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Simple Learned Weighted Sums of Inferior Temporal
Neuronal Firing Rates Accurately Predict Human Core
Object Recognition Performance
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To go beyond qualitative models of the biological substrate of object recognition, we ask: can a single ventral stream neuronal linking
hypothesis quantitatively account for core object recognition performance over a broad range of tasks? We measured human perfor-
mance in 64 object recognition tests using thousands of challenging images that explore shape similarity and identity preserving object
variation. We then used multielectrode arrays to measure neuronal population responses to those same images in visual areas V4 and
inferior temporal (IT) cortex of monkeys and simulated V1 population responses. We tested leading candidate linking hypotheses and
control hypotheses, each postulating how ventral stream neuronal responses underlie object recognition behavior. Specifically, for each
hypothesis, we computed the predicted performance on the 64 tests and compared it with the measured pattern of human performance.
All tested hypotheses based on low- and mid-level visually evoked activity (pixels, V1, and V4) were very poor predictors of the human
behavioral pattern. However, simple learned weighted sums of distributed average IT firing rates exactly predicted the behavioral
pattern. More elaborate linking hypotheses relying on IT trial-by-trial correlational structure, finer IT temporal codes, or ones that
strictly respect the known spatial substructures of IT (“face patches”) did not improve predictive power. Although these results do not
reject those more elaborate hypotheses, they suggest a simple, sufficient quantitative model: each object recognition task is learned from
the spatially distributed mean firing rates (100 ms) of �60,000 IT neurons and is executed as a simple weighted sum of those firing rates.
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Introduction
The detailed mechanisms of how the brain accomplishes view-
point invariant object recognition remain largely unknown, but
lesion studies point to the ventral stream [V1–V2–V4 –inferior
temporal (IT) cortex] as being critical to this behavior (Holmes

and Gross, 1984; Biederman et al., 1997). Previous ventral stream
studies have focused on understanding the nonlinear transfor-
mations between the retina and neural responses (Gallant et al.,
1996; Hegdé and Van Essen, 2000; Pasupathy and Connor, 2002;
Connor et al., 2007; Freeman et al., 2013), including evidence that
IT is better at recognition than early representations (Hung et al.,
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Significance Statement

We sought to go beyond qualitative models of visual object recognition and determine whether a single neuronal linking hypoth-
esis can quantitatively account for core object recognition behavior. To achieve this, we designed a database of images for
evaluating object recognition performance. We used multielectrode arrays to characterize hundreds of neurons in the visual
ventral stream of nonhuman primates and measured the object recognition performance of �100 human observers. Remarkably,
we found that simple learned weighted sums of firing rates of neurons in monkey inferior temporal (IT) cortex accurately
predicted human performance. Although previous work led us to expect that IT would outperform V4, we were surprised by the
quantitative precision with which simple IT-based linking hypotheses accounted for human behavior.
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2005; Rust and DiCarlo, 2010) and that IT responses are partially
correlated with perceptual report (Sheinberg and Logothetis,
1997; Op de Beeck et al., 2001; Kriegeskorte et al., 2008). Al-
though such studies tell us much about visual processing and
support the belief that the ventral stream is critical to object rep-
resentation, they do not present a single linking hypothesis that is
quantitatively sufficient to explain how ventral stream neural
activity accounts for object recognition performance over all
recognition tests. This study aimed to provide that link for a
subdomain of object recognition, core object recognition
(DiCarlo et al., 2012), in which images are presented for 100 ms in
the central 10° of the visual field.

Our strategy was as follows: (1) develop a stringent behav-
ioral assay, (2) obtain sufficient neuronal sampling, (3) imple-
ment specific hypotheses that each predict perceptual report
from neural activity, and (4) compare those predictions with
actual perceptual reports. We addressed each challenge as
follows.

We characterized human core object recognition perfor-
mance using large image sets that explore shape similarity and
identity preserving image variation and assumed that monkey
and human patterns of performance are equivalent (see Discus-
sion). The 64 recognition tests that we used set a high bar because
performance on them varies widely and is not explained by low-
level visual representations.

We measured neuronal responses in visual area V4 and along
IT cortex (Felleman and Van Essen, 1991) using the same pool of
images used in the behavioral testing. We relied on multielec-
trode arrays to monitor hundreds of sites, each tested with mul-
tiple repeats of 5760 images. Our measured neuronal population
was adequate for quantifying uncertainty with respect to neuro-
nal sampling and allowed us to extrapolate to larger numbers of
neurons.

We tested specific quantitative versions of previously pro-
posed hypothetical links between neuronal activity and recogni-
tion behavior, as well as control hypotheses. Each neuronal
linking hypothesis is a postulated mechanism of how down-
stream neurons integrate ventral stream activity to make a deci-
sion about which object label the observer will report in each
image (Connor et al., 1990; Parker and Newsome, 1998; Johnson
et al., 2002).

Ideally, a sufficient linking hypothesis should predict the per-
ceptual report for each and every image. Here, we focused on
predicting the mean human recognition accuracy (d�) for all ob-
ject recognition tests, with each test containing many images.
Specifically, we compared the predicted pattern of d�s with that
measured in humans on the same 64 tests (which could lead to a
range of outcomes; Fig. 1b).

We report here that simple, learned weighted sums of ran-
domly selected average neuronal responses spatially distributed
over monkey IT (referred to here as “LaWS of RAD IT”) are able
to meet that high bar (Fig. 1b, top right). In contrast, other link-
ing hypotheses based on neuronal responses from IT or other
visual areas fall short. Although this is compatible with previous
ideas about IT’s role in object recognition (Tanaka, 1993; Kobat-
ake and Tanaka, 1994; Tanaka, 1997), it is, to our knowledge, the
first demonstration that a single, specific neural linking hypoth-
esis is quantitatively sufficient to explain behavior over a wide
range of core object recognition tasks.

Materials and Methods
Sixty-four-object recognition tests
To characterize human object recognition abilities (which we assume are
similar to those of monkeys; see Discussion), we designed a behavioral
assessment tool with images and tasks that span the range of human
performance in core object recognition. To explore shape similarity, we

Human d´

P
re

di
ct

ed
 d

´

Low consistency High consistency

M
at

ch
ed

 p
er

fo
rm

an
ce

 
Lo

w
 p

er
fo

rm
an

ce
 

 Test

Objects

n = 64 objects 

Rendered
object

Test image

View parameters
(position, scale, pose, ...)

Natural scenes

3D model

Image generation Tasks Possible outcomesa b

Animals vs. not animals

Boats vs. not boats

Car 1 vs. not car 1

Car 2 vs. not car 2

Face 1 vs. not face 1

Face 2 vs. not face 2

“Sufficient”
hypothesis

Figure 1. a, Object recognition tasks. To explore a natural distribution of shape similarity, we started with eight basic-level object categories and picked eight exemplars per category resulting
in a database of 64 3D object models. To explore identity preserving image variation, we used ray-tracing algorithms to render 2D images of the 3D models while varying position, size, and pose
concomitantly. In each image, six parameters (horizontal and vertical position, size, rotation around the three cardinal axes) were randomly picked from predetermined ranges (see Materials and
Methods). The object was then added to a randomly chosen background. All test images were achromatic. Human observers performed all tasks using an 8-way approach (i.e., see one image, choose
among eight; see Materials and Methods). Two kinds of object recognition tasks were tested: basic-level categorization (e.g., “car” vs “not car”) and subordinate identification (e.g., “car 1” vs “not
car 1”). We characterized performance for each of eight binary tasks (e.g., “animals” vs “not animals,” “boats” vs “not boats,” etc.) in each 8-way recognition block at two to three levels of variation,
resulting in 64 behavioral tests (64 d� values). b, Possible outcomes for each tested linking hypothesis. We defined multiple candidate neuronal and computational linking hypotheses (Fig. 5),
determined the predicted (i.e., cross-validated) object recognition accuracy (d�) of each linking hypothesis on the same 64 tests (y-axis in each scatter plot), and compared those results with the
measured human d� (x-axis in each scatter plot). A priori, each tested linking hypothesis could produce at least four possible types of outcomes. The pattern of predicted d� might be unrelated to or
strongly related to human d� (left vs right scatter plots). We quantified that by computing consistency, the correlation between predicted d�and actual human d�across all 64 object recognition tests.
Average predicted d� might be low or matched to human d� (bottom vs top scatter plots). We quantified performance by computing the median ratio of predicted d� and actual human d�, across
all 64 object recognition tests. For brevity, we will refer to these two metrics as consistency and performance from here on. Our goal was to find at least one “sufficient” code: a linking hypothesis that
perfectly predicted the human d� results on all object recognition tests (top right scatter plot).
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used objects that can be parsed into basic-level categories with multiple
exemplars per category, allowing us to test human performance on
coarse and fine discriminations. To explore identity preserving object
transformations, the “invariance problem,” a hallmark of object recog-
nition (DiCarlo and Cox, 2007; DiCarlo et al., 2012), we used ray-tracing
software to photorealistically render each object while parametrically
varying its position, size, and pose. Finally, to insure that the tasks were
challenging for current computer vision algorithms, we placed each ob-
ject on a randomly chosen natural background that was uncorrelated
with its identity (Pinto et al., 2008). To focus on the so-called “core object
recognition,” that is, recognition during a single, natural viewing fixation
(DiCarlo et al., 2012), each test image was presented as an 8° patch
directly at the center of gaze for 100 ms. The culmination of our effort was
a set of 64 core object recognition tests (24 noun labels, each at 2 or 3
levels of variation; see Fig. 3) that constitutes a reasoned attempt at ex-
ploring the power of human object recognition. We do not claim this to
be an exhaustive characterization of human object recognition, but
rather an initial operational definition that can be sharpened and ex-
tended to explore other aspects of object recognition and shape discrim-
ination (see Discussion).

