations, were randomized across trials within
blocks.

Apparatus and display

Visual displays were presented in stereo on a computer
monitor viewed through a mirror (Fig. 1), using Crys-
talEyes shutter glasses to present different stereo views
to the left and right eyes. The left and right eye views
were accurate perspective renderings of the simulated
environment. In stereo mode, the monitor had a re-
solution of 1024·768 pixels and a refresh rate of 150 Hz,
or 75 Hz for each eye’s view. The stimuli and feedback
were all drawn in red to take advantage of the com-
paratively faster red phosphor of the monitor and pre-
vent inter-ocular cross-talk.

The horizontal mirror prevented a subject’s hand
from being visible. Visual feedback about hand position
was instead provided by a 1 cm diameter virtual sphere
that moved in real-time along with the subject’s actual
finger. The targets of the subjects’ movements were 1 cm

Fig. 2a–b The two types of perturbations. a Direction perturba-
tions: the virtual fingertip is displaced in a direction perpendicular
to the main direction of movement. b Distance perturbations: the
virtual fingertip is displaced along the direction of movement. Both
examples show positive perturbations. In the experiment, perturba-
tions in the opposite direction were also tested, and the sign was
randomized across trials
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diameter circles rendered to be aligned with an unseen
tabletop (�55 cm from the eyes).

An Optotrak 3020 system recorded the time-varying
position of a subject’s finger at 150 Hz. The data was
used to dynamically update the position of the virtual
fingertip. Subjects wore a finger splint on their right
index finger, which had a triad of active infrared mar-
kers. The position of a subject’s fingertip within the
splint was computed from the position of the three
markers attached to the splint. The optical measure-
ments had very small latencies (<2 ms), but the speed of
the graphical rendering loop imposed an additional la-
tency on visual feedback of �10 ms. When computing
the rendered position of the virtual fingertip, we com-
pensated for this delay by linearly extrapolating from
the latest marker position, using the position from pre-
vious frames to estimate velocity. We checked the ef-
fectiveness of this extrapolation subjectively by viewing
the actual and virtual finger simultaneously (using a
half-silvered mirror). Residual errors were not readily
apparent.

Spatial calibration of the virtual environment re-
quired computing the coordinate transformation from
the reference frame of the Optotrak to the reference
frame of the computer monitor, and the location of a
subject’s eyes relative to the monitor. These parameters
were measured at the start of each experimental session
using an optical matching procedure. The backing of the
half-silvered mirror was temporarily removed, so that
subjects could see their hand and the monitor simulta-
neously, and subjects aligned an Optotrak marker to a
sequence of visually cued locations. Cues were presented
monocularly, and matches were performed in separate
sequences for left and right eyes. Thirteen positions on
the monitor were cued, and each position was matched
twice at different depth planes. The combined responses
for both eyes were used to determine a globally optimal
combination of 3-D reference frame and eye position.
After the calibration procedure, a rough test was per-
formed in which subjects moved a marker viewed
through the half-silvered mirror and checked that the
position of a rendered dot was perceptually coincident
with the marker. Calibration was deemed acceptable if
deviations appeared to be less than 1–2 mm. Otherwise,
the calibration procedure was repeated.

Procedure

The task for each subject was to move their finger back
and forth to touch a series of visually-presented targets.
At the start of a trial, a new target would appear on the
opposite side of the workspace as the current hand po-
sition. The target onset was the cue to move. Subjects
were instructed to move to touch the target in a fast and
‘‘natural’’ manner. Upon reaching the target, they were
to keep their finger in place until the next target ap-
peared. Data collection started once a subject’s finger
moved 0.25 cm, and continued for 3 s. The recording

period was followed by a delay of 800 ms with a blank
screen, after which a new target appeared initiating the
next trial. The time between trials varied depending on
how quickly subjects initiated movement, averaging
approximately 4 s.

Subjects were instructed to try to move at about the
same speed on each trial. Feedback was provided
throughout the experiment to train subjects to reach the
target within a range of time around a goal time, which
was 450 ms for subjects in the fast condition and 600 ms
for subjects in the slow condition. Subjects received
positive feedback for movement durations within 75%
to 125% of the goal time (a larger circle appeared
around target) and negative feedback otherwise (an ‘‘X’’
through the target indicating too fast, no change in-
dicating too slow). For purposes of feedback, reaching
the target was defined as bringing the virtual finger
within 1 cm of the center of the target. Prior to the main
experiment blocks, subjects were allowed 20–40 un-
perturbed practice trials to familiarize themselves with
the timing constraint.

The targets varied in location within two ellipses on
the table, which were 10 cm wide, 16 cm tall and sepa-
rated by 24 cm. The target position for a trial was chosen
relative to the end location of the previous trial. For
experimental trials, the target distance was always 26 cm
(�24� of visual angle), while the direction from the
starting position to the target randomly varied between
�15� and +15� relative to the left/right axis along the
tabletop, subject to the constraint that the endpoint lay
within the target ellipse. Randomly interspersed with the
experimental trials were a smaller number of trials
(20%) with targets at a distance of 22 cm. These trials
were included to add some variation in the distance
moved, but were not analyzed. Occasionally, subjects
moved their hands toward the center of the workspace
too early (contrary to instructions), such that it was
impossible to satisfy the criteria. In these cases, a ran-
dom position within the opposite ellipse was chosen as
target location, and the trial was discarded from analy-
sis.

On perturbed trials, 2 cm offsets between the actual
and visual position of the finger were phased-in gradu-
ally over a 4 cm transition range. The amount of dis-
placement on a given frame was a function of the
position of a subject’s fingertip along the axis from the
starting position to the target. On trials with early per-
turbations, offsets were phased-in when the fingertip was
between 4.5 cm and 8.5 cm away from the starting po-
sition, as measured along the target axis. On trials with
mid-reach perturbations, the transition region was from
11 cm to 15 cm. The centers of these two transition
ranges corresponded to where a subject’s fingertip was
25% or 50% of the way to the target. Within the tran-
sition ranges, the proportion of the perturbation applied
was computed using a scaled logistic function. The base
function was f(x)=1/(1+3�x), where x was the differ-
ence between the current position of the fingertip along
the target axis and the midpoint of the transition region.
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This function was linearly re-scaled to span from 0 to 1
over the 4 cm transition range, f’(x)=(f(x)�f(�2))/
(f(2)�f(�2)), and the result was multiplied by the mag-
nitude of the eventual displacement (2 cm) to determine
the partial displacement. The vector direction of the
perturbations was either aligned with the axis from
starting position to the target, in the case of distance
perturbations, or aligned with the perpendicular axis
along the tabletop, in the case of direction perturbations.

