
CHAPTER 1

Ideal-Observer Models of Cue Integration

Michael S. Landy, Martin S. Banks, and David C. Knill

When an organism estimates a property of the
environment so as to make a decision (“Do I flee
or do I fight?”) or plan an action (“How do I grab
that salt shaker without tipping my wine glass
along the way?”), there are typically multiple
sources of information (signals or “cues”) that
are useful. These may include different features
of the input from one sense, such as vision, where
a variety of cues—texture, motion, binocular
disparity, and so forth—aid the estimation
of the three-dimensional (3D) layout of the
environment and shapes of objects within it.
Information may also derive from multiple
senses such as visual and haptic information
about object size, or visual and auditory cues
about the location of a sound. In most cases,
the organism can make more accurate estimates
of environmental properties or more beneficial
decisions by integrating these multiple sources of
information. In this chapter, we review models of
cue integration and discuss benefits and possible
pitfalls in applying these ideas to models of
behavior.

Consider the problem of estimating the 3D
orientation (i.e., slant and tilt) of a smooth
surface (Hillis, Ernst, Banks, & Landy, 2002;
Hillis, Watt, Landy, & Banks, 2004; Knill
& Saunders, 2003; Rosas, Wagemans, Ernst,
& Wichmann, 2005). An estimate of surface
orientation is useful for guiding a variety of
actions, ranging from reaching for and grasping
an object (Knill, 2005) to judging whether
one can safely walk or crawl down an incline
(Adolph, 1997). Errors in the estimate may
lead to failures of execution of the motor

plan (and a fumbled grasp) or incorrect motor
decisions (and a risky descent possibly leading
to a fall). Thus, estimation accuracy can be very
important, so the observer should use all sources
of information effectively.

The sensory information available to an
observer may come in the form of multiple
visual cues (the pattern of binocular disparity,
linear perspective and foreshortening, shading,
etc.) as well as haptic cues (feeling the surface
with the hand, testing the slope with a foot). If
one of the cues always provided the observer
with a perfect estimate, there would be no
need to incorporate information from other
cues. But cues are often imperfectly related to
environmental properties because of variability
in the mapping between the cue value and a
given property and because of errors in the
nervous system’s measurement of the cue value.
Thus, measured cue values will vary somewhat
unpredictably across viewing conditions and
scenes. For example, stereopsis provides more
accurate estimates of surface orientation for
near than for far surfaces. This is due to
the geometry underlying binocular disparity: A
small amount of measurement error translates
into a larger depth error at long distances than
at short ones. In addition, estimates may be
based on assumptions about the scene and will
be flawed if those assumptions are invalid. For
example, the use of texture perspective cues is
generally based on the assumption that texture
is homogeneously distributed across the surface,
so estimates based on this assumption will
be incorrect if the texture itself varies across
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the surface. For example, viewing a frontoparallel
photograph of a slanted, textured surface could
yield the erroneous estimate that the photograph
is slanted. Unlike stereopsis, the reliability of
texture perspective as a cue to surface orientation
does not diminish with viewing distance.

Because of this uncertain relationship
between a cue measurement and the environ-
mental property to be estimated, the observer
can generally improve the reliability of an
estimate of an environmental property by
combining multiple cues in a rational fashion.
The combination rule needs to take into account
the uncertainties associated with the individual
cues, and those depend on many factors.

Along with the benefit of improving the
reliability of perceptual estimates, there is also a
clear benefit of knowing how uncertain the final
estimate is and how to make decisions given that
uncertainty. Consider, for example, estimating
the distance to a precipitous drop-off (Maloney,
2002). An observer can estimate that distance
most reliably by using all available cues, but
knowing the uncertainty of that estimate can
be crucial for guiding future behavior. If the
future task is to toss a ball as close as possible
to the drop-off, one would use the most likely
distance estimate to plan the toss; the plan would
be unaffected by the uncertainty of the distance
estimate. If, however, the future task is to walk
blindfolded toward the drop-off, the decision of
how far to meander toward the drop would most
certainly be influenced by the uncertainty of the
distance estimate.

Much of the research in this area has focused
on the question of whether cue integration
is optimal. This focus has been fruitful for a
variety of reasons. First, to determine whether
the nervous system is performing optimally
requires a clear, quantitative specification of the
task, the stimulus, and the relationship between
the stimulus and the specified environmental
property. As Gibson (1966) argued, it forces the
researcher to investigate and define the infor-
mation available for the task. As Marr (1982)
put it, it forces one to construct a quantitative,
predictive account of perceptual performance.
Second, for tasks that have been important
for survival, it seems quite plausible that the

organism has evolved mechanisms that utilize
the available information optimally. Therefore,
the hypothesis that sensory information is used
optimally in tasks that are important to the
organism is a reasonable starting point. Indeed,
given the efficacy of natural selection and
developmental learning mechanisms, it seems
unlikely to us that the nervous system would
perform suboptimally in an important task with
stimuli that are good exemplars of the natural
environment (as opposed to impoverished or
unusual stimuli that are only encountered in
the laboratory). Third, using optimality as a
starting point, the observation of suboptimal
behavior can be particularly informative. It can
indicate flaws in our characterization of the
perceptual problem posed to or solved by the
observer; for example, it could indicate that
the perceptual system is optimized for tasks
other than one we have studied or that the
assumptions made in our formulation of an
ideal-observer model fail to capture the problem
posed to observers in naturalistic situations. Of
course, there remains the possibility that we have
characterized the sensory information and the
task correctly, but the nervous system simply has
not developed the mechanisms for performing
optimally (e.g., Domini & Braunstein, 1998;
Todd, 2004). We expect that such occurrences
are rare, but emerging scientific investigations
will ultimately determine this.

In this way, “ideal-observer” analysis is a
critical step in the iterative scientific process of
studying perceptual computations. At perhaps
a deeper level, ideal-observer models help us
to understand the computational structure of
what are generally complex problems posed to
observers. This can in turn lead to understanding
complex behavior patterns by relating them to
the features of the problems from which they
arise (e.g., statistics of natural environments
or noise characteristics of sensory systems).
Ideal-observer models provide a framework for
constructing quantitative, predictive accounts
of perceptual performance at Marr’s computa-
tional level for describing the brain (Marr, 1982).

Several studies have found that humans
combine sensory signals in an optimal fashion,
taking into account the variation of cue
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reliability with viewing conditions, and resulting
in estimates with maximum reliability (e.g.,
Alais & Burr, 2004; Ernst & Banks, 2002;
Hillis et al., 2004; Knill & Saunders, 2003;
Landy & Kojima, 2001; Tassinari, Hudson, &
Landy, 2006). These results suggest that human
observers are optimal for a wide variety of
perceptual and sensorimotor tasks.

This chapter is intended to provide a general
introduction to the field of cue combination
from the perspective of optimal cue integration.
We work through a number of qualitatively
different problems, and we hope thereby to
illustrate how building ideal observers helps
formulate the scientific questions that need
to be answered before we can understand
how the brain solves these problems. We
begin with a simple example of integration
leading to a linear model of cue integration.
This is followed by a summary of a general
approach to optimality: Bayesian estimation and
decision theory. We then review situations in
which realistic generative models of sensory
data lead to nonlinear ideal-observer models.
Subsequent sections review empirical studies of
cue combination and issues they raise, as well as
open questions in the field.

LINEAR MODELS FOR
MAXIMUM RELIABILITY

There is a wide variety of approaches to cue
integration. The specific approach depends on
the assumptions the modeler makes about
the sources of uncertainty in sensory signals
as well as what the observer is trying to
optimize. Quantitative empirical evidence can
then determine whether those assumptions
are valid.