Image generation
High-quality images of single objects were generated using free ray-
tracing software (http://www.povray.org). Each image consisted of
a 2D projection of a 3D model ( purchased from Dosch Design and
TurboSquid) added to a random background. No two images had the
same background. In a few cases, the background was by chance corre-
lated with the object ( plane on a sky background), but mostly they were
uncorrelated, with the background on average giving no information
about the identity of the object.

This general approach allowed us to create a database of 5760 images
based on 64 objects. The objects were chosen based on eight “basic-level”
categories (animals, boats, cars, chairs, faces, fruits, planes, tables), with
eight exemplars per category (BMW, Z3, Ford, etc.). By varying six view-
ing parameters, we explored three types of identity while preserving ob-
ject variation, position (x and y), rotation (x, y, and z), and size. The
parameters were varied concomitantly and each was picked randomly
from a uniform range that corresponded to one of three levels of varia-
tion (low, medium, and high). For the low variation image set, the pa-
rameters were fixed and picked to correspond to a fixed view and size of
each object centered on the background. For example, cars were pre-
sented in their side view, whereas faces were presented with a frontal
view. However, we did vary the backgrounds so that each object was
presented on 10 randomly picked backgrounds, resulting in a total of 640
images. For medium and high variation, we generated 40 images per
object, resulting in 2560 images per variation (total 5760 � 640 � 2 �
2560). Each image was rendered with a pooled random sample of the six
parameters and presented on a randomly picked background. The pa-
rameters of medium variation had the following ranges for x- and
y-position, pose (all 3 axes treated independently), and size: [�1.2°,
1.2°], [�2.4°, 2.4°], [�45°, 45°], and [�1/1.3, �1.3]. Those for high
variation were [�2.4°, 2.4°], [�4.8°, 4.8°], [�90°, 90°], and
[�1/1.6, �1.6]. All images were achromatic with a native resolution of
256 � 256 pixels (see Fig. 3 for example images).

Human psychophysics and analysis
All human studies were done in accordance with the Massachusetts In-
stitute of Technology Committee on the Use of Humans as Experimental
Subjects. A total of 104 observers participated in 1 of 3 visual task sets: an
8-way classification of images of 8 different cars, an 8-way classification
of images of 8 different faces, or an 8-way categorization of images of
objects from 8 different basic-level categories. Observers completed these
30 – 45 min tasks through Amazon’s Mechanical Turk, an online plat-
form in which subjects can complete experiments for a small payment.
All of the results were confirmed in the laboratory setting with controlled
viewing conditions and virtually identical results were obtained in the
laboratory and online populations (Pearson correlation � 0.94 	 0.01).

Each trial started with a central fixation point that lasted for 500 ms,
after which an image appeared at the center of the screen for 100 ms. After

a 300 ms delay, the observer was prompted to click one of eight “re-
sponse” images that matched the identity or category of the stimulus
image. The image presentation time was chosen based on results showing
that core object recognition performance improves quickly over time
such that accuracy for a 100 ms presentation time is within 92% of
performance at 2 s (see Fig. S2 in Cadieu et al., 2014). Results were very
similar, with slightly shorter (50 ms) or longer (200 ms) viewing dura-
tion. To enforce the need for view tolerant “object” recognition (rather
than image matching), each response image displayed a single object
from a canonical view without background. After clicking a response
image, the subject was given another fixation point before the next stim-
ulus appeared. No feedback was given. The “response” images remained
constant throughout a block of trials that corresponded to one set of tasks
(i.e., an 8-way categorization block contained eight embedded binary
tasks).

Human object recognition performance was determined by comput-
ing a d� for each binary task. Specifically, for a given 8-way task set and
variation level (e.g., basic-level categorization at hard variation or car
subordinate identification at medium variation), we constructed the raw
8 � 8 confusion matrix for each individual observer. Then, we computed
the population confusion matrix by taking the sum of these raw confu-
sion matrices across individuals. From the population confusion matrix,
we computed the d� for each task of recognizing one target class against
seven distractor classes (i.e., the “binary” task). We obtained 72 d� mea-
surements by performing this procedure over all combinations of 3 task
sets and 3 variation levels (3 task sets � 8 targets per task set � 3 levels of
variation). We excluded face identification at high variation because
none of the eight d�s were statistically distinguishable from random
guessing, leaving a total of 64 behavioral tests for the main results pre-
sented. Inclusion of these eight d�s had no significant effect on the results.

Typically, each human observer only participated in one of the three
test sets (basic-level categorization and car and face subordinate-level
identification test set; four of 104 subjects participated in both the car and
face test sets). For the 8-way basic-level categorization test set, each ob-
server (n � 29) judged a subset of 400 randomly sampled images at each
variation level (400 of 640 for low variation and 400 of 2560 for medium
and high variation levels). For the 8-way car (n � 39) and 8-way face (n �
40) identification test sets, each observer saw all 80 images at the low
variation level and all 320 images at both medium and high variation
levels. The presentation of images was randomized and counterbalanced
so that the number of presentations of each class was approximately the
same in a given variation level. Variation levels were presented in succes-
sively harder blocks. Observers would see a full set of low variation
(“easy”) images before moving to medium and then high variation (“dif-
ficult”) images. On a few additional observers (n � 10), we interleaved
the different test sets (basic categorization, car and face identification at
low variation) and saw no significant effect of interleaving on the pooled
population d�s (the Pearson correlation coefficient between blocked and
interleaved was 0.903 	 0.057; see the next paragraph for the procedures
to compute the pooled population d�s).

Although no single observer judged all the images in our image data-
base, our pool of human observers did. To compute the pooled popula-
tion human d�s, we started with each observer’s data and computed a
8 � 8 confusion matrix for each variation level. We then constructed the
population-confusion matrix for each test set and variation level (e.g.,
8-way low variation car identification) by summing across individual
subject’s confusion matrices. We used standard signal detection theory to
compute population d�s from the pooled population confusion matrix
(d� � Z(TPR) � Z(FPR), where Z is the inverse of the cumulative Gauss-
ian distribution function and TPR and FPR are true-positive and false-
positive rates, respectively).

The 64 human population d�s were the benchmark to which we com-
pared our candidate linking hypotheses. To capture the four possibilities
for such a comparison (Fig. 1b), we defined two metrics, consistency and
relative performance. To quantify the match between the pattern of pre-
dicted and human d�s, we computed consistency, the rank correlation
between predicted d� and actual human d� across all 64 object recogni-
tion tests. To quantify the match on average between predicted and actual
human d�, we computed relative performance, the median ratio of pre-
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dicted d�, and actual human d� across all 64 object recognition tests. To
estimate the human subject-to-subject variability for consistency and
performance, we selected one subject from each test set and combined
the test performance of the three test sets to produce 64 “individual”
human d�s (Fig. 3b). We repeated this procedure multiple times to con-
struct an ensemble of individual human subjects. We used this ensemble
to compute the median consistency (Spearman rank correlation coeffi-
cient) and performance (1 by definition) between individual human d�s
and pooled population human d�s and the 68% confidence intervals
around that median.

To investigate the effect of image subsampling on our results, we com-
puted the sampling induced SE of the pooled population d�s on the
basic-level categorization test set. The SE was minimal (median � 2.1%
of corresponding d�) because the entire image set was presented multiple

times to our large pool of observers (n � 29).
Assuming the effect of this error to be additive
and independent, the predicted consistencies
of a linking hypothesis would be increased by
�0.15% if each of our observers judged the
entire 5760 image in the basic-level categoriza-
tion test set.

We also generated two predictions on how
consistency might improve if we had collected
human data on all images. If we assume that the
human-to-human consistency will eventually
be 1 as the number of presented images in-
creases to infinity, the Spearman–Brown pre-
diction formula allows us to estimate the
human-to-human consistency and its confi-
dence interval (CI) as if we had collected hu-
man data on all images in our image set. This
assumption resulted in an increase of only
�1.9% to the human-to-human consistency
and the CI results presented in the main text. If
we assumed a more reasonable asymptote of
0.95, the increase was only �0.59%. In combi-
nation, the above two analyses suggest that im-
age subsampling in the human basic-level
categorization test set had no significant effect
on our main results.

Animals, surgeries, and training
The nonhuman subjects in this experiment
were two adult male rhesus monkeys (Macaca
mulatta, 7 and 9 kg). Before training, we surgi-
cally implanted each monkey with a head post
under aseptic conditions. We monitored eye
movement using video eye tracking (SR Re-
search EyeLink II). Using operant condition-
ing and juice reward, our 2 subjects were
trained to fixate a central red square (0.25°)
within a square fixation window that ranged
from 	1° to 	2.5° for up to 4 s. Outside of
maintaining fixation, no additional attempt
was made at controlling spatial or feature
attention.

We recorded neural activity using 10 � 10
microelectrode arrays (Blackrock Microsys-
tems). A total of 96 electrodes were connected;
the corners were not connected. Each electrode
was 1.5 mm long and the distance between ad-
jacent electrodes was 400 �m. Before record-
ing, we implanted each monkey with three
arrays in the left cerebral hemisphere, one array
in V4, and two arrays in IT, as shown in Figure
2b. Array placement was guided by the sulcus
pattern, which was visible during surgery. The
electrodes were accessed through a percutane-
ous connector that allowed simultaneous re-
cording from all 96 electrodes from each array

(three connectors on each animal). All behavioral training and testing
was performed using standard operant conditioning (juice reward), head
stabilization, and real-time video eye tracking. All surgical and animal
procedures were performed in accordance with National Institutes of
Health guidelines and the Massachusetts Institute of Technology Com-
mittee on Animal Care.