The perturbation transitions caused transient dis-
crepancies between the velocity of the virtual fingertip
and the velocity of the actual fingertip, which was
maximal at the midpoint of the transition. In the case of
distance perturbations, the maximal differences in speed
were approximately 35–45 cm/s, which corresponds to
60–70% of the actual finger speed, and the differences in
the directions of motion caused by the perturbations
were negligible. In the case of direction perturbations,
maximal differences in speed were 10–12 cm/s, corre-
sponding to 15–25% of the actual finger speed, and the
maximal differences in the directions of motion averaged
34�.

Prior to analysis, data were filtered to remove various
types of irregular trials. These included trials with in-
complete data due to occluded markers, trials with
mistimed recordings due to false starts, trials in which
subjects began moving before the target appeared, and
trials in which motion was not complete within ±40%
of the goal time. Some trials contained isolated single
frames with occluded markers. If there were no more
than four such frames on a trial, the trial was not ex-
cluded. Instead, the data from missing frames was filled
in by linearly interpolating between adjacent frames.
Trials with adjacent missing frames or with more than
four isolated missing frames were excluded from analy-
sis.

Subjects participated in two experimental sessions on
separate days. Each session began with calibration of the
virtual environment, followed by practice trials to fa-
miliarize a subject with the task and movement speed,
and then two blocks of experimental trials separated by
a brief break. Subjects performed 300 trials in each
block, of which 240 were experimental trials. This yiel-
ded a total of 120 trials per perturbed condition (x-axis
onset) and 240 unperturbed trials for each subject.

Perturbations were applied on half of the trials. Per-
turbed and unperturbed trials were randomly intermixed
within blocks, as were the onsets and signs of pertur-
bations. Direction and distance perturbations were
blocked by experimental session, with order counter-
balanced across subjects. Fast and slow movements were
tested in separate subjects.

Analysis

For the analysis, finger positions were represented in a
normalized coordinate frame, with the x-axis being the
direction from initial position to target, and the y-axis

being the direction in the tabletop plane orthogonal to
the x-axis. We ignored the vertical (z-axis) components
of the data series, treating the finger positions as 2-D
points in the xy-plane.

Movements showed large variability in overall tra-
jectories, but were also very smooth, so much of the
variability could be due to differences in initial condi-
tions, motor plans, goal paths, and so on. To derive a
sensitive measure of the effect of perturbations, we
temporally de-correlated the data series using linear fil-
ters fit to the data (Saunders and Knill 2003).

We assumed that, for unperturbed trials, the nor-
malized position of the fingertip at time t was a linear
function of the n previous positions:

p tð Þ ¼ w1 tð Þ � p t � 1ð Þ þ w2 tð Þ � p t � 2ð Þ . . . wn tð Þ � p t � nð Þ
ð1Þ

The weights w1(t), w2(t), ... wn(t) were allowed to vary
as a function of time, but were assumed to be constant
across trials. To align the data series temporally, we
defined t=0 to be the midpoint of the perturbation
transition, so that t represents approximate time after
perturbation. Since there was variability in the speed and
time-courses of the trials, the assumption that weights
are the same across trials corresponds to assuming that
the weights are relatively constant over small shifts in t.

If the data series are smooth and temporally-corre-
lated, the linear model given by Eq. 1 should closely fit
the data and account for most of the variability across
trials. Responses to perturbations can be distinguished
as changes in trajectory that would not be predicted
based solely on the previous path. Thus, we augmented
the model with an additional term representing the effect
of perturbations:

p tð Þ ¼ w1 tð Þ � p t � 1ð Þ þ w2 tð Þ � p t � 2ð Þ . . . wn tð Þ � p t � nð Þ
þ wpert tð ÞDpert ð2Þ

where Dpert is +1 for positive perturbations and �1 for
negative perturbations. The function wpert(t) represents
the evolving influence of the perturbation on the sub-
jects’ movements, and this should be zero for times be-
fore subjects show any corrective response to
perturbations. We refer to this function as the pertur-
bation influence function.

For each subject, we applied linear regression to the
baseline trials to estimate the autoregressive weights in
Eq. 1. We set n=6 for the analysis, but found that the
results were insensitive to the exact value for n>6. To
compute influence functions for each perturbation type
wpert(t), we correlated the sign of the perturbations
(+1,�1) on perturbation trials with the error between
the hand position at time t and the position predicted by
the autoregressive model. For trials with distance per-
turbations, perturbation influence functions were com-
puted using only the x-component of the kinematic data
(approximately the movement extent), while for trials
with direction perturbations, influence functions were
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computed using only the y-component of the data (ap-
proximately equivalent to movement direction).

Response times were computed by locating the first
point in time at which the mean perturbation influence
functions, averaged across subjects, were significantly
different from zero. The raw mean influence function
was first smoothed with a one-sided (causal) exponential
filter, f(t)=exp(t/k) for t<0, with k=35 ms, producing a
time-weighted cumulative measure of the perturbation
influence. The filtered result, f(t)*wpert(t), was compared

at each time t to a statistical threshold derived from re-
sampling baseline trials, and the earliest super-threshold
time was taken to be the response latency. The re-sam-
pling procedure consisted of repeatedly applying the
analysis to randomly-chosen baseline trials (sampling
with replacement) and using the results to estimate the
null-model noise distribution of filtered wpert(t).