The simplest such models result in linear cue
integration. For the case of Gaussian noise, linear
cue integration is optimal for an observer who
tries to maximize the precision (i.e., minimize
the variance) of the estimate made based on the
cues. Suppose you have samples xi , i = 1, · · · , n,
of n independent, Gaussian random variables Xi

that share a common mean µ and have variances
σ 2

i . The minimum-variance unbiased estimator

of µ is a weighted average

x̂ =
n∑

i=1

wixi, (1.1)

where the weight wi of cue i is proportional
to that cue’s reliability ri (defined as its inverse
variance, ri = 1/σ 2

i ):

wi = ri
n∑

j=1
rj

(1.2)

(Cochran, 1937). The reliability r of this
integrated estimate is

r =
n∑

i=1

ri . (1.3)

As a result, the variance of the integrated
estimate is generally lower than the variance
of the individual estimates and never worse
than the least variable of them. Thus, if an
observer has access to unbiased estimates of a
particular world property from each cue, and the
cues are Gaussian distributed and conditionally
independent (meaning that for a given value
of the world property being estimated, errors
in the estimates derived from each cue are
independent), the minimum-variance estimate
is a weighted average of the individual estimates
from each cue (Landy, Maloney, Johnston, &
Young, 1995; Maloney & Landy, 1989).

To form this estimate, an observer needs to
represent and compute with estimates of cue
uncertainty. The estimates could be implicit
in the neural population code derived from
the sensory features associated with a cue or
might be explicitly computed, for example, by
measuring the stability of each cue’s estimates
over repeated views of the scene. They could
also be assessed online by using ancillary
information (viewing distance, amount of self-
motion, etc.) that impacts cue reliability (Landy
et al., 1995). Estimates of reliability need not
be explicitly represented by the nervous system,
but they might be implicit in the form of the
neural population code (Ma, Beck, Latham, &
Pouget, 2006).
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If the variability in different cue estimates
is correlated, the minimum-variance unbiased
estimator will not necessarily be a weighted
average. For some distributions, it is a nonlinear
function of the individual estimates; for others,
including the Gaussian, it is still a weighted aver-
age, but the weights take into account the covari-
ance of the cues (Oruç, Maloney, & Landy, 2003).

BAYESIAN ESTIMATION AND
DECISION MAKING

The linear model has dominated cue-integration
research and has provided important insights
into human perceptual and sensorimotor pro-
cessing. However, most perceptual and senso-
rimotor problems encountered by an observer
in the natural world cannot be accurately
characterized by the linear model. In many cases,
the linear model provides a reasonable “local”
approximation to the ideal observer. In those
cases, the complexity of the problem is reduced
in the laboratory setting and this reduction
is assumed to be known by the observer. To
characterize the complex problems presented
to observers in the real world, a more general
computational framework is needed. Bayesian
decision theory provides such a framework.

Priors, Likelihoods, and Posteriors

In the Bayesian framework, the information
provided by sensory information to estimate a
scene property or make a decision related to
that property is represented by a “posterior”
probability distribution

P(s|d) = P(d|s)P(s)

P(d)
, (1.4)

where s represents the scene property or proper-
ties of interest (possibly multidimensional) and
d is a vector of sensory data. In this formulation,
it is important to delineate what is known by the
observer from what is unknown. The data, d , are
given to and therefore known by the observer.
The scene properties, s, are unknown. The
probability distribution, P(s|d), represents the
probabilities of different values of s being “true,”
given the observed data. If the distribution is

narrowly concentrated around one value of s,
it represents reliable data; if broad, it represents
unreliable data. If it is narrow in one dimension
and broad in others, it reflects a situation in
which the information provided by d reliably
determines s along the narrow dimension but
does not along the other dimensions.

Bayes’ rule (Eq. 1.4) shows how to compute
the posterior distribution from prior knowledge
about the statistics of s—represented by the
prior distribution P(s) (that is, which values
of s are more likely in the environment than
others)—and knowledge about how likely scenes
with different values of s are to give rise to the
observed data d , which is represented by the
likelihood function P(d|s). Because d is given,
the likelihood is a function of the conditioning
variable and does not behave like a probability
distribution (i.e., it need not integrate to one),
and hence it is often notated as L(s|d). The third
term in the denominator, P(d), is a constant,
normalizing term (so that the full expression
integrates to one), and it can generally be
ignored in formulating an estimation procedure.
From a computational point of view, if one
has a good “generative” model for how the
data are generated by different scenes (e.g., the
geometry of disparity and the noise associated
with measuring disparity) and a good model of
the statistics of scenes, one can use Bayes’ rule
to compute the posterior distribution, P(s|d),
and hence derive a full representation of the
information provided by some observed sensory
data about scene properties of interest.

Gain/Loss Functions, Estimation, and
Decision Making

Having computed the posterior distribution, the
Bayesian decision maker next chooses a course
of action. For that action to be optimal, one
must have a definition of optimality. That is,
one must have a loss function that defines the
consequences of the decision maker’s action.
Optimality is defined as making decisions that
minimize expected loss. For Bayesian estimation,
the observer’s task is to choose an estimate,
and often the loss is defined as a function of
estimation error (the difference between the
chosen estimate and the true value of the
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parameter in the world). In other situations,
the observer makes a discrete decision (e.g.,
categorizing the stimulus as signal or noise) or
forms a motor plan (e.g., a planned trajectory to
grasp an observed object).

Bayesian decision theory prescribes the
optimal choice of action based on several
ingredients. First, one needs a model of the
environment: that is, a set of possible states of
the world or scenes and a prior distribution
across them (random variable S with prior
distribution P(s)). This world leads to noisy
sensory data d conditioned on a particular state
of the world (with distribution P(d|s)). The task
of the observer is to choose an optimal action
a(d), which might be an estimate of a scene
parameter, a button press in an experiment,
or a plan for movement in a visuomotor task.
For experimental tasks or estimation, the action
is the final output of the decision-making task
upon which gain or loss is based. In other
situations, like visuomotor control, the out-
come itself—the executed movement—may be
stochastic. So we distinguish the outcome of the
plan (e.g., the movement trajectory) t as distinct
from the selected action a(d) (with distribution
P(t |a(d))). The final ingredient is typically called
the loss function, although we also use the
negative of loss, or gain g (t , s). Note that g is
a function only of the actual scene s and actual
outcome of the decision t . An optimal choice of
action is one that maximizes expected gain

aopt = arg max
a

EG(a), where

EG(a) =
∫∫∫

g (t , s)P(t |a(d))P(d|s)

P(s)dt dd ds. (1.5)

It is worth reviewing some special cases of
this general method. For estimation, the final
output is the estimate itself (t ≡ a(d)). If the
prior distribution is uniform over the domain
of interest (P(s) = c , a constant) and the
gain function only rewards perfectly correct
estimates (a delta function centered on the
correct value of the parameter), then Eq. 1.5
results in maximum-likelihood estimation: that

is, choosing the mode of P(d|s) over possible
scenes s. If the prior distribution is not uniform,
the optimal method is maximum a posteriori
(MAP) estimation, that is, choosing the mode
of the posterior P(s|d). If the gain function is
not a delta function, but treats estimation errors
symmetrically (i.e., is a function of

∣∣ŝ − s
∣∣, where

ŝ is the estimate and s is the true value in the
scene), the optimal estimation procedure corre-
sponds to first convolving the gain function with
the posterior distribution, and then choosing
the estimate corresponding to the peak of that
function. For example, the oft-used squared-
error loss function leads the optimal observer
to use a minimum-variance criterion and hence
the mean of the posterior as the estimate.

Bayesian Decision Theory and
Cue Integration

The most straightforward application of
Bayesian decision theory to cue integration
involves the case in which the sensory data
associated with each cue are conditionally
independent. In that case, we can write the
likelihood function for all of the data as the
product of likelihood functions for the data
associated with each cue,

P(d1, · · · , dn|s) =
n∏

i=1

P(di |s), (1.6)

where di is a data vector representing the sensory
data associated with cue i (e.g., disparity for the
stereo cue) and s is the scene variable being
estimated. Combining Eqs. 1.4 and 1.6, we have

P(s|d1, · · · , dn) ∝ P(s)
n∏

i=1

P(di |s), (1.7)

where we have dropped the constant denomina-
tor term for simplicity.