Monkey behavior, image presentation, and recording procedures
Our goal was to assess neuronal activity patterns that are automatically
evoked by presenting a visual image to an awake, alert visual system.
Therefore, the monkey’s only task was to maintain gaze on a fixation dot
in the middle of a screen for 2– 4 s as images were serially presented at the
center of gaze. The monkeys initiated each trial by fixating a central red
square. After initiating fixation (160 ms), a sequence of 5–10 images was
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Figure 2. Neural responses. a, We used multielectrode arrays to record neural activity from two stages of the ventral visual
stream [V4 and IT (PIT � CIT � AIT)] of alert rhesus macaque monkeys. We recorded neural responses to the same images used in
our human psychophysical testing. Each image was presented multiple times (typically�50 repeats, minimum 28) using standard
rapid visual stimulus presentation (RSVP). Each stimulus was presented for 100 ms (black horizontal bar) with 100 ms of neutral
gray background interleaved between images. Although some of our neural sites represented single neurons, the majority of our
responses were multiunit (see Fig. 8a). The rasters for repeated image presentations were then tallied within a defined time
window (e.g., 70 –170 ms after image onset, red rectangle, black vertical line indicated stimulus onset) to compute an average
firing rate in impulses per second. The mean evoked firing rate is an entry in a response vector (green vertical vector, green
saturation is proportional to response magnitude) that summarizes the population response to a single image. The concatenation
of the response vectors produces a response matrix representing the population neural response of a particular visual area to our
database of 5760 images. We parsed our neural population into V4 and IT, treating the various parts of IT as one population. We
recorded from 168 neural sites in IT and 128 neural sites in V4. b, Approximate placement of the arrays in V4 (green shaded areas)
and IT (blue shaded area) is illustrated by the black squares on two line drawings representing the brains of our two subjects.
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presented for 100 ms each with 100 ms of blank screen in between. Each
image was presented at the center of gaze and subtended 8° of the visual
field with a resolution of 32 pixels/° and a pixel luminance range of
0.3–300 cd/m 2. The images were presented in a randomized order and
each image was presented for at least 28 repetitions (typically �50). We
recorded neural responses for 5760 images drawn from the same pool
that we used in our human psychophysical testing, with nearly identical
visual presentation parameters.

During each recording session, band-pass filtered (250 Hz to 7.5 kHz)
neural activity was monitored continuously and sampled at 30 kHz using
commercially available hardware (Blackrock Microsystems). The major-
ity of the data presented here were based on multiunit activity [MUA; see
Fig. 8a for single unit activity (SUA) analysis]. A multiunit spike event
was defined as the threshold crossing when voltage (falling edge) deviated
by less than three times the root mean squared error of baseline voltage.
Threshold was typically set once during the beginning of a recording
session while the animal was viewing a blank gray screen. Of 576 im-
planted electrodes (three arrays � 96 electrodes � two monkeys), we
focused on the 296 [128 V4 and 168 across posterior (PIT), central (CIT),
and anterior (AIT) inferior temporal cortex)] most visually driven neural
sites. To pick these sites, we estimated evoked visual response using an
independent set of images (typically 795 images with a minimum of 350
images). Visual drive was then defined as the cross-validated average of
the top 10% evoked image responses (d� between neural response to
image versus blank). Receptive fields were mapped with briefly flashed bars
and the expected contralateral receptive field biases were observed in V4.

We recorded all spike time events at all neural sites. As described in the
text, we defined different neuronal codes by considering spike counts in
different time windows relative to image presentation. Our array place-
ments allowed us to sample neural sites from V4 and different parts of IT.
For most analyses, we grouped all sites into either a V4 or an IT popula-
tion. The response of all neural sites in a population (V4 or IT) to an
image formed a vector; the image vectors in turn formed a matrix (de-
scribed further below) summarizing the population response to all 5760
tested images (Fig. 2a). To fill a response matrix and its multiple repeti-
tions, neural responses were collected over multiple days [68 d for Mon-
key 1 (M1) and 65 d for Monkey 2 (M2); stability and its impact on the
results is discussed below].

Construction of specific, candidate-linking hypotheses and their
predicted behavioral performance
A neuronal linking hypothesis is a formal rule for converting neural
activity to overt behavior (e.g., a choice of object class/label). Here, each
candidate-linking hypothesis learns a neural code that converts neural
responses into a prediction of the type of object that is present in the
world (as conveyed by the visual image). Defining each linking hypoth-
esis requires the specification of two components. The first is a “response
matrix” of neural (or, in some cases, computer-generated) responses to
each image. This specification includes which neurons are included (e.g.,
responses of 100 spatially distributed IT neurons), as well as a specifica-
tion of the relevant aspects of that neural activity (e.g., time window,
mean rate). The second component is a specific type of presumed down-
stream neural decoder, along with a training procedure for the decoder
that specifies how to estimate its final learned state. After specifying these
two components for each linking hypothesis, we computed its predicted
behavioral performance for each of the 64 object recognition tests using
independent test images.

Response matrix
Neural response matrix. For neuronal linking hypotheses, the response
matrix is a N � I matrix in which N is the number of neuronal sites
considered to be part of the linking hypothesis and I is the total number
of images tested. Because our image set was very large (N � 5760), we
collected neural responses piecemeal over multiple days. Each entry of
the matrix is the “response” of a particular neural site to a particular
image. We considered V4 and IT separately. For each visual area, the
“response” was computed as follows. First, we counted the number of
spike events elicited by each image in each neural site over a given time
window. For example, one possibility is the time window 70 –170 ms

after image onset, but many other possibilities exist and we explored
some of those. From this response, we subtracted the neural site’s back-
ground response for that day (mean response to “blank” images). Finally,
the evoked response of each neural site was normalized by the site’s
sample SD (over all tested images that day). This normalization was done
to compensate for day-to-day variation and had no effect on pattern of
performance and a small effect on absolute performance (�5% incre-
ment). The full matrix was collected multiple times (typically �50 repe-
titions, minimum 28) and averaged across all repetitions.

Feature response matrix. We also constructed linking hypotheses in
which the “responses” were simulated rather than being directly mea-
sured from neural activity. These included pixels, V1-like model neu-
rons, and several popular algorithms in the computer vision community.
These algorithms each take an image and produce the values of a fixed
number of “features” (operators on the image). For each algorithm, we
computed the response of all of its feature outputs for each of our images.
We treated these feature outputs as being analogous to neuronal pop-
ulations and thus constructed a response matrix for each algorithm.
We explored pixel (n � �16 k features that have comparable visual
drivenness as neuronal features), V1-like (n � �76 k features, again,
visually driven), PHOG (n � �3 k visually driven features), SIFT
(n � �59 k visually driven features), an HMAX variant called sparse
localized features (SLFs; n � �4 k visually driven features), and an L3
algorithm (n � �4 k visually driven features) (Pinto et al., 2011)
(details discussed below).

Downstream neuronal decoders and training procedures
To estimate what information downstream neurons could easily “read”
from a given neural population, we used simple, biologically plausible
linear decoders (i.e., linear classifiers, linear discriminants). Such decod-
ers are simple in that they can perform binary classifications by comput-
ing weighted sums (each weight is analogous to the strength of synapse)
of input features and separate the outputs based on a decision boundary
(analogous to a neuron’s spiking threshold). The decoders differ in how
the optimal weights and decision boundary are learned. We mainly ex-
plored two types of linear decoders, support vector machines (SVMs)
and correlation-based decoders (CCs). The SVM learning model gener-
ates a decoder with a decision boundary that is optimized to best separate
images of the target object from images of the distractor objects. The
optimization is done under a regularization constraint that limits the
complexity of the boundary. We used LibSVM software package (Chang
and Lin, 2011) with the linear C-SVC algorithm and L2 regularization
(the regularization constant C was set to 5 � 10 4 except for the linking
hypotheses in Fig. 5, c–e, where the C was optimized by a 3-fold cross-
validation on training data). The CC learning model (Meyers et al., 2008)
produces a decoder using the target class center estimated by computing
the mean across the target images in the training data. The resulting
decoder determines the test image’s membership by computing the Pear-
son correlation coefficient between the target class center and the image.
Correlation-based decoders are simpler than SVMs in two regards: (1)
they are determined by class centers in the training data without mathe-
matical optimization and (2) they do not have free parameters that are
unrelated to the data that affect the optimization procedure (Meyers et
al., 2008). For completeness, we also explored simpler single feature de-
coders (max, 95th quantile, 90th quantile, median). These decoders were
built by searching for features based on certain criteria. For example, a
“max” decoder is built by finding the feature or neural site that has the
best d� for each behavioral test. All of these decoders could potentially be
implemented by downstream neurons because they involve two basic
operations: weighted sums of inputs followed by a threshold.

For a given task set (e.g., 8-way basic-level classification) and variation
level (low, medium, or high) (see “Human psychophysics” section above
for details), the corresponding portion of the response matrix was split
into “training” and “testing” sets. The mean and variance of each unit or
feature was normalized so that its responses to the training set have zero
mean and unit variance. The training set was then used to optimize eight
“one-vs-rest” linear decoders by finding weights that would maximize
classification performance of each. To construct an 8-way decoder, anal-
ogous to what the human observers were asked to do, we applied all eight
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decoders and scored the decoder with the largest output margin as the
predicted behavioral “choice” of the linking hypothesis.

Generating the predicted behavioral performance of each
candidate linking hypothesis
After constructing each candidate linking hypothesis (i.e., after learning
how to read the “code” for each task), we used the “testing” image set
(never seen by the decoder) to generate the linking hypothesis’s predicted
behavioral performance in each of the three task sets. Each such 8-way
classification scheme resulted in an 8 � 8 confusion matrix summarizing
the predicted performance (hits and false arms) of a particular linking
hypothesis on a particular task set and variation level. This was done
multiple times with at least 50 training/testing splits. The average confu-
sion matrix across all splits was then used to compute predicted d�s that
are exactly analogous to the measured human d�s. We also tested a binary
two-way classification scheme more common in the computer vision
community. The two alternative schemas resulted in similar absolute
performance (�5% difference in average performance level) and practi-
cally identical pattern of performance (�2% difference in consistency
with humans).