To determine error bounds on the response time es-
timates, we re-sampled across subjects to compute mean
influence functions, and used these samples to compute a

Fig. 3a–d Mean kinematic
trajectories for a representative
subject in the slow movement
condition. The three black lines
correspond to mean data from
trials with positive
perturbations (solid), negative
perturbations (dotted), or no
perturbations (dashed). The
shaded areas denote the
perturbation transition phases,
during which the perturbation
was gradually applied. The gray
horizontal lines depict the
expected final finger positions if
subjects fully compensated for
the perturbations. a Direction
perturbations, early onset; b
direction perturbations, mid-
reach onset; c distance
perturbations, early onset; d
distance perturbations, mid-
reach onset. For direction
perturbations (a and b),
corrections appear in the y-axis
component of finger position
(left), and for distance
perturbations (c and d),
corrections appear in the x-axis
component (right)
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distribution of response times. The filtering and thresh-
old comparison applied to the samples was the same as
applied to the actual data. The error bounds plotted in
the figures correspond to 5% and 95% points in the
sample histograms. Comparisons across conditions were
based on the distribution of differences between re-
sponse times. For a given pair of conditions, the differ-
ence in response times was computed for each sample,
and the resulting set was taken as representing the dis-
tribution of actual differences for purposes of statistical
comparisons.

In addition to response times, we report a measure of
the amount of correction in response to perturbations.
We wanted this measure to reflect only corrections that
occurred during the main portion of movements, and
not any additional secondary corrections, which requires
a criterion for identifying the end of initial movements.
We defined this to be the first minimum in the speed
profile after the deceleration phase had begun. To avoid
detecting spurious re-accelerations, we smoothed the
time series with a 10 ms Gaussian filter prior to com-
puting minima, and further required that the hand speed
be below 6 cm/s. These criteria were ad hoc, chosen to
produce subjectively accurate and reliable measures of
the end of initial movements, and small variations in the
parameter values did not significantly affect the results.

Subjects

Sixteen naı̈ve, paid subjects participated in the experi-
ment—eight in the fast movement condition and eight in
the slow movement condition. Subjects provided in-
formed consent in accordance with guidelines from the
University of Rochester Research Subjects Review
Board. Our apparatus required that subjects use their
right hand, so only right-handed subjects were accepted.

Results

Figure 3 shows mean kinematics of finger position for a
representative subject in the fast movement condition.
The four rows correspond to early and mid-reach di-
rection perturbations (a and b) and early and mid-reach
distance perturbations (c and d). To generate the mean
data series, individual trials were first normalized with
respect to target direction so that the main axis of
movement was transformed to the horizontal x-axis, and
then projected onto the tabletop (ignoring the height off
the table). The left panels plot the y-axis component of
finger position as a function of time, while the right
panels plot the x-axis component. Each graph contains
three plots, corresponding to mean kinematics of trials
with positive perturbations (solid), negative perturba-
tions (dotted), or no perturbations (dashed). The subject
clearly made corrective responses to both direction and
distance perturbations. In both cases, the mean finger
position functions for positive and negative perturbed

trials diverged from that of unperturbed trials, in the
direction consistent with bringing the perturbed visual
finger to the target. In the case of direction perturba-
tions, this can be seen in the y-axis components, while
for distance perturbations, the divergence is in the x-axis
plots. The performance of the other subjects was similar.

The amount of correction in response to perturba-
tions, averaged across subjects and conditions, was 1.5
cm, corresponding to 75% of the perturbation magni-
tude. Figure 4 plots mean percent correction for the
different movement speed and perturbation onset sub-
conditions. Subjects showed greater overall correction
during slow movements than for fast movements, and
more correction in response to early perturbations than
to late perturbations. Thus, magnitude of correction
increased with the time available for correction, as
would be expected from continuous feedback control if
the post-perturbation periods were too short to fully
compensate.

As described in the ‘‘Methods’’ section, we derived
perturbation influence functions for each experimental
condition to characterize the influence of the perturba-
tion on subjects’ finger movements as a function of time
after the perturbation. Figure 5 plots mean perturbation
influence functions for direction perturbations (solid)
and distance perturbations (dashed) for each of the four
combinations of movement speed (slow versus fast) and
perturbation onset (early versus mid-reach). In the case
of direction perturbations, the latencies of initial re-
sponses were identical across sub-conditions; the cor-
rective responses evident in the aggregate data began
within an average of 117 ms. In comparison, responses
to distance perturbations were later and smaller in
magnitude than responses to equivalent direction per-
turbations. There were also differences across sub-con-
ditions: mid-point perturbations produced apparently
earlier responses than early perturbations, and fast
movements produced apparently earlier responses than

Fig. 4 The bars show the average amount of correction during
subjects’ initial movements in response to perturbations of different
types, expressed as a percentage of the perturbation magnitude (so
full compensation is 100%). The vertical lines depict standard
errors
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slow movements. Figure 6 plots response times for each
of the direction and distance perturbation conditions.

Discussion

Response times for direction perturbations

Our finding of constant response times for direction
perturbations is in agreement with the results of our

previous study (Saunders and Knill 2003), which tested
conditions identical to the direction perturbations used
here. The only apparent discrepancy is the overall
magnitude of response latencies: 117 ms in the present
experiment versus 160 ms in our previous study. Most of
this difference can be attributed to the increased sensi-
tivity of our current analysis. The method of marking
the point at which the perturbation influence function
exceeds a fixed significance level has an inherent positive
bias, which will depend on the noise in the measured
influence functions. In the present experiment, response
times were computed from the mean influence functions
averaged across subjects, rather than separately for in-
dividual subjects. This, by itself, increases sensitivity and
reduces bias. Additionally, because the mean influence
functions are less noisy, less smoothing is required to
compute stable estimates of when responses occurred.
Decreasing the temporal extent of the smoothing kernel
further reduces the amount of positive bias in the esti-
mates. To measure the effect of these changes, we ap-
plied our previous analysis to the direction perturbation
conditions in the current experiment, and found mean
response times of 140 ms. The remaining discrepancy
between the current results and our previous results can
be explained by our recent discovery of an added one
frame delay (17 ms) in the rendering of the virtual fin-
gertip using the graphics card used for the previous ex-
periment—a delay that we had not accounted for in the
previous estimates. Thus, the present data replicate our
previous findings, and provide further evidence that vi-
sual feedback from the hand is used for continuous
control of movement direction. The shorter reaction

Fig. 6 The bars plot the response latencies: the time between the
midpoint of perturbation transition and the earliest detectable
response in the mean data. The vertical lines show 95% confidence
intervals for the response time estimates, as determined by re-
sampling

Fig. 5a–d Mean perturbation
influence functions, averaged
across subjects, for direction
perturbations (solid) and
distance perturbations (dashed).
The shaded areas denote
transition phase, during which
the perturbation was gradually
applied. The vertical lines mark
the time of the earliest
detectable response. a Early
onset, fast movements; b mid-
reach onset, fast movements; c
early onset, slow movements; d
mid-reach onset, slow
movements
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time measured here, 117 ms, further supports this con-
clusion.