If the individual likelihood functions and the
prior distribution are Gaussian, with variances
σ 2

i and σ 2
prior, then the posterior distribution will

be Gaussian with mean and variance identical
to the minimum-variance estimate; that is,
for Gaussian distributions, the MAP estimate
and the mean of the posterior both yield a
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linear estimation procedure identical to that
of the minimum-variance unbiased estimator
expressed in Eqs. 1.1–1.3. If the prior distribution
is flat or significantly broader than the likelihood
function, the posterior is simply the product of
individual cue likelihoods and the mode and
mean correspond to the maximum-likelihood
estimate of s. If the Gaussian assumption
holds, but the data associated with the different
cues are not conditionally independent, the
MAP estimate will remain linear, but the cue
weights have to take into account the covariance
structure of the data, resulting in the same
weighted linear combination as the minimum-
variance, unbiased estimate (Oruç et al., 2003).

While a linear system can characterize the
optimal estimator when the estimates are Gaus-
sian distributed and conditionally independent,
the Bayesian formulation offers an equally
simple, but much more general formulation.
In essence, it replaces the averaging of esti-
mates with the combining of information as
represented by multiplying likelihood functions
and priors. It also replaces the notion of
perceptual estimates as point representations
(single, specific values) with a notion of
perceptual estimates as probability distributions.
This allows one to separate information (as
represented by the posterior distribution) from
the task, as represented by a gain function.

Figure 1.1 illustrates Bayesian integration in
two simple cases: estimation of a scalar variable
(size) from a pair of cues (visual and haptic) with
Gaussian likelihood functions, and estimation
of a two-dimensional variable (slant and tilt)
from a pair of cues, one of which is decidedly
non-Gaussian (skew symmetry). While the latter
may appear more complex than the former, the
ideal observer operates similarly by multiplying
likelihood functions and priors.

NONLINEAR MODELS:
GENERATIVE MODELS AND
HIDDEN VARIABLES

We now turn to conditions under which optimal
cue integration is not linear. We will describe
three qualitatively different features of cue-
integration problems that make the linear model

inappropriate. One such situation is when the
information provided by two cues interacts
because each cue disambiguates scene or viewing
variables that the other cue requires to determine
a scene property. Another problem is that the
information provided by many cues, particularly
visual depth cues, depends on what prior
assumptions about the world hold true and
cues can interact by jointly determining the
appropriate world model. A special case of this
is a situation in which an observer has to decide
whether different sensory cues should or should
not be combined into one estimate at all.

Cue Disambiguation

The raw sensory data from different cues are
often incommensurate in the sense that they
specify a scene property in different coordinate
frames of reference. For example, auditory cues
provide information about the location of a
sound source in head-centered coordinates,
whereas visual cues provide information in
retinal coordinates. To apply a linear scheme
for combining these sources of information,
one would first need to use an estimate of
gaze direction relative to the head to convert
visual position estimates to head-centered
coordinates or auditory position estimates to
retinal coordinates, so that the two location
estimates are in the same coordinates. Similarly,
visual depth estimates based on relative motion
should theoretically be scaled by an estimate of
the viewing distance to provide an estimate of
metric depth (i.e., an estimate in centimeters).
On the other hand, depth derived from disparity
needs to be scaled approximately by the square
of the viewing distance to put it in the same
units. Landy et al. (1995) called this preliminary
conversion into common units promotion.

A normative Bayesian model finesses the
problem in a very elegant way. Figure 1.2
illustrates the structure of the computations
as applied to disparity and velocity cues to
relative depth. The key observation is that the
generative model for the sensory data associated
with both the disparity and velocity cues depends
not only on the scene property being estimated
(relative depth) but also on the viewing distance
to the fixated point. We will refer to viewing
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Figure 1.1 Bayesian integration of sensory cues. (A) Two cues to object size, visual and haptic, each have
Gaussian likelihoods (as in Ernst & Banks, 2002). The resulting joint likelihood is Gaussian with mean and
variance as predicted by Eqs. 1.1–1.3. (B) Two visual cues to surface orientation are provided: skew symmetry
(a figural cue) and stereo disparity (as in Saunders & Knill, 2001). Surface orientation is parameterized as
slant and tilt angles. Skew-symmetric figures appear as figures slanted in depth because the brain assumes
that the figures are projected from bilaterally symmetric figures in the world. The information provided by
skew symmetry is given by the angle between the projected symmetry axes of a figure, shown here as solid
lines superimposed on the figure. Assuming that visual measurements of the orientations of these angles in
the image are corrupted by Gaussian noise, one can compute a likelihood function for three-dimensional
(3D) surface orientation from skew. The result, as shown here, is highly non-Gaussian. The shape of the
likelihood function is highly dependent on the spin of the figure around its 3D surface normal. Top row
of graphs: skew likelihood for the figure shown at the top. Middle row: two stereo likelihoods centered on
larger (left) and smaller (right) values of slant. Bottom row: When combined with stereoscopic information
from binocular disparities, assuming the prior on surface orientation is flat. This leads to the prediction
that perceptual biases will depend on the spin of the figure. It also leads to the somewhat counterintuitive
prediction illustrated here that changing the slant suggested by stereo disparities should change the perceived
tilt of symmetric figures. This is exactly the pattern of behavior shown by subjects.
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Figure 1.2 Cue disambiguation. (A) Likelihood function for the motion cue as a function of depth and
viewing distance P(dvel|sdepth, sdistance). The depth implied by a given retinal velocity is proportional to the
viewing distance. (B) Likelihood function for the disparity cue P(ddisp|sdepth, sdistance). The depth implied by
a given retinal disparity is approximately proportional to the square of the viewing distance. (C) A Gaussian
prior on viewing distance. (D) Combined likelihood function P(ddisp, dvel, sdistance|sdepth). The right-hand side
of the plot illustrates the likelihood for depth alone, P(ddisp, dvel|sdepth), integrating out the unknown distance.

distance as a hidden variable in the problem
(statisticians refer to these kinds of variables
as nuisance parameters; for more discussion of
the role of hidden variables and marginalization
in visual cue integration, see Knill, 2003).
The generative model for both the relative-
disparity and relative-velocity measurements
requires that both relative depth and viewing
distance be specified. This allows one to compute
likelihood functions for both cues, dvel and ddisp,
P(dvel|sdepth, sdistance) and P(ddisp|sdepth, sdistance)
(assuming one knows the noise characteristics
of the disparity and motion sensors). Assuming
that the noises in the two sensor systems
are independent, we can write the likelihood
function for the two cues as the product of the
likelihood functions for the individual cues,

P(ddispdvel|sdepth, sdistance)

= P(ddisp|sdepth, sdistance)

× P(dvel|sdepth, sdistance). (1.8)

This is not quite what we want, however. What
we want is the likelihood function for depth
alone, P(ddisp, dvel|sdepth). This is derived by
integrating (“marginalizing”) over the hidden
variable, sdistance:

P(ddispdvel|sdepth)

=
∫

P(ddisp, dvel, sdistance|sdepth)dsdistance

=
∫

P(ddisp, dvel|sdistance, sdepth)

× P(sdistance)dsdistance

=
∫

P(ddisp|sdepth, sdistance)

× P(dvel|sdepth, sdistance)P(sdistance)dsdistance.

(1.9)

(Note that the second step required that depth
and distance be independent.) The important
thing to note is that the joint likelihood for sdepth is
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not the product of the individual cue likelihoods,
P(ddisp|sdepth) and P(dvel|sdepth). Rather, we had
to expand the representational space for the
scene to include viewing distance, express both
likelihood functions in that space, multiply the
likelihoods in the expanded space and then
integrate over the hidden variable to obtain a
final likelihood. If we had a nonuniform prior
on relative depth, we would then multiply the
likelihood function by the prior and normalize to
obtain the posterior distribution. As illustrated
in Figure 1.2, both cues are consistent with a
large range of relative depths (depending on the
viewing distance assumed), but because the cues
depend differently on viewing distance, when
combined they can disambiguate both relative
depth and viewing distance (Richards, 1985).