Face selectivity index
We defined face-selective IT sites as the ones that have an absolute face
selectivity index (FSI) larger than 1/3. The FSI of a site was computed as
follows (Tsao et al., 2006; Issa and DiCarlo, 2012):

FSI � (F � NF )/(�F� � �NF�) where F and NF denote the site’s mean
response to face and nonface stimuli, respectively.

Stability and assumption of combining neural activity across
recording days
To collect a large number of repetitions from the thousands of tested
images, we had to collect data from the recording arrays over �45 d (M1,
43 d; M2, 47 d). Although the recording arrays are fixed in tissue and are
thus sampling the same cortical location across days, these methods can-
not guarantee that the exact same neurons are recorded over all days.
Such absolute stability, although desirable, is not strictly required to test
the neuronal linking hypotheses that we consider here (which assume
randomly selected samples of IT neurons). Nevertheless, we sought to
understand whether our presented results might be different if the exact
same neurons had been recorded over all days. To do this, we compared
performance obtained by averaging the neural responses to six presenta-
tions of all images collected on the same day (assuming stable set of
neurons during the day) to performance obtained by averaging the re-
sponses to the same number of image presentations (n � 6), but sampled
randomly from multiple days without replacement (always sampled
from the same electrode). Each of the two methods produced a pattern of
64 predicted d� values (as in the main text) and we found that those
patterns were very similar—the mean Pearson correlation coefficients
between the two sets of performances was 0.908 (	 SD of 0.016 across
different samples of trials; n � 64 d�s) for IT and 0.923 (	 SD of 0.016)
for V4. Therefore, although it is possible that there is some day-to-day
variation of recorded activity on each electrode, that variation is small in
that it does not substantially change the pattern of performances (e.g.,
some IT linking hypotheses predict human performance and V4 linking
hypotheses do not) and thus is unlikely to change our main result.

Consistency and performance of neuronal linking hypotheses when
objects were presented in the ipsilateral versus the contralateral
visual field
Because all arrays were placed in the left hemisphere, we wondered
whether performance of our neuronal linking hypotheses was affected by
object position in the visual field. To address this, we divided the re-
sponse matrix of each visual area (V4, IT) into two groups based on
whether the object centers were in the ipsilateral or contralateral visual
field. We then compared performance on the two groups of images using
analogous training and testing procedures to what we used for our main
results. Consistent with the known contralateral visual field bias in V4,
our results showed an �20% reduction in performance of V4 for ipsilat-
erally presented objects, whereas IT showed only an �3% reduction.
However, even when only considering objects in the contralateral visual

field, the pattern of behavioral performance predicted by V4 was still very
different from the actual human performance (consistency � 0.470 	
0.111, error is computed by sampling over of behavioral tests and assum-
ing that human pattern of performance does not depend on visual
hemifield).

Consistency and performance of neuronal linking hypotheses when
objects were only presented foveally
Because V4 units typically have smaller receptive fields than eccentricity-
matched IT units and because the array placements focused on foveal V4,
we also wondered whether V4-based linking hypotheses could be im-
proved by restricting our image set to objects positioned close to the
fovea. To test this hypothesis, we remeasured human behavior and neu-
ronal responses (V4 and IT) for a new set of images that did not contain
any variation in object position. We used a total of 32 behavioral
tests—24 low variation tests (eight basic-level, eight car identification,
and eight face identification tests) and eight new basic-level tests based on
images rendered specifically for this analysis (i.e., objects were rendered
with randomly picked pose (rotation around x, y, and z) and size param-
eters, but position (x, y) was fixed at the center of the image). Each linking
hypothesis consisted of 58 units and we used correlation decoders for this
analysis. All other details were optimized to obtain best performance. For
this set of 32 tests, the median human-to-human consistency was 0.887
(with the 68% CI � [0.740, 0.947] due to the sampling of individuals and
object recognition tests). The consistency between the LaWS of RAD IT
linking hypothesis and human performance was 0.868 (with a 68%
CI � [0.791, 0.909] due to the sampling of behavioral tests). The consis-
tency between the LaWS of RAD V4 linking hypothesis and human
performance was �0.196 (CI � [�0.358, 0.001]). Although the perfor-
mance of the LaWS of RAD IT linking hypothesis was indistinguishable
from human subjects in terms of consistency ( p � 0.411, bootstrap test),
the LaWS of RAD V4 linking hypothesis had significantly lower consis-
tency ( p 
 0.001, bootstrap test). This low consistency was not caused
by the low performance of the V4-based linking hypotheses (similar to
Fig. 7a, open green circles); in 12 behavioral tests (usually low variation
identification tests), V4-based linking hypotheses outperformed the
pooled human population. This analysis confirms that the performance
of these V4 linking hypotheses is not limited by receptive field size and
argues instead for an inferior and potentially more tangled V4 represen-
tation (DiCarlo and Cox, 2007; DiCarlo et al., 2012).

Computer vision algorithm hypotheses considered
We compared our biological results on consistency and performance to a
variety of computational models, including: The trivial pixel control, in
which the original 256 � 256 square images were down-sampled into
150 � 150 pixels and flattened into a 22500-dimensional “feature” rep-
resentation. The pixel features provided a control against the most basic
types of low-level image confounds. All of the following computer vision
features were computed based on this downsized 150 � 150 pixel feature.
We used an optimized V1-like model, built on grid of Gabor edges at a
variety of frequencies, phases, and orientations (Pinto et al., 2008), with
each image represented by 86400 features. We also used PHOG (Pyramid
Histogram Of Gradients), a spatial pyramid representation of shape
based on orientations gradients of edges extracted with a Canny detector
(Lazebnik et al., 2009). We fixed the angular range to 360° and the num-
ber of quantization bins to 40 to produce 3400-dimensional features. The
baseline SIFT computer vision model provided another control against
low-level image confounds (Lowe, 2004). The SIFT descriptors were
computed on a uniform dense grid with a spacing of 10 pixels and a single
patch size of 32 by 32 pixels. Each image was represented by 67712 fea-
tures. The bio-inspired SLFs are extensions of the C2 features from the
HMAX model (Riesenhuber and Poggio, 1999; Serre et al., 2007; Mutch
and Lowe, 2008). HMAX is a multilayer convolutional neural network
model targeted at modeling higher ventral cortex. Because it is a deep
network, HMAX has large, IT-like receptive fields. HMAX is one of many
existing “first-principles”-based models that attempt to build up
invariance through hierarchical alternation of simple and complex cell-
like layers. There were 4096 features per image. L3 is a recent three-layer
convolutional neural network, which also has large IT-like receptive
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fields and which was discovered via a high-throughput screening proce-
dure (Pinto et al., 2008). We used the top-five models identified in Pinto
et al. (2008) and the dimensionality of each was 15488, 6400, 2048, 4608,
and 10368, respectively.

Results
Quantitative characterization of human core
object recognition
To characterize human core object recognition abilities (DiCarlo
et al., 2012), we designed 64 core object recognition tests and
obtained an unbiased measure of human ability (d�; see Materials
and Methods) on each test. Figure 3a uses a color scale to show
human d� values for each of the 64 tests. The wide range of values
is not due to subject variability because the pattern of values over
the 64 tests from any one subject is highly correlated with the
pattern of values from the pooled results of all other subjects
(median correlation � 0.93; Fig. 3b). Instead, it shows that all
humans find some object recognition tests to be easy (d��5;
corresponds to an unbiased accuracy of 99.4% correct, where
50% is chance), others to be more difficult (d� �2; 84.1% cor-
rect), and others to be very challenging (d� �0.5; 59.9% correct).
Two unsurprising qualitative trends are noted. First, human ob-
ject recognition ability is dependent on shape similarity: we
found high d�s for basic-level categorization tests (“cars” vs “non-
cars,” “faces” vs “nonfaces,” “animals” vs “nonanimals,” etc.;
mean d� across all levels of object view variation � 3.46), lower
d�s for car identification tests (easy subordinate, e.g., “car1” vs

“not car1”; mean d� � 1.49), and even lower d�s for face identi-
fication tests (challenging subordinate, e.g., “face1” vs “not
face1”; mean d� � 0.50). Second, human object recognition abil-
ity drops as variation in object view (position, scale, pose) in-
creases: mean d� � 2.39 for low variation, 1.89 for medium, and
1.50 for high variation. Although these results show that humans
are not completely invariant, they confirm that humans tolerate
significant amounts of object view variation. Figure 3a also shows
that tolerance interacts with shape similarity, with humans being
the least tolerant for the most difficult subordinate tasks (Bieder-
man and Gerhardstein, 1993; Tarr and Bulthoff, 1998; Tjan and
Legge, 1998). We note that these measurements of human object
recognition ability were designed and performed independently
of any neuronal data collection. Next we wondered which, if any,
candidate neuronal linking hypotheses would predict the human
pattern of behavior over all 64 tests (Fig. 3a).

Specific monkey IT-based linking hypothesis predicts human
core object recognition behavior
Before delving into the large space of linking hypotheses that we
explored, we start by summarizing our main result. Our analyses
revealed that the LaWS of RAD IT linking hypothesis produced a
pattern of behavioral performance that accurately predicted the
observed pattern of human behavioral performance. Figure 4
shows the predictions of a specific instance of the LaWS of RAD
linking hypothesis based on 128 IT neuronal sites, with the re-
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sponse averaged over a 70 –170 ms time window after image on-
set. The pattern of predictions for the 64 recognition tests is
statistically indistinguishable from the pattern of human behav-
ior (Fig. 3a) and is clearly superior to an identical LaWS of RAD
linking hypothesis based on 128 V4 neuronal sites (comparisons
quantified in Figs. 5a,b and 7).