There is some ambiguity in the response times, due to
the gradual application of the perturbations, which was
spread over a period of 50–70 ms. Depending on how
sensitive subjects are to the small conflicts present early
in the transition period, or to the initial changes in ve-
locity, a perturbed visual signal could have been avail-
able as much as 35 ms earlier than the ‘‘onset’’ time we
used for analysis. Note, however, that the perturbations
were introduced sub-linearly during the transition, so
the initial conflicts were small. For example, during the
first 15% of the transition, the conflicts remained less
than 2 mm. Thus, it is likely that a perturbed signal
effectively becomes available only at some time after the
start of the transition. On the other hand, there is no
reason to expect that the midpoint of the transition,
which we treat as the ‘‘onset’’, would accurately corre-
spond to the initial availability of a perturbed signal.
Thus, our RT estimates should be interpreted as having
additional uncertainty, beyond measurement noise, of
up to 35 ms.

Continuous feedback for distance

If visual feedback about the distance of the hand from
the target were not continuously used throughout a
movement, but rather only during the end phase, one
would expect the qualitative pattern of latency differ-
ences shown here. However, while the qualitative dif-
ferences would be consistent with such an account, the
quantitative differences are not. If feedback control
commenced at some set point during movements, the
difference in response latencies for early and mid-reach

perturbations would be expected to be equal to the dif-
ference in perturbation onset times, as illustrated in Fig.
7. This prediction was not confirmed by the data. For
slow movements, the measured response latencies dif-
fered by 40 ms, which is significantly less than the 108 ms
difference in onset times for early and mid-reach per-
turbations (p<0.02). The difference in response latencies
for fast movements was also lower than predicted by the
difference in onset times, 54 ms versus 88 ms (p<0.03).

A further reason to doubt an end phase feedback
explanation is that, in the conditions that produced the
slowest responses, corrections began relatively early in
the movements. In the case of early onset distance per-
turbations, responses occurred by the time the hand had
moved approximately 70% of the distance to the target.
Assuming even a minimal sensorimotor delay of 80 ms,
these corrections would have to have been initiated while
the hand was less than half-way to the target, prior to
the point of peak hand velocity. The observation of such
early perturbation responses, combined with the smaller-
than-expected differences in response latencies, argues
strongly against a model in which distance feedback is
only used at the end of movements.

While the responses we observed to distance pertur-
bations were slower overall than those to direction
perturbations, the difference was much smaller than
would have been expected by comparing the Sarlegna
et al. and Saunders and Knill results. This could largely
be due to the more sensitive analysis applied here to
measure response times. Still, the data show significant
differences in response times between direction and dis-
tance perturbations, as well as differences across dis-
tance perturbation subconditions. One possibility is that
these effects result from differences in sensory un-
certainty of visual feedback about finger direction and
distance relative to the target. These two components
correspond to different perceptual dimensions (speed
versus motion direction) and have differing amounts of
variability over time. To test whether sensory un-
certainty could explain the differences in responses we
observed, we simulated a feedback controller that opti-
mally integrates sensory feedback with an ongoing esti-
mate of hand state to generate online control signals for
the hand, and compared its performance to the human
data for the same experimental conditions.

Modeling

In Saunders and Knill (2004), we applied a feedback
control model to the conditions of a motion direction
feedback perturbation study to characterize the expected
response of a feedback to a controller limited by noise in
the visual coding of finger position and velocity. The
model combines an optimal sensory estimator for finger
position and velocity with an online control law derived
from the minimum jerk criterion (Hoff and Arbib 1993)
for generating motor commands to move the finger. The
sensory component of the model is an adaptive Kalman

Fig. 7 Illustration of the predictions of an end-phase feedback
control model. If movements have an initial open-loop phase, and
perturbations are applied during this open-loop phase, the
apparent response time would vary. Under this hypothesis, the
difference in response latencies (R1 and R2) would be expected to
be equal to the difference in perturbation onsets (T1 and T2)
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filter that maintains a running estimate of the state of the
hand using noisy sensory information and outgoing
motor signals. The filter continuously updates its esti-
mate of hand state by combining its current estimate
with the information derived from new sensory (visual)
signals and an estimate of the motor command that was
most recently sent out to the system. To account for
sensorimotor delays, the filter runs in a delayed loop,
and the delayed estimates of hand state are input into a
forward model that uses estimates of the motor com-
mands sent out during the delay period to ‘‘predict’’ the
current state of the hand from the delayed estimate.

We adapted our previous model to the present ex-
periments to test whether responses to direction and
distance perturbations could be similarly explained in
terms of sensory feedback noise. As before, we in-
corporated both signal-dependent noise on the control
signal and state-dependent noise on the sensory feed-
back. The latter models speed-dependent changes in
motion discrimination thresholds and eccentricity-de-
pendent changes in spatial acuity. We also assumed that
the sensory estimates of both hand position and velocity
were temporally low-pass filtered in concordance with
observed psychophysical behavior. Details are given in
Appendix A. Most of the parameters for the sensory
filters—the noise levels for visual estimates of the di-
rection and speed of finger movement, and the noise
levels for visual position estimates—were derived from
published psychophysical data, as described in the Ap-
pendix. The one noise parameter that we have added to
model the current data is designed to capture the un-
certainty in position estimates that would be induced by
temporal blurring of the visual input. The early visual
coding of position is derived from temporally low-pass

filtered images—effectively limiting positional acuity for
a moving object like the finger by the spatial extent of
the temporally blurred image of the object. We modeled
this motion-blur induced uncertainty with a noise term
whose standard deviation was proportional to the ve-
locity of the finger. The total noise on position estimates
is then given by the sum of a noise term that models
static positional acuity (incorporating the effects of ec-
centricity on spatial sampling), and a term that models
the positional noise induced by motion blur. The latter
noise is zero in the direction perpendicular to the finger’s
motion and is proportional to finger speed in the di-
rection of motion. The constant of proportionality was
set to equate the motion blur noise to what would be
expected for a visual signal blurred over a 40 ms win-
dow, equal to the time constant used to model the low-
pass filtering of the visual signal (see Appendix A). The
only free parameters in the model were the noise terms
for the control signal and the sensorimotor delay. These
were set to the same values used to fit the data in the
previously reported study (Saunders and Knill 2004).
Thus, all model parameters were fixed prior to running
the simulations and none were fit to the current data.