An alternative to this approach would be
to estimate the viewing distance from ancillary
information (e.g., vergence signals from the
oculomotor system). With these parameters
fixed, optimal cue integration will again be linear.
However, this approach is almost certainly
suboptimal because it ignores the noise in
the ancillary signals. The optimal approach is
to incorporate the information from ancillary
signals in the same Bayesian formulation. In
this case, extraretinal vergence signals specify
a likelihood function in depth-distance space
that is simply stretched out along the depth
dimension (because those signals say nothing
about relative depth) (much like the prior in
the lower-left panel of Fig. 1.2). In this way,
vergence signals disambiguate viewing distance
only in so much as the noise in the signals
allows. If that noise is high, the disambiguating
effects of the nonlinear interaction between the
relative disparity and relative motion signals will
dominate the perceptual estimate.

Robust Estimation and Mixture Priors

One might ask how a normative system should
behave when cues suggest very different values
for some scene property. Consider a case in
which disparity indicates a frontoparallel surface,
but the texture pattern in the image suggests a
surface slanted away from frontoparallel by 60◦.
A linear system would choose some intermediate
slant as its best estimate, but if the relative

reliabilities of the two cues (i.e., the inverse of the
variances of the associated likelihood functions)
were similar, this estimate would be at a slant (say
30◦) that is wildly inconsistent with both cues.

On the face of it, this appears like a standard
problem in robust statistics. For example, the
mean of a set of samples can be influenced
strongly by a single outlier, and robust, nonlinear
statistical methods, such as the trimmed mean,
are intended to alleviate such problems (Hampel,
1974; Huber, 1981). The trimmed mean and
related methods reduce the weight of a given data
point as the value of that data point becomes
increasingly discrepant from the bulk of the
sample. The application of robust statistical
methods to cue integration is difficult, however,
because one is usually dealing with a small
number of cues rather than a large sample, so
it is often unclear which cue should be treated as
the discrepant outlier.

A discrepant cue may result from a partic-
ularly noisy sample, but it may also indicate
that the estimate from that cue was fallacious
due to a mistaken assumption (Landy et al.,
1995). The second problem is more common
than the first. The observation that outliers
may arise from fallacious assumptions suggests
a reconceptualization of the outlier problem.
Consider the case of depth perception. All
pictorial depth cues rely on prior assumptions
about objects in the world (texture relies on
homogeneity, linear perspective on parallelism,
relative motion on rigidity, etc.). A notable and
very simple example is that provided by the
compression cue (Fig. 1.3A). The visual system
interprets figures that are very compressed in one
direction as being slanted in 3D in that direction.
For example, the visual system uses the aspect
ratio of ellipses in the retinal image as a cue to
the 3D slant of a figure, so much so that it gives
nearly equal weight to that cue and disparity in a
variety of viewing conditions (Hillis et al., 2004;
Knill & Saunders, 2003). Of course, the aspect
ratio of an ellipse on the retina is only useful
if one can assume that the figure from which
it projects is a circle. This is usually a reasonable
assumption because most ellipses in an image are
circular in the world. When disparities suggest
a slant differing by only a small amount from
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that suggested by the compression cue, it makes
sense to combine the two cues linearly. When
disparities suggest a very different slant, however,
the discrepancy provides evidence that one is
viewing a noncircular ellipse. In this situation, an
observer should down-weight the compression
cue or even ignore it.

Figure 1.3 illustrates how these observations
are incorporated into a Bayesian model (see

Chapter 9 and Knill, 2007b, for details). The
generative model for the aspect ratio of an ellipse
in the image depends on both the 3D slant
of a surface and the aspect ratio of the ellipse
in the world. The aspect ratio of the ellipse
in the world is a hidden variable and must
be integrated out to derive the likelihood for
slant. The prior distribution on ellipse aspect
ratios plays a critical role here. The true prior is
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Figure 1.3 Bayesian model of slant from texture (Knill, 2003). (A) Given the shape of an ellipse in the retinal
image, the likelihood function for slant is a mixture of likelihood functions derived from different prior
models on the aspect ratios of ellipses in the world. The illustrated likelihoods were derived by assuming
that noise associated with sensory measurements of aspect ratio has a standard deviation of 0.03, that the
prior distribution of aspect ratios of randomly shaped ellipses in the world has a standard deviation of 0.25,
and that 90% of ellipses in the world are circles. The mixture of narrow and broad likelihood functions
creates a likelihood function with long tails, as shown in the blow-up. (B) Combination of a long-tailed
likelihood function from compression (blue) and a Gaussian likelihood function from disparity (red) yields
a joint likelihood function that peaks between the two individual estimates when the individual estimates are
similar, much as with the linear, Gaussian model of cue integration. (C) When the cue conflict is increased,
the heavy tail of the compression likelihood results in a joint likelihood that peaks at the disparity estimate,
effectively vetoing the compression cue.
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a mixture of distributions, each corresponding
to different categories of shapes in the world.
A simple first-order model is that the prior
distribution is a mixture of a delta function at
one (i.e., all of the probability massed at one)
representing circles and a broader distribution
over other possible aspect ratios representing
randomly shaped ellipses. In Figure 1.3, the
width of the likelihood for the circle model is
due to sensory noise in measurement of ellipse
aspect ratio. The result is a likelihood function
that is a mixture of two likelihood functions—
one derived for circles, in which the uncertainty
in slant is caused only by noise in sensory
measurements of shape on the retina, and one
derived for randomly shaped ellipses, in which
the uncertainty in slant is a combination of
sensory noise and the variance in aspect ratios
of ellipses in the world. The result is a likelihood
function for the compression cue that is peaked
at the slant consistent with a circle interpretation
of the measured aspect ratio but has broad tails
(Fig. 1.3A).

The likelihood function for both the com-
pression cue and the disparity cue results from
multiplying the likelihood function for disparity
(which presumably does not have broad tails;
but see Girshick and Banks, 2009, for evidence
that the disparity likelihood also has broad tails)
with the likelihood function for the compression
cue. The resulting likelihood function peaks at
a point either between the peaks of the two
cue likelihood functions when they are close to
one another (small cue conflicts, Fig. 1.3B) or
very near the peak of the disparity likelihood
function when they are not close (large cue
conflicts, Fig. 1.3C). The latter condition appears
behaviorally as a down-weighting or vetoing
of the compression cue. Thus, multiplying
likelihood functions can result in a form of
model selection, thereby determining which
prior constraint is used to interpret a cue.
Similar behavior can be predicted for many
different depth cues because they also derive
their informativeness from a mixture of prior
constraints that hold for different categories of
objects. This behavior of integrating with small
cue conflicts and vetoing with large ones is a form
of model switching and has been observed with

disparity-perspective conflict stimuli (Girshick
& Banks, 2009; Knill, 2007b) and with auditory-
visual conflict stimuli (Wallace et al., 2004).

Causal Inference

The development of the linear cue-combination
model is based on the assumption that the
individual cues are all estimating the same
feature of the world (e.g., the depth or location
of the same object). However, the observer may
not know for sure that the cues derive from the
same source in the world. The observer has to
first infer whether the scene that gave rise to the
sensory input consists of one or two sources (i.e.,
one or two objects) before determining whether
the sources should be integrated. That is, the
observer is faced with inferring the structure
of the scene, not merely producing a single
estimate.