In total, we collected the responses of 168 spatially separate
neuronal sites in IT (M1: 58, M2: 110) and 128 sites in V4 (M1:
70, M2: 58). We pooled neuronal sites across IT because we did
not see any strong differences between its subdivisions (PIT, CIT,
AIT; see Fig. 9). We measured each site’s spiking response pattern
to each of 5760 images drawn from the same pool used in the
human psychophysical testing. Each image was presented at least
28 (typically �47) times per site (i.e., a total of �250,000 visual
stimulus tests at each site). We could not collect this large volume
of data in a single day; it required �30 d of recording in each
animal. The initial linking-hypotheses that we explored were
based on MUA and assumed stability of that measure at each

recording site over the 30 recording days
(Chestek et al., 2011). We then investi-
gated how our main finding might change
if we used SUA response data instead, and
examined our assumption of the stability
of each recording site over days (see Ma-
terials and Methods and Fig. 8). We also
considered the fact that we only sampled a
small number of IT neuronal sites (rela-
tive to the millions of neurons in IT cor-
tex). Although these factors are important
for estimating the number of neurons
needed to predict behavior, they turned
out to have little impact on our main
finding.

Candidate linking hypotheses that might
predict object recognition behavior
A candidate linking hypothesis that aims
to predict the observed pattern of human
recognition accuracy must have at least
two components: (1) a specification of the
exact “features” of neural activity that are
relevant to behavior (i.e., neuronal code)
and (2) a specification of a biologically
plausible mechanism that translates that
neural code to a behavioral choice on each
trial.

Based on the existing literature, the
“features” of neural activity of high inter-
est include: the tissue region where the
neuronal responses are found (V4, IT, IT
inside “face patches,” IT outside “face
patches”), the size of the neuronal popu-
lation (number of neural sites or units),
the temporal window over which the re-
sponses are considered, the temporal
grain of those measurements (e.g., spike
timing codes vs rate codes), and consider-
ation of the so-called “trial-by-trial”
population-wide correlation of activity.
One can imagine many possible variants
and combinations of these ideas, not all of
which can be fully explored in a single
study, but we aimed to specify and then

test some of the most widely believed ideas. That is, we used our
data to measure the code specified by each hypothesis and then
we asked how well that code predicted the measured object rec-
ognition performance.

To compute the predictions of each code, a linking hypothesis
must also specify a biologically plausible mechanism (decoder)
that translates the measured neural response features into an ob-
ject label on each trial. For example, a “car” decoder translates the
measured neuronal features into the binary decision: is a car
present in the image or not? In this study, we tested simple
perceptron-like decoders (i.e., linear classifiers, linear discrimi-
nants), each of which computes a simple weighted sum of the
features in the proposed population code. Although this study is
agnostic with respect to how this type of decoder might be imple-
mented in downstream brain areas (e.g., PFC, Freedman et al.,
2001; perirhinal cortex, Pagan et al., 2013), it is known to be
biologically plausible: each synapse on a hypothetical down-
stream neuron corresponds to a “weighting” on part of the neu-
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ronal code and the neuron’s output as
determined by the weighted sum of all its
inputs corresponds to a decision by the
decoder (Shadlen et al., 1996). Different
types of decoders correspond to different
assumptions about how those down-
stream neurons learn the synaptic weights
(e.g., in humans, this might correspond to
learning to map visual inputs to specific
words in the lexicon). In this study, be-
cause we were primarily interested in the
neuronal features that best predict adult
object recognition performance, our ap-
proach was to start with a simple, well
known decoder, hold that idea constant,
and then later explore different types of
decoders to determine their impact on
our conclusions (see Fig. 10). All perfor-
mance measures reported here are based
on neural responses to images that were
never previously seen by the decoder
(i.e., cross-validation; see Materials and
Methods).

In sum, to test each conceptual neuro-
nal linking hypothesis, we: (1) instanti-
ated the idea by measuring the proposed
neural code in the population data, (2)
learned a hypothesized downstream de-
coder (e.g., one for each of the 24 noun
labels) that takes that neuronal code as in-
put and finds the simple weighed sum that
gives the highest performance on that test
(see Materials and Methods for details),
and (3) computed the behavioral predic-
tions of that hypothesis for each of the 64
tests using previously unseen images.

To the extent that each neuronal link-
ing hypothesis predicts a different pattern
of behavioral performance across the 64
tests, not all linking hypotheses can accu-
rately predict the observed pattern of hu-
man behavioral performance. A priori, it
was also possible that none of the linking
hypotheses would accurately predict the
human pattern of behavior; for example,
we may not have sampled enough neu-
rons to reveal that a hypothesis is suffi-
cient or perhaps monkey and human
performance patterns are different and
thus no linking hypothesis tested on mon-
key neuronal codes can predict human
patterns of performance. Nonetheless, we
reasoned that we could use the strategy of
comparing the predicted vs actual object
recognition performance of each neuro-
nal linking hypothesis to infer which hy-
pothesis corresponds most closely to the
mechanisms at work in the brain.

In total, we tested 944 linking hypoth-
eses, in each case varying the number of
neural sites included, thereby translating
that conceptual linking hypothesis into an
exact specification that makes falsifiable

V4.70 –170ms.128N.SVM
IT.70 –170ms.16N.SVM

Candidate hypotheses
“Spatial”

Pixel
V1-like

CV
V4
IT

“Downstream Decoder”
Max
Corr
SVM

Alternative hypotheses

Human (population pooled)

Pixel.16000N.SVM
V1-like.16000N.SVM
L3.2048N.SVM

IT.70 –170ms.64N.SVM
IT.70 –170ms.128N.SVM 0

5

Human (one individual)

a

d' 

0.2
0.4

0.6

0.8

0.95

0.9

SV
M

Co
rr

M
ax

SV
M

Co
rr

M
ax

V1
-lik

e 

Pi
xe

l 

SL
F

SI
FT L3

IT-based
hypotheses

V4-based
hypotheses

Human-to-human consistency

C
on

si
st

en
cy

 
(S

pe
ar

m
an

 c
or

re
la

tio
n)

Computer vision
algorithm hypotheses

PH
OG

b

Low variation Medium var. High var.

c d e

0.2

0.4

0.6

0.8

0.95

0.9

C
on

si
st

en
cy

 
(S

pe
ar

m
an

 c
or

re
la

tio
n)

Ra
te

 c
od

e
2 

x 
50

m
s

4 
x 

25
m

s
6 

x 
16

.7
m

s
8 

x 
12

.5
m

s
10

 x
 1

0m
s

Si
m

ul
ta

ne
ou

s
Sh

uf
fle

d

All tests

Face
tests
only

Non-face
tests
only

Al
l 

Fa
ce

No
n-

fa
ce

“E
xp

er
ts

”

Al
l

Fa
ce

No
n-

fa
ce Al

l
Fa

ce
No

n-
fa

ce

“Correlation?”
Yes / No

LAWs of RAD LAWs of RAD

“# of units”
128

“Patches?”
Yes / No

“Temporal”
(Rate codes)
70 –170ms

170 –270ms

(Others)
Spike times

Figure 5. Candidate linking hypotheses. a, Candidate linking hypotheses that we explored were drawn from a space defined by four
key parameters: spatial location of sampled neural activity, the temporal window over which the response of our units was computed
(mean rate in this window), the number of units, and the type of hypothesized downstream decoder. Each candidate linking hypothesis is
a specific combination of these parameters. For example, in green is a V4-based linking hypothesis with a temporal window of 70 –170 ms
that includes 128 neural sites and uses an SVM decoder. The predicted performance of each linking hypothesis for each behavioral test is
depicted as a color vector where blue signifies low predicted performance (d��0) and red signifies high predicted performance (d��5).
The goodness of each linking hypothesis can be visually evaluated by comparing its color pattern with that of the human population. b,
Consistency. To quantify the ability of each linking hypothesis to predict the pattern of human performance (i.e., the similarity between
colorvectors ina),wecomputedtheSpearmanrankcorrelationcoefficientbetweenpredictedperformanceandactual(pooledhuman,104
subjects) across all task d�s. Median human-to-human correlation is indicated by the dashed line (median Spearman correlation coefficient
of 0.929). The gray region signifies the range of human-to-human consistency (68% CI � [0.882, 0.957]). Each bar represents a different
candidatelinkinghypothesis(bar lengthisproportionaltotask-inducedvariability).Forpixelfeatures(opensymbol),V1-likefeatures(filled
black symbol), and computer vision features (red filled symbols), we picked the linking hypothesis that performed best. For neural features
(V4(green)andIT(blue),wematchedthenumberofunitsat128.Onlybarsthatenterthegrayregioncorrespondtolinkinghypothesesthat
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“nonface patch” sites on all tests. We then stitched together an “expert linking hypothesis” in which each test is performed by neuronal sites
that are tailored to that test (e.g., “face” detection is only done by “face neurons” whereas “car” detection is done by nonface neurons). To
be complete, we compared the performance of our different modular IT linking hypotheses on both face tests only (n�17 of the 64 tests)
and nonface tests only. As in b, pattern of performance was always compared with human-to-human consistency indicated by the gray
region.
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predictions. For example, one specific linking hypothesis that we
tested was as follows: learn simple weighted sums of the mean
firing rates across 128 IT neural sites, distributed across IT mea-
sured in a 70 –170 ms time window, ignore trial-by-trial correla-
tions (Fig. 4). To facilitate visual inspection, the behavioral
predictions of this linking hypothesis are strung out in a single
color-coded vector (Fig. 4c). Most candidate linking hypotheses
produced different predicted patterns of behavioral perfor-
mance; sometimes, these differences were small, but they were
often dramatic (see Fig. 5a for examples). For visual comparison,
Figure 5a also shows human performance on the same 64 object
recognition tests (data from Fig. 3a, replotted), illustrating that
some candidate linking hypothesis lead to very poor predictions
of the pattern of human performance, whereas others lead to
surprisingly good predictions.