Figure 8 shows example mean trajectories derived
from simulating the model’s performance in the fast
movement condition of the experiment described here.
The model’s corrections are qualitatively similar to those
shown by the human subjects. More illuminating are the
results of applying the auto-regressive analysis to esti-
mate perturbation influence functions for the model,
shown in Fig. 9. The model replicates the qualitative
results found in the human data. In particular, the in-
fluence functions are smaller for the distance perturba-
tions than for the direction perturbations, and their

Fig. 8a–d Mean kinematic
trajectories derived from
simulating the performance of a
feedback control model (see
‘‘Methods’’ and ‘‘Appendix A’’)
on the experimental conditions
tested here. a Direction
perturbations, early onset; b
direction perturbations, mid-
reach onset; c distance
perturbations, early onset; d
distance perturbations, mid-
reach onset
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magnitude depends on the time of the perturbation in
the same way that subjects’ influence functions do. Most
notably, the model shows apparently different delays in
the different conditions of the experiment. These differ-
ences result principally from the difference in the mag-
nitudes of the influence functions. In essence, the
model’s responses to late perturbations are stronger and
hence reach significance sooner than its responses to
early perturbations. As reported previously, the model
deviates somewhat from subjects’ behavior at the ends of
the movements. This is likely due to the fact that the
model did not include low-pass filtering of the motor
output and supported the production of instantaneous
changes in acceleration needed for fast, late correction-
s—an implausible behavior for a physical system.

In our model, we assume that feedback control is
based on the system’s estimate of the current state of the
hand relative to the target. Under this assumption,
perturbations evoke responses because they change the
observed position and velocity of the hand relative to
the target. It is also possible that subjects reacted to the
conflict between observed and expected hand position
on perturbed trials. For example, if subjects attempted
to guide their hand along a predetermined kinematic
trajectory, the relevant control signal would be the dif-
ference between observed and desired current position,
which would not directly involve comparisons between
hand and target. The present results cannot distinguish
these possibilities, since perturbations alter both the vi-
sual position of the hand relative to the target and the
visual position of the hand relative to its expected,
physical position. Thus, there is some ambiguity as to
the specific control variable that drives subjects’ re-
sponses to the perturbations tested here. In another re-
lated study (Saunders and Knill 2004), we tested
conditions that did allow greater comparison of control
strategies. The observed results were inconsistent with a
strategy of steering the hand along a predetermined
trajectory, which is one natural strategy that would de-
pend solely on the error between observed and expected
state, rather than target-relative state. Note also that our
model is not insensitive to conflicts between observed
and expected hand state. However, its performance is
not directly driven by differences between observed and
expected hand state; rather, these variables affect per-

formance via their contributions to the integrated esti-
mate of instantaneous hand state.

Conclusions

The data show evidence for online feedback control of
both movement direction and distance. For both di-
mensions, perturbations produced responses after rela-
tively short latencies: 117 ms for direction perturbations,
and 130–200 ms for distance perturbations. In the case
of early onset perturbations, responses were observed by
the time the hand was 50–70% of the distance to the
target, implying that the corrections were initiated prior
to the hand reaching peak velocity.

For direction perturbations, response latencies were
the same for early and mid-reach perturbations, and for
fast and slow movements. This replicates our previously-
reported findings (Saunders and Knill 2003), and further
supports the hypothesis that visual feedback is used
continuously for control of reaching movements. The
estimate of feedback delay computed from the direction
perturbation data, 117 ms, is close to the reaction times
observed for corrections in response to target pertur-
bations (Pelisson et al. 1986; Prablanc and Martin 1992;
Brenner and Smeets 1997). It also closely corresponds to
the feedback delay we used to model results from an-
other experiment, in which visual feedback was per-
turbed in ways that selectively altered motion and
position feedback signals (Saunders and Knill 2004).
These consistencies support our current, shorter estimate
of feedback latency. As discussed above, we believe that
our previous estimate of feedback latency had larger
positive bias, and that the response time computed from
the present data more accurately reflects the feedback
delay.

The responses to distance perturbations were not
invariant to onset time and movement speed. However,
the differences in response times were smaller than
would be expected under a hypothesis of end-phase
feedback control. A control model that relies on an
optimal Kalman filter for updating estimates of finger
state from sensory feedback replicates all of the main
patterns found in the data. The sensory noise parameters
used for model simulations were drawn from

Fig. 9a–b Mean perturbation
influence functions computed
by applying the same auto-
regressive analysis used on the
human data to the simulated
data of the model. a Early
onset; b mid-reach onset
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psychophysical data on position and velocity acuity and
were the same as those used to model previous data
(Saunders and Knill 2004). The one piece that we added
to the model here was a position noise term that models
the effects of motion blur on position estimates. The
effects of motion-blur on position estimates effectively
gives rise to the differences between the model’s re-
sponses to direction and distance perturbations. The
model simulations demonstrate that the differences
across conditions observed in the human data are con-
sistent with reasonable assumptions about the amount
of perceptual noise present in the relevant control di-
mensions. Thus, despite some variations in measured
reaction times, the results for distance perturbations
remain consistent with the hypothesis of continuous
feedback control of movement distance.