Consider the problem of interpreting audi-
tory and visual location cues. When presented
with both a visual and auditory stimulus, an
observer should take into account the possibility
that the two signals come from different sources
in the world. If they come from one source,
it is sensible to integrate them. If they come
from different sources, integration would be
counterproductive. As we mentioned in the
previous section, behavior consistent with model
switching has been observed in auditory-visual
integration experiments (Wallace et al., 2004).
Specifically, when auditory and visual stimuli are
presented in nearby locations, subjects’ estimates
of the auditory stimulus are pulled toward the
visual stimulus (the ventriloquist effect). When
they are presented far apart, the auditory and
visual signals appear to be separate sources in
the world and do not affect one another.

Recent work has approached this causal-
inference problem using Bayesian inference
of structural models (see Chapters 2, 3, 4,
and 13). These models typically begin with a
representation of the causal structure of the
sensory input in the form of a Bayes net (Pearl,
1988). For example, Körding and colleagues
(2007) used a structural model to analyze data
on auditory-visual cue interactions in location
judgments. The structural model (Fig. 1.4) is a
probabilistic description of a generative model
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of the scene. According to this model, the
generation of auditory and visual signals can be
thought of as a two-step process. First, a weighted
coin flip determines whether the scene consists
of one cause (with probability pcommon, left-hand
branch) or separate causes for the auditory and
visual stimuli (right-hand branch). If there is
one cause, the location of that cause, x , is then
determined (as a random sample from a prior
distribution of locations), and the source at that
location then gives rise independently to visual
and auditory signals. If there are two causes,
each has its own independently chosen location,
giving rise to unrelated signals.

An observer has to invert the generative
model and infer the locations of the visual
and auditory sources (and whether they are
one and the same). While there are numerous,
mathematically equivalent ways to formulate the
ideal observer, the formulation that is consistent
with the others in this chapter is one in which
an observer computes a posterior distribution
on both the auditory and visual locations, xa

and xv . The prior in this case is a mixture of
a delta function along the diagonal in xa − xv

space (corresponding to situations in which the
auditory and visual signals derive from the same

pcommon 1−pcommon{

X XV XA

V AV A

Common
cause?

Figure 1.4 A causal-inference model of the
ventriloquist effect. The stimulus either comes from
a common source or from two independent sources
(governed by probability pcommon). If there is a
common source, the auditory and visual cues both
depend on that common source’s location. If not,
each cue depends upon an independent location.

source) and a broad distribution over the entire
space (corresponding to situations in which the
locations are independent). In this formulation,
the prior distribution has broad tails, but the
result is similar. If the two signals indicate
locations near one another, the posterior is
peaked at a point on the diagonal corresponding
to a position between the two. If they are far
apart, it peaks at the same point as the likelihood
function. The joint likelihood function for the
location of the visual and auditory sources can
be described by the same sort of mixture model
used in the earlier slant example (for further
discussion of causal and mixture models, see
Chapters 2, 3, 4, 12, and 13).

Conclusions (Theory)

The previous theoretical discussion has a
number of important take-home messages. First,
Bayesian decision theory provides a completely
general normative framework for cue integra-
tion. A linear approximation can characterize
the average behavior of an optimal integrator
in limited circumstances, but many realistic
problems require the full machinery of Bayesian
inference. This implies that the same framework
can be used to build models of human
performance, for example, by constructing and
testing model priors that are incorporated into
human perceptual mechanisms or by modeling
the tasks human perceptual systems are designed
to solve using appropriate gain functions.
Second, the representational framework used to
model specific problems depends critically on
the structure of the information available and the
observer’s task. In the aforementioned examples,
appropriate representational primitives include
“average” cue estimates (in linear models),
additive mixtures of likelihood functions, and
graphical models. Finally, constructing norma-
tive models of cue integration serves to highlight
the qualitative structure of specific problems.
This implies that normative models can suggest
the appropriate scientific questions that need to
be answered to understand, at a computational
level, how the brain solves specific problems.
In some cases, this may mean that appropriate
questions revolve around the weights that
observers use to integrate cues. In others, they
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may revolve around the mixture components of
the priors people use. In still others, they center
on the causal structure assumed by observers in
their models of the generative process that gives
rise to sensory data.

THEORY MEETS DATA

Methodology

A variety of experimental techniques has
been used to test theories of cue integration.
Many researchers have used variants of the
perturbation-analysis technique introduced by
Young and colleagues (Landy et al., 1995;
Maloney & Landy, 1989; Young, Landy, &
Maloney, 1993) and later extended to intersen-
sory cue combination (Ernst & Banks, 2002).
Consider the combination of visual and haptic
cues to size (Ernst & Banks, 2002). The visual
stimuli are stereoscopic random-dot displays
that depict a raised bar on a flat background
(Fig. 1.5). The haptic stimuli are also a raised bar
presented with force-feedback devices attached
to the index finger and thumb. Four kinds of
stimuli are used: visual-only (the stimulus is
seen but not felt); haptic-only (felt but not
seen); two-cue, consistent stimuli (seen and
felt, and both cues depict the same size); and

Figure 1.5 Multisensory stimulus used by Ernst
and Banks (2002). A raised bar was presented
visually as a random-dot stimulus with binocular
disparity displaying a bar height xv and, in
inconsistent-cues stimuli, haptically with a height
xh = xv + "x .

two-cue, inconsistent stimuli (in which the visual
stimulus depicts one size xv and the haptic
stimulus indicates a different size xh). Subjects
are presented with two stimuli sequentially and
indicate which was larger. For example, a subject
is shown two visual-only stimuli that depict bars
with heights xv and xv +"xv . The threshold value
of "xv (the just-noticeable difference or JND) is
used to estimate the underlying single-cue noise
σv . An analogous single-cue experiment is used
to estimate the haptic-cue noise σh . Interleaved
with the visual-only and haptic-only trials, the
two-cue stimuli are also presented. On such
trials, subjects discriminate the perceived size
of an inconsistent-cues stimulus in which the
size depicted by haptics is perturbed from that
depicted visually, xh = xv + "x , as compared to
a consistent-cues stimulus in which x ′

h = x ′
v = x ′.

The size x ′ of the consistent-cues stimulus is
varied to find the point of subjective equality
(PSE), that is, the pair of stimuli ((xh, xv) and
(x ′

h, x ′
v)) that are perceived as being equal in

size. Linear, weighted cue integration implies
that x ′ is a linear function of "x with slope wh

(the weight applied to the perturbed cue). The
weight may be predicted independently from
the estimates of the individual cue variances
and Eq. 1.2.

There are a few issues with this method.
First, one might argue that the artificial stimuli
create cue conflicts that exceed those experienced
under natural conditions and therefore that
observers might use a different integration
method than would be used in the natural
environment. One can ask whether the results are
similar across conflict sizes to determine whether
this is a serious concern in a particular set of
conditions.

Second, the method does not necessarily
detect a situation in which the results have been
affected by other unmodeled information such
as another cue or a prior. Consider, for example,
an experiment in which texture and motion cues
to depth were manipulated, and the perturbation
method was used to estimate the two cue weights
(Young et al., 1993). The observers estimated
depth by using texture and motion cues, but
they may also have incorporated other cues such
as blur and accommodation that specify flatness
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and/or a Bayesian prior favoring flatness (Watt,
Akeley, Ernst, & Banks, 2005). As a result of
using these other cues, observers should perceive
all of the stimuli as flatter than specified by
texture and motion, and therefore the texture
and motion weights should sum to less than one
(wt + wm < 1). This perceptual flattening would
occur equally with both the consistent- and
inconsistent-cues stimuli, and therefore would
not affect points of subjective equality. In par-
ticular, the inconsistent-cues stimulus for which
"x = 0 is identical to the consistent-cues stim-
ulus in which x ′ = xt = xm and thus these two
stimuli must be subjectively equivalent (except
for measurement error). In this experimental
design, the consistent-cues stimuli are used as
a “yardstick” to measure the perceived depth of
the inconsistent-cues stimulus. To uncover a bias
in the percept, the yardstick must be qualitatively
different from the inconsistent-cues stimulus. In
the texture-motion case, for example, when the
inconsistent-cues stimuli have reduced texture
or motion reliability (by adding noise to texture
shapes or velocities), but the consistent-cues
stimuli do not have the added stimulus noise, the
relative flattening of the noisy stimuli becomes
apparent, and the separately measured weights
sum to less than one (Young et al., 1993).