Quantifying the goodness of a linking hypothesis: consistency
Following previous work (Hyvarinen et al., 1968; Newsome et al.,
1989; Connor et al., 1990), we reasoned that the neuronal linking
hypotheses that are the most likely to correspond to the mecha-
nisms at work in the brain are those that produce the most quan-
titatively consistent relationship with the human behavior (i.e.,
the linking hypothesis’s pattern of colors in Fig. 5a should best
match the pattern of colors in Fig. 3a). To quantify that consis-
tency, we computed Spearman’s rank correlation coefficient over
the 64 d�s (Yoshioka et al., 2001).

The most stringent application of this method is that, for a
linking hypothesis to remain viable, it must produce behavior
that is indistinguishable from the behavior of individual subjects.
Based on this stringent criterion, all V4-based linking hypotheses
that we tested failed to accurately predict the observed human
behavioral pattern (Figs. 5b, 6), as did all V1-based linking hy-
potheses. For comparison, Figure 5, a and b, also shows the pre-
dictions of linking hypotheses based on populations of baseline
computer vision features, all of which failed to predict the pattern
of behavior (see Materials and Methods for details). Despite our
best efforts, we found that the V4- and V1-based linking hypoth-
eses could not be “rescued” by increasing the number of neurons
in the linking hypothesis or by changing the type of decoder (i.e.,
learner; Figs. 5, 6). We also considered the possibility that V4-
based linking hypotheses might have been handicapped by recep-
tive field limitations of our neural sampling. In particular, we
narrowed our images to only those with objects presented in the
contralateral field or at the center of gaze. Although V4 popula-
tions showed the expected pattern of higher d�s for contralater-
ally presented objects, neither test substantially improved the
ability of V4-based linking hypotheses to predict the pattern of
human behavior (see Materials and Methods) even though these
same V4 populations often outperformed humans in some of the
behavioral tests (see below). These results do not suggest that V1
and V4 play no role in object recognition behavior, but rather
that neural representations (i.e., codes) conveyed by those areas
do not directly underlie object recognition behavior, which is
compatible with previous suggestions (Sheinberg and Logothetis,
1997; Brincat and Connor, 2004; Rust and DiCarlo, 2010; Di-
Carlo et al., 2012). These results also show that the approach we
used, the combination of images and tasks, is a powerful test of
neuronal linking hypotheses that cannot easily be “passed” by
lower-level (e.g., V1) or even mid-level (V4) representations.

In contrast to the results in V4 and (simulated) V1, we found
that some IT-based linking hypotheses accurately predicted the
behavioral pattern of human observers. For example, based on
previous work (Hung et al., 2005), one of the first specific linking

hypotheses that we tested was as follows: the mean firing rate of
each IT neurons in a 70 –170 ms time window, where IT neurons
are sampled in a distributed manner over IT cortex (i.e., ignoring
IT spatial substructure such as “face-patches”) and ignoring cor-
relations across the population (Fig. 5d). We tested this linking
hypothesis using different numbers of IT neural sites and were
surprised to find that, once we included �100 sites, this IT-based
linking hypothesis was not only a more accurate predictor of
human behavior than other hypotheses (e.g., V4-based linking
hypotheses), but its predictions were statistically indistinguish-
able from the measured pattern of human d�s (linking hypotheses
that pass into the gray region in Fig. 5b). Following up on this
result, we also found this simple IT-based linking hypothesis con-
tinued to accurately predict the pattern of human object recog-
nition ability even when we varied the number of neuronal
sites participating in the linking hypotheses (�64 sites), the
type of decoder used, and the training provided to the decoder
(Figs. 7, 8, 9, 10).

We explored several other IT-based linking hypotheses that
have been suggested in the literature. First, we considered the idea
that trial-by-trial correlations in neuronal firing across the IT
population might be important to consider when asking if a neu-
ronal linking hypothesis is consistent with behavior (Zohary et
al., 1994; Averbeck et al., 2006; Liu et al., 2013). Because we had
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Figure 6. Exploring a large set of linking hypotheses. The y-axis shows consistency (defined
in Fig. 5b) and the x-axis shows performance—the median of the ratio between predicted and
actual (human) d�across all 64 tests. In total, we tested 944 types of linking hypotheses, varying
the number of neurons/features in each case, for a grand total of 50,685 instantiations consid-
ered. Here, we show the results of 755 of those hypotheses. The result of each specific instanti-
ation is shown as a point in the plot with color used to indicate the “spatial” location of the
features (IT, V4, V1, or computer vision). We show these examples to illustrate the parameters
that we varied, which included spatial location, temporal window, number of units, type of
decoder, and a variety of training procedures and train/test splits (see Fig. 10a). The horizontal
dashed line indicates the average human-to-human consistency and the horizontal gray band
represents variability in human-to-human consistency. The vertical dashed line indicates the
average relative human-to-human performance and by definition is at 1 and the vertical gray
band shows the human-to-human variability in relative performance. Any linking hypothesis
that falls in the red dashed circle is perfectly predicting human performance on these 64 tests.
Note that much of the scatter in the IT-based linking hypotheses (blue) is due to varying the
number of neural sites, as illustrated in Figure 7b.

Majaj, Hong et al. • Weighted Sums of IT Firing Rates Predict Recognition Performance J. Neurosci., September 30, 2015 • 35(39):13402–13418 • 13411



collected responses at many of our neuronal sites simultaneously,
we were able to compare neuronal codes produced across the
population on actual single trials, with codes produced on artifi-
cial single trials in which any population correlation structure is
removed by shuffling the trials (e.g., so the responses of IT unit 1
on presentation p of image i are considered along with the re-
sponses of IT unit 2 on presentation q of image i). We found that
a LaWS of RAD IT linking hypothesis that maintained the trial-
by-trial population correlation structure had no increased (or
decreased) ability to explain the pattern of human behavior, even
when lowering the number of neurons so that we might be able to
see that increase (Figs. 7, 8).

Second, we considered the idea of finer-grained temporal
codes. To do this, we took the simple 70 –170 ms poststimulus
time window (above) in which the LaWS of RAD IT linking
hypothesis was highly predictive and broke it into successively
smaller and smaller time windows, giving each learned decoder
full access to the neural response in all such time windows. Be-
cause all of the same spiking information in these finer-grained
temporal codes is still available to each decoder, this approach
can only maintain or increase performance on each of the 64
behavioral tests (until data limits are reached). However, because
accuracy on some tests might improve relative to others, it
could increase, decrease, or have no effect on the consistency
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13412 • J. Neurosci., September 30, 2015 • 35(39):13402–13418 Majaj, Hong et al. • Weighted Sums of IT Firing Rates Predict Recognition Performance



of the pattern of performance over all 64 human behavioral
tests. The results showed that, relative to the simple 100 ms
window mean firing rates in the LaWS of RAD linking hypoth-
esis, these more complex, finer-grained IT temporal codes led
to no measurable change in consistency with the pattern of
human behavior.

Third, we considered modular IT linking hypotheses in which
different subregions of IT are devoted exclusively to certain kinds
of tasks. The strongest experimentally motivated example of a
modular linking hypothesis is that certain spatial regions of IT
(face “patches” in monkeys; fusiform face area, occiptal face area
in humans) are devoted to certain types of “face-related” tasks,
such as face discrimination (one face vs others) and face detection
(faces vs other categories). Our data allowed us to examine such
hypotheses because 19 of our 64 tests are face-related tasks and we
could label �19% of our IT neural sites as likely belonging to one
or more of the 6 –10 IT face patches (based on the high purity of
these regions for units that have high face vs nonface object se-
lectivity; Tsao et al., 2006). We first note that our findings are
consistent with weaker forms of modularity of face processing,
such as spatial clustering of neural sites that are most important
for face detection. Indeed, it was not surprising (as it is nearly by
definition) that, of the IT sites that were weighted most strongly
by the decoders (i.e., the top 5% most heavily weighted) in our
three face detection tests, 87.5% of those were face-patch-likely
sites. More interestingly though, we also found that only 12.5% of
the most highly weighted sites in our 16 face discrimination tests
were face-patch-likely sites, arguing that face discrimination
might not rely exclusively on IT face-patch tissue. To test a stron-
ger form of the face modularity hypothesis using the consistency
approach of this study, we investigated whether neuronal linking
hypotheses based only on the face-patch-likely population of sites
were more consistent with the pattern of human performance on
face-related behavioral tests (compared with linking hypotheses
based on all of IT or based only on face-patch-unlikely popula-
tions within IT; Fig. 5e). We found that this did not significantly
change the accuracy of the behavioral fits; if anything, the trend
suggested a decreased accuracy. In sum, whereas our results are
consistent with weaker forms of the face-modularity linking hy-
pothesis [i.e., face detection tasks are best performed by “face
(detection) neurons” that are spatially clustered; Tsao et al., 2006;
Issa and DiCarlo, 2012], our data find no support for the stronger
form of the face-modularity hypothesis (i.e., all face-related tasks
exclusively depend on the responses of neurons in face patches).
However, our data do not falsify that strong form either.