A conventional view is that visual feedback con-
tributes to control of reaching movements only during
an end-stage, when the hand is close to the target. As
described above, our results clearly contradict this
model. One reason that feedback might not be expected
to contribute during the initial portion of a movement
is because visual feedback about the state of the hand
relative to the target would be poor. However, under
the conditions tested here, the hand could still be
visually compared to the target throughout the move-
ment, even if subjects fixate the target. The quality of
information about the hand state does strongly depend
on its eccentricity relative to the target, which is one
reason that we included eccentricity-dependent noise
parameters in the model. In fact, the model perfor-
mance demonstrates that varying amounts of sensory
noise are sufficient to explain apparent differences in
sensorimotor reaction times. Note that visual feedback
from the hand is not strictly necessary to perform
reaching tasks, as evidenced by our ability to pick up
objects with our eyes closed. The accuracy of our
model similarly decreases only modestly with the
removal of visual feedback. Thus, it is not surprising
that the initial influence of visual feedback would be
small and difficult to detect, particularly if accuracy
were used as a measure. However, the perturbation
responses observed here demonstrate that the human
sensorimotor system does take advantage of visual
feedback about the hand throughout movements, even
for the minimal feedback provided in our experiment (a
small dot representing the fingertip).

The current results seem to conflict with those of
Sarlegna et al. (2003), who found only weak responses to
perturbations of visual feedback from the hand, and
after a much longer latency of 470 ms. While our results
demonstrate that there is indeed a difference between
responses to perturbations affecting movement direction
and distance, we still observed relatively fast responses
to distance perturbations as well as direction perturba-
tions. Response latencies ranged from 130–200 ms de-
pending on perturbation onset and movement speed.
While these latencies are longer than those observed for
direction perturbations, in all cases they are much

shorter than the latencies reported by Sarlegna et al. The
cumulative amount of correction was also greater in the
present study.

The analysis method used here largely accounts for
the differences. Were we to have marked responses as
beginning when the average finger trajectories from
perturbation trials deviated significantly from those
from unperturbed trials, we would have found similar
response times to Sarlegna et al., in that responses would
only have appeared at the end of movements. This
overestimation results from the high variance in sub-
jects’ raw trajectories. Only by using the autoregressive
model to account for correlations within trajectories is
one able to obtain a high-enough signal-to-noise ratio to
measure response times with any degree of sensitivity.
Even with this improvement, our estimates are likely to
be high, as demonstrated by the model results: when the
same method was applied to the simulated data, re-
sponse times were significantly higher than the sensor-
imotor delay built into the model. Furthermore, in the
Sarlegna et al. study, the ‘‘onset’’ of perturbations was
immediately after initial saccades, while the perturba-
tions used here occurred during the main transport
portion of movements, well after initial saccades. There
could be some refractory period after saccades during
which feedback cannot effectively be used, resulting in
somewhat longer apparent feedback delays. Other
methodological factors could account for the remaining
differences in our findings (for example in proportional
correction). In the Sarlegna et al. experiment, move-
ments were directed to positions in space, such that the
virtual target provided no impact resistance or haptic
feedback. This is less natural than the pointing move-
ments used in our experiment, which were directed to-
ward virtual targets coincident with a physical tabletop,
and might have somehow altered subjects’ strategies.
Finally, we marked the ends of movements differently
than Salegna et al., in part because contact with the
tabletop effectively stopped movements in our experi-
ments. Small differences in this variable could easily
have led to the differences we found in the proportional
amount of correction for perturbations.

While the perturbation responses reported here
clearly demonstrate that visual feedback contributes to
online control, the data are ambiguous as to the specific
perceptual dimensions that underlie this control. The
distance perturbation conditions required subjects to
adjust primarily the extent of movement, and the di-
rection perturbation conditions required adjustments
primarily in the direction of movement, so we interpret
responses to these perturbations as reflecting feedback
control of distance and direction respectively. However,
there are many possible models for controlling these task
dimensions, with differing relevant control variables,
which these data cannot distinguish. For example, are
corrections based on the current state of the hand re-
lative to the target, or relative to some predetermined
kinematic plan? Another question would be whether the
representation of hand state used for control includes
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only position and velocity, or higher derivatives as well.
Such questions are beyond the scope of the present
study, but are addressed to some extent in recent related
paper (Saunders and Knill 2004).

We have also neglected to consider the role of
depth information. Since movements were largely
within a single plane, we have treated the task and
data as two-dimensional. However, because the table-
top was slanted relative to the viewer, the visual in-
formation about the state of the hand relative to the
target included a depth component. In particular, di-
rection perturbations displaced the virtual finger in
depth as well as in the frontal (projection) plane. For
movements that are nearly planar, as we observed, the
depth and frontal components of hand kinematics are
highly correlated. When we re-analyzed the kinematic
data for the direction perturbations using the vertical
position of the hand in viewer-centered coordinates (in
the image plane) instead of in tabletop coordinates, we
found essentially equivalent results. The main com-
plication is that the effective magnitude of the per-
turbation signal depends on perceptual sensitivity to
both depth and frontal dimensions. If observers were
much less sensitive to motion in depth than to frontal
motion, as one would expect, direction perturbations
would have been attenuated somewhat due to fore-
shortening. In fact, the model has this foreshortening
effect built into its model of the sensory signal, which
it assumed to be the movement of the finger in the
image plane (see details in Appendix A). This quan-
titative ambiguity does not affect the distinction be-
tween direction and distance perturbation conditions.
Control of movement direction might be based to
varying extents on either 2-D or 3-D position and
velocity, but regardless of the role of depth informa-
tion, the task-relevant dimensions would be different
than those for controlling movement extent (distance
and speed).

In conclusion, the results provide evidence that vi-
sual feedback from the hand is used for online control
of both the direction and distance of the hand. The
results for direction perturbations strongly implicate
continuous feedback control of movement direction.
The results for distance perturbations are also con-
sistent with continuous feedback control, particularly
when the perceptual noise in relevant control dimen-
sions is considered. While there is evidence that
movement direction and distance are controlled in-
dependently during movement planning, we found no
evidence for a qualitative distinction between these
dimensions with regard to online feedback control.
Rather, our results are consistent with a model in
which available visual information is continuously in-
tegrated in an optimal manner throughout movement
to estimate hand state and generate corrective adjust-
ments to movements. Apparent differences in subjects’
sensitivity to direction and distance perturbations are
well accounted for by differences in the sensory noise
that corrupts position and speed estimates in the

principal direction of movement versus in the per-
pendicular direction.