This experimental design is still useful if
the observer incorporates a nonuniform prior
into the computation of the environmental
property of interest. For example, suppose the
observer has a Gaussian prior on perceived
depth centered on zero depth (i.e., a prior
for flatness) and that the reliability ri of each
experimenter-manipulated cue i is unchanging
across experimental conditions. The prior has
the form of a probability distribution, but it
is a fixed (nonstochastic) contributor to the
computation. That is, as measured in stimulus
units, the use of the prior will have no effect on
the estimation of single-cue JNDs, nor on the
estimation of relative cue weights. All percepts
will be biased toward zero depth, but that will
occur equally for the two discriminanda in each
phase of the experiment and should not affect
the results. Thus, the prior has no effect when
the cue reliabilities {ri} are the same for the
two stimuli being compared. The prior does

have an effect when observers compare stimuli
that differ in reliability: The stimulus with lower
reliability displays a stronger bias toward the
mean of the prior (Stocker & Simoncelli, 2006).
This would occur in comparisons of single-
cue to two-cue stimuli because cue integration
typically increases reliability. Critically, it would
also occur in conditions in which cue reliability
depends on the resulting estimate so that
reliability for each cue varies from trial to trial
as, for example, occurs in the estimation of slant
from texture (Knill, 1998).

Overview of Results

Many studies have supported optimal linear cue
integration as a model of human perception for
stimuli involving relatively small cue conflicts.
By and large, these studies have confirmed the
two main predictions of the model: With small
cue conflicts, cue weights are proportional to
cue reliability, and the reliability for stimuli with
multiple cues is equal to the sum of individual
cue reliabilities. Such studies have been carried
out for combinations of visual cues to depth,
slant, shape (Hillis et al., 2002; Hillis et al., 2004;
Johnston, Cumming, & Landy, 1994; Knill &
Saunders, 2003; Young et al., 1993), and location
(Landy & Kojima, 2001). Multisensory studies
have also been consistent with the model, includ-
ing combinations of visual and haptic cues to size
(Ernst & Banks, 2002; Gepshtein & Banks, 2003;
Hillis et al., 2002) and visual and auditory cues
to location (Alais & Burr, 2004). Some studies
have found suboptimal choices of cue weights
(Battaglia, Jacobs, & Aslin, 2003; Rosas et al.,
2005; Rosas, Wichmann, & Wagemans, 2007).

Cue promotion is an issue for many cue-
integration problems. Consider, for example,
the visual estimation of depth. Stereo stimuli
are misperceived in a manner that suggests
that near viewing distances are overestimated,
and far viewing distances underestimated, for
the purposes of scaling depth from retinal
disparity (Gogel, 1990; Johnston, 1991; Rogers
& Bradshaw, 1995; Watt et al., 2005). This
misscaling could be ameliorated by combining
disparity and relative-motion cues to shape.
However, the evidence for this particular cue
interaction has been equivocal (Brenner &
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Landy, 1999; Johnston et al., 1994; Landy &
Brenner, 2001). It is important to note that
people are essentially veridical at taking distance
into account—little if any overestimation of
near distances and little if any underestimation
of far distances—when all cues to flatness are
eliminated (Watt et al., 2005). In other words,
failures to observe depth constancy may be due
to the influence of unmodeled flatness cues such
as blur and accommodation.

There is some evidence for robustness in
intrasensory cue combination; that is, evidence
that individual cues are down-weighted as they
become too discrepant from estimates based
on other cues. Most laboratory studies involve
only two experimenter-manipulated cues with
small conflicts, but some have looked at cue
integration with large discrepancies. Bayesian
estimation using a mixture prior can lead to
robust behavior. For example, Knill (2007b;
also see Chapter 9) has described two models
for estimation of slant from texture, a more
constrained and accurate model that assumes
the texture is isotropic and a second that
does not make this assumption. By assuming a
mixture prior over scenes (between isotropic and
nonisotropic surface textures), one can predict
a smooth switch from the predictions of one
model to the other as the presented surface tex-
ture becomes increasingly nonisotropic. Human
performance appears to be consistent with the
predictions of this mixture-prior model (Knill,
2007b). Recently, Girshick and Banks (2009)
confirmed Knill’s result that observers’ percepts
are intermediate between cue values for disparity
and texture when the discrepancy between the
two cues is small, and that percepts migrate
toward one cue when the discrepancy is large.
Like Knill, they found that the cue dictating the
large-conflict percept was consistently disparity
in some conditions. But unlike Knill, they also
found other conditions in which the large-
conflict percept was consistently dictated by
texture. Girshick and Banks showed that their
data were well predicted by a Bayesian model in
which both the texture and disparity likelihoods
had broader tails than Gaussians.

Empirical studies suggest that integration is
impeded when the display indicates the two

cues do not come from the same source. For
example, optimal cue integration is found in
combinations of visual and haptic cues to object
size (Ernst & Banks, 2002), but if the haptic
object is in a different location from the visual
object, observers no longer integrate the two
estimates (Gepshtein, Burge, Ernst, & Banks,
2005). Bayesian structural models have been
successful at modeling phenomena like this, for
example, in the ventriloquist effect (Körding
et al., 2007).

Humans also appear to be optimal or nearly
so in movement tasks involving experimenter-
imposed rewards and penalties for movement
outcome (Trommershäuser, Maloney, & Landy,
2003a, 2003b, 2008). Yet when analogous tasks
are carried out involving visual estimation
and integration of visual cues, many observers
use suboptimal strategies (Landy, Goutcher,
Trommershäuser, & Mamassian, 2007). As we
argued earlier, observers should be more likely
to approach optimal behavior in tasks that
are important for survival. It seems reasonable
that accurate visuomotor planning in risky
environments is such a task and that the visual
analog of these movement-planning tasks is not
such a task. There remain many open questions
in determining the limits of optimal behavior by
humans in perceptual and visuomotor decision-
making tasks with experimenter-imposed loss
functions (i.e., decision making under risk).

ISSUES AND CONCERNS

Realism and Unmodeled Cues

Perceptual systems evolved to perform useful
tasks in the natural environment. Accordingly,
these systems were designed to make accurate
estimates of environmental properties in settings
in which many cues are present and large cue
conflicts are rare. The lack of realism and the
dearth of sensory cues in the laboratory give the
experimenter greater stimulus control, but they
may place the perceiver in situations for which
the nervous system is ill suited and therefore may
perform suboptimally.

Bülthoff (1991) describes an experiment in
which the perceived depth of a monocularly
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viewed display is gauged by comparison with
a stereo display. Depth from texture alone,
and depth from shading alone were both
underestimated, but when the two pictorial
cues were combined, depth was approximately
veridical. The depth values appeared to sum
rather than average in the two-cue display.
Bülthoff and Yuille (1991) interpreted this as
an example of “strong fusion” of cues (in
contrast with the “weak fusion” of weighted
averaging). However, these were impoverished
displays and contained other visual cues (blur,
accommodation, etc.) that indicated the display
was flat. Bayesian cue integration predicts
that the addition of cues to a display will
have the effect of reducing the weight given to
these cues to flatness (because increasing the
amount of information about depth increases
the reliability of that information), resulting in
greater perceived depth than that with either of
the experimenter-controlled cues alone.

There is now clear evidence that display cues
to flatness can provide a substantial contribution
to perceived depth. Buckley and Frisby (1993)
observed a striking effect that illustrates the
importance of considering unmodeled cues in
general and specifically the role of cues from the
computer display itself. Their observers viewed
raised ridges presented as real objects or as
computer-graphic images. In one experiment,
the stimuli were stereograms viewed on a com-
puter display. Disparity- and texture-specified
depths were varied independently and observers
indicated the amount of perceived depth. The
data revealed clear effects of both cues. Disparity
dominated when the texture-specified depth
was large, and texture dominated when the
texture depth was small. In the framework of
the linear cue-combination model, the disparity
and texture weights changed depending on the
texture-specified depth.