Goodness of a candidate linking hypothesis: performance
Although the consistency metric evaluates the similarity between
the pattern of d�s predicted by each candidate linking hypothesis
and the measured human d�s, we next asked: what number of
neurons is required for a LaWS of RAD IT linking hypothesis to
account for the actual d�s across all our 64 tests? In particular, one
can imagine neuronal linking hypotheses that are highly predic-
tive of the pattern of d�s over the 64 tests (as in Fig. 5), but with
absolute levels that are far below the measured human d�s (see
Fig. 1b for a schematic demonstration of correlated but unequal
d�s). Indeed, we found examples of such linking hypotheses (see
blue points in Fig. 6 that are within the top gray band but outside
of the red dashed circle). We found that, for both V4 and IT-
based codes, once the number of neural sites was greater than
�100, measures of consistency were quite robust to further in-
creases in the number of neural sites in the code. However, per-
formance, the median of the ratio between predicted and actual
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Figure 8. a, SUA versus MUA linking hypotheses. We used a profile-based spike sorting
procedure (Quiroga et al., 2004) and an affinity propagation clustering algorithm (Frey and
Dueck, 2007) to isolate the responses of 16 single units from our sample of 168 IT neuronal sites.
The minimum signal-to-noise ratio (SNR) for each single unit cluster was set to 3.5, with SNR
defined as the amplitude of the mean spike profile divided by root mean square error (RMSE)
across time points. Consistency with the human pattern of performance versus performance for
SUA (red) and MUA (black). We estimate that twice as many neurons are needed so that the
consistency-performance relationship of our SUA linking hypothesis matches that of our MUA
linking hypothesis. All parameters and training procedures of SUA- and MUA-based linking
hypotheses were identical (performance was based on the average of five repetitions using a CC
in which the units were randomly divided into nonoverlapping groups to estimate error from
independent sampling of units). b, Single trial versus averaged trials linking hypotheses. Be-
cause human subjects were asked to make judgements on single image presentations, we also
explored a “single trial” training and testing analysis in which we treated the responses of the
neural units to each images presentation as a new and independent set of neural units (i.e.,
“unrolled” the trial dimension into the unit dimension). Consistency versus performance for the
single-trial (red) and the averaged-trial (black) LaWS of RAD linking hypotheses (based on a
correlation decoder). We estimate that �60 times as many neurons are needed so that the
consistency-performance relationship of our single-trial linking hypothesis matches that of our
averaged-trials linking hypothesis. Error bars are SDs induced by independent sampling of units
as in a.
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(human) d� across all 64 tests, of any spe-
cific neural code was strongly dependent
on the number of neuronal sites. For ex-
ample, whereas we found it effectively im-
possible to vary the number of neural sites
to make (for example) a V4-based linking
hypothesis match the human pattern of
performance (Fig. 7b), for many V4-based
linking hypothesis, we could, by extrapo-
lation, estimate the number of neurons
that could, in principle, match the median
human d� over the 64 tests.

Effect of number of units on
consistency and performance
We systematically explored the effect of
changing the number of neural sites on
consistency and performance. This is il-
lustrated in Figure 7 for two families of
linking hypotheses—the simple LaWS of
RAD IT linking hypothesis family re-
viewed above, and the simple LaWS of
RAD V4 linking hypothesis family. For
both families, median predicted perfor-
mance increased as the number of sites
increased; however, only the LaWS of
RAD IT linking hypothesis became fully
consistent with human performance.
That is, with 128 neuronal sites (or more),
the LaWS of RAD IT linking hypothesis
shown in Figure 7 perfectly predicted the entire pattern of per-
formance over all 64 tests in that the Spearman correlation (Fig.
7a,b) was indistinguishable from the human-to-human consis-
tency (the horizontal dotted line in Fig. 7b; the gray region indi-
cates the variability of individual human subjects).

Figure 7a also illustrates why the non-IT-based linking hy-
potheses that we tested failed to explain the pattern of human
performance. In particular, it shows that the LaWS of RAD V4
linking hypothesis fails both because it cannot achieve high d�s on
some tests (e.g., high variation tests, green filled circles in Fig. 7a)
and because it achieves d�s that are better than humans in other
tests (e.g., some low variation tests, green open circles in Fig. 7a).
Increasing the number of neurons participating in the LaWS of
RAD V4 linking hypothesis cannot fix this obvious discrepancy
with behavior and the result argues against the idea that we did
not collect sufficient information from V4 neurons. In sum, dis-
tributed, learned V4 population rate codes do better than hu-
mans on some particular behavioral tests, but they fail to produce
the human pattern of d�s over all 64 tests.

Sufficient single-trial, single-unit population
linking hypotheses
As shown in Figure 7, both the consistency and performance of
IT-based linking hypotheses are dependent on the number of
neural sites assumed to be participating in the behavior. The plot
shows that only a small number (hundreds) of neural sites are
needed before the consistency of LAWs of RAD IT hypothesis
plateaus; that is, that linking hypothesis achieves a pattern of
performance that is indistinguishable from humans after it in-
cludes �100 sites (y-axis in Fig. 7b) and the inclusion of more
neural sites does not improve consistency. However, another
constraint on the number of neuronal sites comes from how the
mean performance of a specific linking hypothesis compares with

the mean performance of human subjects (x-axis in Fig. 7b; see
the caption for the definition of performance). Unlike consis-
tency, performance is an unbounded metric that depends on
signal-to-noise ratio. Too few neuronal sites lead to median
predicted performance that is below observed performance
and too many lead to performance that is superior to behavior.
This offers the opportunity to find the number of neural sites
where the linking hypothesis matched human performance
(Fig. 1b, upper right). However, to estimate that number of
neurons, it becomes very important to consider exactly how
the hypothesis is implemented and its relationship to brain
circuitry. In particular, we and others assume that neurons in
downstream brain areas can listen to the spikes of some num-
ber of single neurons (e.g., neurons in IT) and produce, on
each behavioral trial, a guess as to the object label (the test we
asked the humans to perform; Fig. 3a). The neural data and
analyses used to generate Figures 4, 5, 6, and 7 differed from
this assumption in two ways: (1) we did not distinguish single
units from multiunits and (2) we averaged the responses of each
neural site over many repetitions (typically 50, minimum 28). Nei-
ther of these details substantially altered our conclusions about the
behavioral consistency of LaWS of RAD IT linking hypotheses.
However, they are important for estimating how many single neu-
rons would be needed to match human-level accuracy on single
image presentations.

Figure 8a examines the difference between MUA and the ac-
tivity of sorted SUA. Linking hypotheses based on SUA and MUA
IT data shared highly comparable consistency-performance rela-
tionship, except that SUA linking hypotheses required approxi-
mately twice as many neural sites to reach a similar level of
consistency or performance. This similarity is perhaps surprising
(see Discussion), but is compatible with previous work that ex-
amined the same issue (Hung et al., 2005).
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Figure 9. No significant difference in consistency and performance of IT subpopulations was seen when parsed based on
anatomical subdivision: PIT versus CIT versus AIT. Based on anatomical landmarks, we could conservatively divide our population
of 168 IT neural sites into the following: 76 in PIT, 75 in CIT, and 17 in AIT. a, Comparison of the consistency values for IT populations
when neural sites respected anatomical boundaries (PIT vs CIT vs AIT) in contrast to a “control” populations in which the sites were
randomly picked from all three anatomical subdivisions. There was no significant difference between the IT populations regardless
of whether we restricted our population to 17 neural sites (limiting our analysis to the number of neural sites in AIT our least
sampled anatomical subdivision) or expanded to 75 neural sites and compared PIT and CIT. Similarly, performance (b) showed no
significant differences between the different IT populations. It is important to note that the decrease in consistency and neural
performance is expected based on the smaller population sizes (see Fig. 7b). Consistency and performance were computed based
on our typical 70 –170 temporal window using an SVM decoder.

13414 • J. Neurosci., September 30, 2015 • 35(39):13402–13418 Majaj, Hong et al. • Weighted Sums of IT Firing Rates Predict Recognition Performance



Figure 8b explores the issue of averaging and compares the
results of a simple model of single trial decoding to the results of
decoding while averaging across all available trials. Although we
did not expect this analysis choice to change our conclusions
about the behavioral consistency of LaWS of RAD IT linking
hypotheses, we expected that it would affect the estimated num-
ber of IT neurons that must participate in that linking hypothesis
to achieve human-level performance on single trials (because
averaging improves the signal-to-noise ratio of each neuronal
site). The single-trial analysis in Figure 8b gives a consistency-
performance relationship similar to that of averaged-trial analysis if
�60 times as many IT units are provided. That is, we estimate
that �60 independent IT neural sites (operating in parallel) are
sufficient to stand in for a single, “repetition-averaged” neural
site and this estimate accounts for how neuronal variability
(“noise”) affects both the decoding (e.g., as in Shadlen et al.,
1996) and the learning of the decoder (see more below).

Together, the analyses presented in Figure 8 converge to sug-
gest that spike counts from �60,000 (529 repetition-averaged IT
multiunits � �2 � �60; Fig. 7b) distributed single units in IT
cortex can, when read with simple, biologically plausible down-
stream neural decoders, perfectly predict both the behavioral pat-
tern of performance and the median level of performance over all
64 tested object recognition tests. This number is an extrapola-
tion because our methods are not yet capable of recording that
many IT neurons and other factors such as “noise correlation”
might alter that estimate (see Discussion). Furthermore, because
performance depends on parameters of how the code is learned
to be read (decoded), this estimate could be somewhat higher or
lower, as analyzed in detail in Figure 10. However, we note that
this number is far less than the total number of neurons estimated
to project from IT to downstream targets (�10 million; DiCarlo
et al., 2012).

Effect of time window on consistency
To further explore the precise parameters of the LaWS of RAD IT
family of linking hypotheses, we varied the starting time and
duration of the time window over which the mean rate was read

from the IT population (Fig. 7c,d). We found that the LaWS of
RAD IT linking hypothesis begins to be highly consistent with
behavior at a center latency of 100 ms (time window of [50, 150]
ms after image onset) and that consistency remains at a high
plateau for nearly 100 ms before dropping off. During this entire
plateau, the predicted pattern of performance of this linking hy-
pothesis is statistically indistinguishable from the human pattern
of performance. For comparison, all LaWS of RAD V4 linking
hypotheses that we tested failed to pass this consistency test for all
temporal windows.