Appendix A

For comparison to human data, we implemented a
feedback control model that optimally integrates noisy
position and velocity feedback signals over time, and
simulated the performance of the model for the con-
ditions of our experiments. The model was an ex-
panded version of the feedback control system
proposed by Hoff and Arbib (1993), in which the
sensory front-end is augmented with a Kalman filter
for integrating noisy sensory feedback with ongoing
estimates of hand state. We modeled the dynamics of
the hand as a linear system driven by a jerk signal
(derivative of acceleration) that satisfies the minimum
jerk principle, as proposed by Hoff and Arbib. The
system was corrupted by two independent sources of
added Gaussian noise, one with standard deviation
proportional to the jerk signal and the other with a
constant standard deviation. The general form for the
system dynamics is given by

X h
tþ1 ¼ AX h

tþ1 þ ut þ
X

i

ei;tCiut þ nt ð3Þ

where the state vector represents the two-dimensional
position, speed and acceleration of the hand in a co-
ordinate frame aligned with the table, as well as the
two-dimensional position of the target on the table
(we did not simulate the small movements in the
perpendicular direction that subjects show). The x-axis
was taken to be in the direction of the target from the
original hand position and the y-axis was defined as
the perpendicular direction within the plane of the
table. �i,t is a standard normal random variable, Ct

represents the proportional motor noise, and ni is a
constant noise source with covariance matrix Sn. The
state vector is given by

X h
t ¼ xt; x0t; x

00
t ; yt; y0t; y

00
t ; Tx; Ty

� �T ð4Þ

where Tx and Ty represent the position of the target.
The state transition matrix, A, is given by

A ¼

1 @ 0 0 0 0 0 0

0 1 @ 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 @ 0 0 0

0 0 0 0 1 @ 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

2
66666666664

3
77777777775

; ð5Þ

where ¶ is the time step used to iterate the update
equations in the simulations. Given an estimate of the
state of the system at time t, the minimum jerk control
law is given by (Hoff and Arbib 1993)
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ut¼

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
�60

D�t@ð Þ3
�36

D�t@ð Þ2
�9

D�t@ð Þ 0 0 0 60
D�t@ð Þ3 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 �60

D�t@ð Þ3
�36

D�t@ð Þ2
�9

D�t@ð Þ
60

D�t@ð Þ3

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

2

66666666664

3

77777777775

X̂

ð6Þ

In order to realistically model the visual feedback
available to the human visual-motor system, we had to
account for two properties of the visual feedback. First,
the uncertainty in both position and motion informa-
tion, as reflected in discrimination thresholds, varies as a
function of the state of the hand. Positional acuity is
inversely proportional to eccentricity; thus it is well
modeled by a noise source with a standard deviation
proportional to the position of the hand in retinal co-
ordinates (Levi et al. 1988; Burbeck and Yap 1990;
Whitaker and Latham 1997). Similarly, motion acuity,
in both speed and direction, varies with target speed.
Motion discrimination thresholds are fitted well by a
model in which the velocity components in both the
direction of motion and the perpendicular direction are
corrupted by a mixture of proportional noise, whose
standard deviation is proportional to the speed of the
motion, and a constant noise component (Orban et al.
1985; De Bruyn and Orban 1988). Second, estimates of
position and velocity are effectively low-pass filtered by
the visual system. Psychophysical sensitivity to periodic
modulations in both speed and direction of motion is
fitted well by a model in which velocity estimates are
filtered through a second-order filter with a time con-
stant of 40 ms (Werkhoven et al. 1992). While similar
estimates are not available in the literature for position
estimates, we assumed that the same filter applies to
position estimates.

In order to incorporate the state-dependent nature of
visual noise and the temporal filtering of visual feed-
back, we found it convenient to incorporate the sensory
parameters in an augmented state vector along with the
hand and target state parameters. The full state vector
was

Xt ¼ ½X hT
t ;X sT

t �
T ð7Þ

where the sensory sub-vector is augmented by dummy
variables used to implement the second-order filter,

X s
t ¼ ~vt;~v0t; ~wt; ~w0t; vt; v0t;wt;w0t

� �
ð8Þ

with update equations

~vtþ1 ¼ e�d=s~vt þ xt; ~v0tþ1 ¼ e�d=s~v0t þ x0t;
vtþ1 ¼ e�d=s~vt þ e�d=svt; v0tþ1 ¼ e�d=s~v0t þ e�d=sv0t

h

t

ð9Þ

Similar equations apply to the w parameters which re-
present the y-position and the y-component of velocity.

¶ is the time step used in the simulation to iterate the
update equations and s=40 ms is the time constant of
the filter. The update equations in Eq. 9 are modeled by
appropriate entries in an augmented update matrix A.

In order to accommodate the state-dependent noise
in the sensory signal, the update equation for the full
system takes the form

Xtþ1 ¼ AXt þ LtX̂t þ
X

i

ei;tCiLtX̂t þ
X

i

giDiXt þ nt

ð10Þ

The second term is the control law given in Eq. 6
above, the third term represents the signal-dependent
motor noise, and the fourth term represents the state-
dependent noise used to model state-dependent
uncertainty in the sensory estimates of position and
velocity.

The sensory signal is modeled by the equation

Zt ¼ HXt þ xt ð11Þ

where H is a matrix that simply peels off the temporally-
filtered, noisy estimates of position and velocity
(vt,vt’,wt,wt’), and xt is a constant noise source with
covariance matrix Sx.

The optimal, adaptive Kalman filter for this system is
given by the time update equations

X̂tþ1 ¼ ðAþ LtÞX̂t þ KtðZt �HX̂tÞ ð12Þ

where the Kalman gain matrix, Kt, is given by

Kt ¼ ARtH
T ðHRtH

T þ Rx
t Þ
�1 ð13Þ

St is the error covariance matrix for the state estimate
at time t. The error covariance matrix is updated
according to the time update equation

¼Rtþ1ARtA
T � KtHRtA

T þ
X

i

CiLtX̂tX̂ T
t L

T
t C

T
i

þ
X

i

Di Rt � K0tHRtð ÞDT
i

þ
X

i

Di X̂t þ K0tðZt �HX̂tÞ
� �

� X̂t þ K0tðZt �HX̂tÞ
� �T

DT
i þ Rn; ð14Þ

where K’ is the modified Kalman gain (used to predict
the state of the system at time t rather than to predict the
state of the system at time t+1), given by

K0t ¼ RtH
T HRtH

T þ Rx
t

� ��1
: ð15Þ

The Kalman filter runs delayed by D ms, so the de-
layed state estimates are propagated forward through
the state update equations using the remembered values
of the motor commands, ut, to arrive at an estimate for
the current hand state.