Buckley and Frisby next asked whether the
results would differ if the stimuli were real
objects. They constructed 3D ridges consisting
of a textured card wrapped onto a wooden form.
Disparity-specified depth was varied by using
forms of different shapes. Texture-specified
depth was varied by distorting the texture
pattern on the card so that the projected pattern

created the desired texture depth once the card
was bent onto the form. The results differed
dramatically: Now the disparity-specified depth
dominated the percept. Buckley and Frisby
speculated that unmodeled focus cues—blur and
accommodation—played an important role in
the difference between the computer display and
real results.

We can quantify their argument by translat-
ing it into the framework of the linear model.
There are three depth cues in their experiments:
disparity, texture, and focus cues; focus cues
specify flatness on the computer-display images
and the true shape on the real objects.

The real-ridge experiment is easier to
interpret, so we start there. In the linear Gaussian
model, perceived depth is based on the sum of
all available depth cues, each weighted according
to its reliability:

d̂ = wddd + wt dt + wf df

wd + wt + wf = 1,
(1.10)

where the subscripts refer to the cues of disparity,
texture, and focus. The depth specified by the
focus cues was equal to the depth specified by
disparity: df = dd . Thus, Eq. 1.10 becomes:

d̂ = (wd + wf )dd + wt dt . (1.11)

The texture cue dt had a constant value k for each
curve in their data figure (their Fig. 3); therefore,

d̂ = (wd + wf )dd + (1 − wd − wf )k. (1.12)

For this reason, when perceived depth is plotted
against disparity-specified depth (dd), the slope
corresponds to the sum of the weights given
to the disparity and focus cues: wd + wf . The
experimentally observed slope was ∼0.95. Thus,
the texture weight wt was small in the real-ridge
experiment.

In the computer-display experiment, focus
cues always signaled a flat surface (Df = 0);
therefore,

d̂ = wddd + wt dt = wddd + (1 − wd − wf )k.

(1.13)
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Thus, the slope of the data in their figures was
an estimate of the disparity weight wd . The slope
was always lower in the computer-display data
than in the real data, and this probably reflects
the influence of focus cues.

Frisby, Buckley, and Horsman (1995) further
explored the cause of increased reliance on
disparity cues with real as opposed to computer-
displayed stimuli. Observers viewed the real-
ridge and computer-display stimuli through
pinholes, which greatly increased depth of
focus, thereby rendering all distances roughly
equally well focused. The computer-display
data were unaffected by the pinholes, but
the real-ridge data were significantly affected:
Those data became similar to the computer-
display data. This result makes good sense.
Viewing through a pinhole renders the blur
in the retinal image similar for a wide range
of distances and causes the eye to adopt a
fixed focal distance. This causes no change in
the signals arising from stereograms on a flat
display, so the computer-display results were
unaffected. The increased depth of focus does
cause a change in the signals arising from real
3D objects—focus cues now signal flatness as
they did with computer-displayed images—so
the real ridge results became similar to the
computer-display results. The work of Frisby and
colleagues, therefore, demonstrates a clear effect
of focus cues. Tangentially, their work shows that
using pinholes is not an adequate method for
eliminating the influence of focus cues.

Computer-displayed images are far and
away the most frequent means of presenting
visual stimuli in depth-perception research. Very
frequently, the potential influence of unmodeled
cues is not considered and so, as we have seen in
the earlier analysis, the interpretation of empiri-
cal observations can be suspect. One worries that
many findings in the depth-perception literature
have been misinterpreted and therefore that
theories constructed to explain those findings are
working toward the wrong goal.

Watt et al. (2005) and Hoffman, Girshick,
Akeley, and Banks (2008) explicitly examined
the role of focus cues in depth perception. They
found that differences in the distance specified
by disparity and the physical distance of the

stimuli (which determines blur and the stimulus
to accommodation) had a systematic effect on
perceived distance and therefore had a consistent
and predictable effect on the perception of the
3D shape of an object.

Estimation of Uncertainty

The standard experimental procedure for
testing optimality includes measurements of
the reliability of individual cues (σ ∝ JND).
For some cue-integration problems, such as
the combination of auditory, haptic, and/or
visual cues to spatial location, this is relatively
straightforward. However, for intramodal cue
integration, difficulties arise in isolating a cue.
And as we argued earlier in the analysis of the
Buckley and Frisby (1993) study, this can lead to
errors in interpretation. Consider, for example,
the estimation of surface slant from the visual
cues of surface texture and disparity. It is easy to
isolate the texture cue by viewing the stimulus
monocularly. In contrast, it is impossible to
produce disparity without surface markings
from which disparities can be estimated.

The best one can do in these situations is
to generate stimuli in which the information
provided by one of the two cues is demonstrably
so unreliable as to be useless for performing
the psychophysical task. For the stereo-texture
example, Hillis et al. (2004) and Knill and
Saunders (2003) did this by using sparse
random-dot textures when measuring slant-
from-disparity thresholds. While a random-dot
texture generates strong disparity cues to shape,
the texture cue provided by perspective distor-
tions (changes in dot density) is so unreliable that
its contribution is likely to be small (Hillis et al.,
2004; Knill & Saunders, 2003). Hillis and col-
leagues (2004) showed this by examining cases
in the two-cue experiment in which the texture
weight was nearly zero; in those cases, a texture
signal was present, but the percepts were dictated
by the disparity signal. They found that those
two-cue JNDs were the same as the disparity-
only JNDs. The close correspondence supports
the assumption that the disparity-alone dis-
crimination thresholds provided an estimate of
the appropriate reliability for the two-cue
experiment. Knill and Saunders (2003) took a
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different approach. In their study, the random-
dot textures used in the stimuli to measure slant-
from-stereo thresholds were projected from the
same slant as indicated by disparities and thus
contained perspective distortions that could in
theory be used to judge slant. They showed,
however, that when discriminating the slants of
these stimuli viewed monocularly, subjects were
at chance regardless of the pedestal slant or the
difference in slant between two stimuli.

Single-cue discrimination experiments are
typically used to estimate the uncertainty
associated with individual cues. Suppose that,
in addition to the uncertainty inherent in the
individual cues (which we model as additive
noise sources N1 and N2), there is uncertainty
due to additional noise late in the process, which
we term decision noise (Nd , Fig. 1.6). Suppose
further that this noise corrupts the estimate after
the cues are combined but prior to any decisions
involving this estimate. If this is the case, the
single-cue experiments will provide estimates
of the sum of the cue uncertainty and the
uncertainty created by the added late noise (e.g.,
σ 2

1 + σ 2
d ). The optimal cue weights are still those

defined by Eq. 1.2 (based on the individual cue
reliabilities, e.g., r1 = 1/σ 2

1 ). By using the results
of the single-cue discrimination experiments,
the experimenter will estimate the single-cue
reliabilities as, for example, r ′

1 = 1/(σ 2
1 + σ 2

d ).
The resulting predictions of optimal cue weights
based on Eq. 1.2 will be biased toward equality

+

Nd

+

x1

x2

N1

+

N2

+

w1

w2

Figure 1.6 Illustration of a model that incorpo-
rates both early, single-cue noise terms (N1 and N2)
as well as a late, postcombination, decision-noise
term (Nd).

(weights of 0.5 for each cue in the slant/disparity
experiment). Fortunately, decision noise affects
PSEs and JNDs in a predictable way, and so
one can gauge the degree to which decision
noise affected the measurements. Both Knill and
Saunders (2003) and Hillis and colleagues (2004)
concluded the effects of decision noise were
negligible.