Discussion
We propose a framework for comparing neural responses with
behavior. Instead of qualitatively comparing performance on a
selected set of conceptual tasks, we devised a “Turing” test—a
battery of behavioral tests that explore the range of human sub-
jects’ capabilities in core object recognition. This operational def-
inition of object recognition provided a strong consistency test by
which we could quantitatively evaluate different neuronal linking
hypotheses that might explain behavior. As expected, many neu-
ral (and non-neural) linking hypotheses failed to predict object
recognition behavior, including: pixel-based codes, V1-like-
based codes, multiple computer vision codes, V4-based codes,
and several IT-based codes. However, we were surprised to find
that the LaWS of RAD IT linking hypothesis family perfectly
predicted the human pattern of behavioral performance across
all 64 recognition tasks. More precisely, the data argue that a
simple rate code (100 ms time scale, [70, 170] ms onset latency)
read out on single trials learned from a distributed population of
�60,000 single IT units can fully explain both the pattern and the
magnitude of human performance over a large battery of recog-
nition tests.

Initially, we were surprised that this simple linking hypothesis
was perfect at predicting the pattern of performance. Neverthe-
less, we explored other ideas motivated from theoretical consid-
erations (Averbeck et al., 2006) and neuronal response findings
(Sugase et al., 1999; Tsao et al., 2006). First, we found that the
LaWS of RAD linking hypothesis was not strongly affected by
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trial-by-trial correlational structure in the population responses
(Fig. 5d). We suspect that this is due to the dimensionality of our
neuronal populations (�100), combined with the fact that cor-
relational “noise” structure can either increase and decrease per-
formance depending on the layout of the task-relevant “signal”
structure in the population representation (Averbeck et al.,
2006). Second, we explored finer-grained temporal codes (Fig.
5c), which revealed no change in the accuracy of the behavioral
predictions. We are careful to note that our results do not imply
that trial-by-trial correlational structure is not a limiting factor
for some tasks (Mitchell et al., 2009; Cohen and Maunsell, 2010),
or that finer-grained temporal neuronal codes in IT are falsified
by our data. Instead, our results argue that such ideas do not yet
add any measurable value for the real-world-motivated set of
object tests explored here.

Our study was not aimed at improving upon the previously
documented spatial-clustering of “face neurons” in IT (Desi-
mone et al., 1984; Tsao et al., 2006; Issa and DiCarlo, 2012).
However, we did explore the idea that IT is not best considered as
a distributed neural representation, but that it consists of at least
two spatially segregated parts—“face patches” that are a priori
devoted to “face” tasks (part A) and other parts that are devoted
to nonface tasks (part B). Our results are entirely consistent with
the hypothesis that “part A” neurons are heavily weighted in
adult face detection tasks. That is, before learning face detection,
downstream neurons accept inputs that are distributed over all of
IT, but in the adult, learned state, those downstream readers will
most heavily weight neurons that are best at supporting face de-
tection. This hypothesis is consistent with the idea (Tsao et al.,
2006) that “face neurons” (and “face patches”) are heavily causal
in adult face detection behavior (S. R. Afraz et al., 2006; A. Afraz
et al., 2015). We also considered a stronger form of domain-
specific face processing: that all face related tasks causally depend
only on neurons in part A, whereas all other tasks causally depend
only on neurons in part B (Tsao et al., 2006). We tested this idea
by restricting the parts of IT the downstream decoders are al-
lowed to read from— decoders for face-related tasks can read
only from neurons in part A and decoders for all other tasks can
read only from part B. Our results showed that such parcelling
did not improve the accuracy of the behavioral predictions. In-
stead, the (nonsignificant) trend was in the wrong direction (Fig.
5e). Therefore, our results do not support the strong face modu-
larity hypothesis, but they do not falsify that idea either.

We are not the first to compare neural responses with object
recognition behavior. Using shape similarity judgements, some
studies have shown agreement between neural representation in
monkey IT and perceptual “distances” between parametrized
shapes in both monkeys and humans (Op de Beeck et al., 2001;
Kriegeskorte et al., 2008). Although pioneering, there is a limit to
such qualitative comparisons. Primarily, there is a question as to
whether shape similarity is a good surrogate for recognition be-
havior. However, even if that assumption were granted, previous
work did not attempt to rule out V4 or even V1 as viable candi-
dates, nor did it attempt to distinguish among the large space of
IT-based linking hypotheses.

Other studies focused on documenting IT’s computational
prowess at invariant object recognition (Hung et al., 2005; Rust
and DiCarlo, 2012). Absolute accuracy was used as the metric,
with IT neural populations having a clear advantage over pixels
(Hung et al., 2005) and over V4 (Rust and DiCarlo, 2010) in
discriminating between objects across limited changes in view.
Here, we show that V4-based rate codes are unlikely to directly
underlie all object recognition tasks because they outperform

humans on some tests and underperform on others. This high-
lights the fragility of using performance on a single task as a
metric for determining which neuronal linking hypothesis un-
derlies behavior. Absolute performance strongly depends on pa-
rameters that control the noisiness of a neuronal population (e.g.,
number of neurons), making it very difficult to expose the key
factors of interest (i.e., which neurons and which features of the
neuronal response). For example, we here replicate previous
work (Zohary et al., 1994; Hung et al., 2005; Cohen and Maunsell,
2009; Rust and DiCarlo, 2010) showing that increasing the num-
ber of neurons improves performance on our recognition tests,
but we now show that it keeps the relationships between easy and
difficult tests the same. Therefore, the pattern of performance
across many tests emerges as a more robust measuring stick by
which we can evaluate different neuronal codes (Johnson et al.,
2002).

Our comparison of nonhuman and human primates deviates
from approaches that combine neural recording with behavioral
testing in the same subjects (Britten et al., 1996; Luna et al., 2005;
Cohen and Maunsell, 2011). It was motivated by our desire to get
both high-fidelity behavioral and neuronal population data, a
fruitful first-line strategy when a perceptual domain is poorly
understood (Mountcastle et al., 1969; Johnson et al., 2002). Such
comprehensive characterization of object recognition ability is
difficult and time consuming in nonhuman primates and current
human fMRI lacks the appropriate spatial and temporal resolu-
tion necessary for characterizing neuronal population at the level
that we accomplished here (but see Kay et al., 2008; Naselaris et
al., 2009).

The fact that monkey neuronal population responses can ac-
curately predict human performance patterns adds evidence to
the assumption of highly conserved visual capabilities across the
two species (Merigan, 1976; Sigala et al., 2002; Rajalingham et al.,
2015). Furthermore, our results show that simple LaWS of RAD
in nonhuman primate IT are sufficient to account for human
performance, even on object categories outside of the realm of
typical monkey experience (e.g., planes, cars, boats, etc.). We
interpret this to mean that primates share a generic neural repre-
sentation of “shape” (Kriegeskorte et al., 2008; Zoccolan et al.,
2009) that is suitable for dealing with the difficulties of identity
preserving image transformations without being restricted to ob-
ject categories and a lexicon that is shaped by each subject’s real
world experience (Freedman et al., 2001). Specifically, our results
argue that primates share a nonsemantic IT visual “feature” rep-
resentation upon which semantic understanding can be learned,
which constitutes a performance bottleneck in primate object
recognition. This inference is agnostic as to how much of this
feature representation is innate versus learned during the statis-
tically shared postnatal experience of primates (Li and DiCarlo,
2008).

Our results set the stage for new directions in linking neurons
to object behavior. One natural extension is to obtain more
precise behavioral data for the images that we already tested neur-
ally to look closely at the ability of the LaWS of RAD IT linking
hypothesis to predict the image-by-image confusion patterns in
humans. Another obvious direction is to increase the scope of our
images and tasks and explore the effects of crowding, clutter,
occlusion, and correlated backgrounds. Both directions will facil-
itate more stringent neuronal-to-behavioral comparisons and in-
crease the resolution at which neuronal linking hypotheses can be
distinguished. Eventually, more comprehensive behavioral tests
might force us to turn to more complex underlying neural codes
that were not necessary here (e.g., fine-timing or synchrony based
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codes; Engel et al., 2001) and might open the door for investigat-
ing a role for feedback in tasks that require inference (Kersten et
al., 2004; Oliva and Torralba, 2006).

More comprehensive behavioral assays will necessitate con-
ducting them in both humans and nonhuman primates to deter-
mine when the cross-species assumption breaks down. As in
other sensory areas (Connor et al., 1990; Shadlen et al., 1996;
Cohen and Maunsell, 2010), simultaneous recording from be-
having animals will reveal a better estimate of the neuronal pop-
ulation size needed for object recognition and produce accurate
trial-by-trial performance predictions. The LaWS of RAD IT
linking hypothesis reported here brings us a step closer to pre-
dicting the impact of direct manipulation of IT neurons on object
recognition behavior. In such a framework, future investigations
of the behavioral changes in recognition induced by artificial
neuronal manipulation (S. R. Afraz et al., 2006; Verhoef et al.,
2012; A. Afraz et al., 2015) can be used to further refine IT-based
linking hypotheses.

This study sidesteps the important question of how IT neuro-
nal responses are produced. Ongoing work is systematically char-
acterizing the nonlinear transformations from retina through V1,
V2, and V4 (Pasupathy and Connor, 1999; Hegdé and Van Essen,
2000; Rust and DiCarlo, 2012; Freeman et al., 2013; Yamins et al.,
2014). Those approaches need to be combined with the frame-
work presented here to achieve an end-to-end understanding of
the neuronal mechanisms that support core object recognition
behavior (DiCarlo et al., 2012).
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