In order to simulate the model, we had to set
parameters for the visual noise in position and velocity.
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We chose values that fit with observed psychophysical
data, as described below. We fit the motor noise
parameters and the sensorimotor delay by hand to
subjects’ data.

Position noise

We used results from two-point interval discrimination
studies to set the parameters for eccentricity-dependent
visual noise in position estimates (Burbeck 1987; Bur-
beck and Yap 1990; Whitaker and Latham 1997). The
data from these studies is consistent with a Weber
fraction of 0.05 in position estimates beyond several
degrees away from the fovea for stimuli viewed for 250
ms. This value is invariant to a large number of prop-
erties of the target (Burbeck 1987; Toet and Konederink
1988). Since subjects’ finger movements were almost
entirely along the axis between the starting position and
the target (the x-axis), we modeled the standard devia-
tion of the eccentricity-dependent noise in subjects’ vi-
sual estimates of hand position (for 250 ms viewing) in
tabletop coordinates to be

rx ¼ 0:05xþ 0:05

ry ¼
ffiffiffi
2
p
ð0:05xþ 0:05Þ

ð16Þ

where the �2 factor in the y-direction corrects for per-
spective foreshortening (subjects viewed the tabletop
from an angle of �45�). The constant additive term
models a minimum standard deviation in position esti-
mates of 0.5 mm in the center of the fovea (3¢ arc), but
has little impact on the behavior of the model, since the
hand is outside the fovea for most of the movement. We
used a small angle approximation in treating the posi-
tion in tabletop coordinates as proportional to visual
angle.

Since position estimates are necessarily derived from
temporally blurred images of the finger, the uncertainty
in position estimates should scale with the velocity of the
finger. This is accounted for by adding a third term to
the position noise model,

rx ¼ 0:05xþ 0:05þ kvx

ry ¼
ffiffiffi
2
p

0:05xþ 0:05ð Þ þ kvy

ð17Þ

k is determined by the time constant for the motion
blurring effect. For the simulations described in the pa-
per, we assumed a time constant of 40 ms, equivalent to
the time constant of the low-pass filter used to model
temporal blurring of the position and velocity signals.
For simplicity, we assumed uniform blurring over a 40
ms window. This leads to a constant, k=0.00116 s (a
uniform distribution over the interval [0,x] has a stan-
dard deviation s=0.29x). In order to parameterize the
noise model, we multiplied the standard deviations by a
factor of 10.2 so that a sensory version of the Kalman
filter run on stimuli for 250 ms gave estimates with the
standard deviations listed above (thus matching the

static position acuity thresholds measured psychophy-
sically).

The constants of proportionality in Eq. 17 determine
the appropriate elements of the Di matrices that model
the state-dependent noise in position. The constant noise
term is the standard deviation of the corresponding
elements of the constant noise vector, n. The noise in
visual estimates of target position was modeled as being
constant, since the target is stationary and assumed to be
fixated during movement. We assumed a standard de-
viation of 0.5 mm (equivalent to a visual angle of 3¢ of
arc).

Modeling motion noise

Results from speed and direction discrimination studies
show a somewhat more complicated behavior than po-
sition perception. Up to speeds of 64 deg/s (close to the
peak velocity measured in our experiments), Weber
fractions for speed decrease to a minimum of 0.08 for
viewing durations of 500 ms (Mateef et al. 2000). These
results are consistent across a number of studies and
types of stimuli (Orban et al. 1985; De Bruyn and Orban
1988). Subjects’ threshold curves are fitted well by a
mixed constant and proportional noise model in which
the standard deviation of visual estimates of speed is
given by

rvx ¼ 2 deg=sþ 0:08vx ð18Þ

where we have assumed that the speed of motion is
equivalent to its velocity along the x-axis (approximately
true for most of the duration of subjects’ movements).
Using a small angle approximation to convert this to
units of distance along the tabletop (assuming an aver-
age viewing distance of 52 cm) gives

rvx ¼ 1:8 cm=sþ 0:08vx ð19Þ

Direction discrimination thresholds behave in a
qualitatively similar fashion to speed discrimination
thresholds, but when converted into units of speed in
a direction perpendicular to the path of motion,
thresholds are lower by more than a factor of eight.
For the standard deviation of velocity estimates
perpendicular to the direction of motion, therefore, we
have

rvy ¼ 0:25 deg=sþ 0:01vx ð20Þ

Converting this to tabletop coordinates and adjusting
for perspective foreshortening, we have for the standard
deviation

rvy ¼ 0:35 cm=sþ 0:014vx ð21Þ

Again, we approximated the principle direction of
motion to be in the x-direction. We scaled the para-
meters by a constant factor of 14.3 so that a sensory
version of the Kalman filter run on static stimuli for 500
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ms would give velocity estimates with the standard de-
viations listed above. The constants of proportionality in
Eqs. 20 and 21 determine the appropriate diagonal ele-
ments of the Di matrices that model the state-dependent
noise in position. The constant noise terms are the
standard deviations of the corresponding elements of the
constant noise vector, n.

Other model parameters

The motor noise used to fit the human data was set to

ru ¼ 1:5 cm=s2 þ 0:05u ð22Þ

The coefficient of proportionality (0.05) for the pro-
portional noise determined the diagonal elements of the
C1 and C2 matrices corresponding to the motor com-
mands (the jerk signals in x and y), while the constant
noise term determined the standard deviation of the
same elements of the constant noise vector, n. We si-
mulated the model with a sensorimotor delay of 115 ms,
for a duration of 750 ms, iterating the system with a time
step of ¶=2 ms. Perturbations were induced at t=214
ms for the early perturbation and t=326 ms for the mid-
reach perturbation. The duration of movement was set
based on estimates for the average time that subjects’
fingers came to rest for the slow movement conditions,
and the time of perturbation was set based on the
average time after the start of movement that subjects’
fingers reached a quarter or half of the distance to the
target.
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