Another important assumption of these
methods is that subjects use the same infor-
mation in the stimulus to make the single-cue
judgments as the multiple-cue judgments. This
can be a particular concern when the single-cue
stimuli do not generate a compelling percept of
whatever one is studying. In the depth domain,
one has to be concerned about interpreting
thresholds derived from monocular displays
with limited depth information, particularly
when presented on computer displays. One
way around this is to use subjects’ ability to
discriminate changes in the sensory features
(e.g., texture compression) that are the source of
information in a cue and use an ideal-observer
model to map the measured sensory uncertainty
onto the consequent uncertainty in perceptual
judgments from that cue. Good examples of this
outside the cue-integration literature are work
on how motion acuity limits structure-from-
motion judgments (Eagle & Blake, 1995) and
heading judgments form optic flow (Crowell &
Banks, 1996), and how disparity acuity limits
judgments of surface orientation at different
eccentricities and distances from the horopter
(Greenwald & Knill, 2009). In a visuomotor
context, Saunders and Knill (Saunders & Knill,
2004) used estimates of position and motion
acuity to parameterize an optimal feedback-
control model and showed that the resulting
model did a good job at predicting how subjects
integrate position and motion information
about the moving hand to control pointing
movements. Knill (2007b) used psychophysical
measures of aspect-ratio discrimination thresh-
olds to parameterize a Bayesian model for
integrating figural compression and disparity
cues to slant, but he did not test optimality with
the model.

Finally, it is important to note that the
implications of optimal integration differ for
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displays in which a cue is missing (e.g., the
focus cue when viewing a display through a
pinhole) and displays in which the cue is present
but is fixed. When two cues are present rather
than just one, both contribute to perceived
depth, but both of their uncertainties contribute
to the uncertainty of the result. For example,
Eq. 1.3 implies that the JNDs for depth should
satisfy

1

JND2
c

= 1

JND2
1

+ 1

JND2
2

, (1.14)

where JNDc is the threshold for discriminating
consistent-cues, two-cue stimuli, and JND1 and
JND2 are the individual uncertainties of the two
cues (proportional to the standard deviation of
estimates based on each cue), typically measured
by isolating each cue.

Suppose an experimenter fails to isolate each
cue when measuring the single-cue thresholds
and, instead, single-cue thresholds are measured
with both cues present in the stimulus, with one
cue held fixed while discrimination threshold is
measured for the other, variable cue. For such an
experiment, the relationship between thresholds
measured for each cue is different. Subjects’
JNDs should instead satisfy1

1

JNDc

= 1

JND′
1

+ 1

JND′
2

, (1.15)

where JND′
1 and JND′

2 are the JNDs measured
for each cue in the presence of the other, fixed
cue. In fact, this relationship applies regardless
of the weights that subjects give to the cues,

1To see this, assume that JNDs are defined to be the
standard deviation of the noise that must be matched by
the change in perceived depth to reach threshold. Thus, in
the normal perturbation experiment in which single-cue
JNDs are measured in isolation, JND1 = σ1, JND2 = σ2,

and by Eq. 1.3, JNDc = σc = 1/
[(

1/σ 2
1

)
+

(
1/σ 2

2

)]1/2

from which Eq. 1.14 follows. In the Bradshaw and Rogers
(1996) experiment, when only cue 1 is manipulated and
cue 2 is fixed, the weighted combination of the cues must
overcome the combined noise, so that w1"1 + w2"2 =
w1JND′

1 + w2(0) = σc and similarly for JND2, where
"i is the difference in cue value for cue i between the
two discriminanda at threshold. Because the weights are
assumed to sum to 1, Eq. 1.15 follows.

optimal or not. It only depends on the linearity
assumption.

Bradshaw and Rogers (1996) ran such an
experiment, measuring the JNDs of the two
constituent cues in the presence of the other
cue, but the depth indicated by the second cue
was fixed at zero (flat). That is, both cues’ noise
sources were involved. Bradshaw and Rogers
interpreted the resulting improvement in JND
for two-cue displays as indicative of a nonlinear
interaction of the cues. But, their data were, in
fact, reasonably consistent with the predictions
of Eq. 1.15, that is, with the predictions of linear
cue combination (optimal or not).

Estimator Bias

In introducing the cue-combination models in
the theory section of this chapter, we made the
common assumption that perceptual estimates
derived from different cues are unbiased; that is,
we assumed that for any given value of a physical
stimulus variable (e.g., depth or slant), the aver-
age perceptual estimate of that variable is equal
to the true value. This assumption is generally
incorporated in descriptions of optimal models
because it simplifies exposition: Disregarding
bias allows one to focus only on minimizing
variance as an optimality criterion. However,
it seems to us that it is generally impossible
to determine whether sensory estimates derived
from different cues prior to integration are
unbiased relative to ground truth, largely because
we only have access to the outputs of systems
that operate on perceptual estimates (decision or
motor processes) that may themselves introduce
unknown biases. It is possible, however, to
determine whether they are internally consistent,
that is, whether their estimates agree with one
another on average.

If the estimators in the optimal combination
model (Eq. 1.1) are not internally calibrated,
problems may arise. Consider presenting a 3D
stimulus with a slant of 0◦ to the eye and
hand. Let us say that vision and touch are
equally reliable, but that vision is biased by
20◦ because the person is wearing spectacles.
The internal inconsistency introduces a serious
problem: If the stimulus is seen but not felt,
its perceived slant will be 20◦. If it is felt but
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not seen, the percept will be 0◦. If it seen and
felt, the percept will be 10◦ (assuming equal cue
weights in Eq. 1.1). The internal inconsistency
of the estimators has undermined one of the
great achievements of perception: the ability
to perceive a given environmental property as
constant despite changes in the proximal stimuli
used to estimate the property. Thus, it is clearly
important for sensory estimators to maintain
internal consistency with respect to one another
(see Chapter 12).

There is a rich literature on how sensory
estimators maintain internal consistency and
external accuracy (Burian, 1943; Miles, 1948;
Morrison, 1972; Ogle, 1950). The problem is
referred to as sensory recalibration. Adams,
Banks, and van Ee (2001) studied recalibration
of estimates of slant from texture and slant from
disparity by exposing people to a horizontally
magnifying lens in front of one eye. The lens was
worn continuously for 6 days. People were tested
before, during, and after wearing the lens with
three types of stimuli: slanted planes specified by
texture and viewed monocularly, slanted planes
specified by disparity and viewed binocularly,
and two-cue, disparity-texture stimuli viewed
binocularly. The introduction of the lens caused
a change in the disparities measured at the two
eyes such that a binocularly viewed plane that
was previously perceived as frontoparallel was
now perceived as slanted by ∼ 10◦. The apparent
slant of monocularly viewed planes did not
change. Thus, the introduction of the lens had
created a conflict between the perceived slants for
disparity- and texture-based stimuli even when
they specified the same physical slant. Over the
six days, observers adapted until frontoparallel
planes, whether they were defined by texture
alone, disparity alone, or both, were again
perceived as frontoparallel. When the lens was
removed, everyone experienced a negative after-
effect: A disparity-defined frontoparallel plane
appeared slanted in the opposite direction (and
a texture-defined plane did not). The negative
after-effect also went away in a few days as the
observers adapted back to the original no-lens
condition. These observations clearly show that
the visual system maintains internal consistency
between the perceived slants of disparity and

texture stimuli even when the two cues are
put into large conflict by optical manipulation.
Because they maintain calibration with respect
to one another, the visual system can achieve
greater accuracy and precision by appropriate
cue combination as described earlier in the
chapter.

Girshick and Banks (2009) also obtained
persuasive data that disparity and texture
estimators maintain calibration relative to one
another. They measured the slants of single-
cue stimuli that matched the apparent slant
of two-cue stimuli. Specifically, they measured
the slant of a disparity-only stimulus that
matched the perceived slant of a two-cue,
disparity-texture conflict stimulus and they
measured the slant of a texture-only stimulus
that matched the perceived slant of the
same disparity-texture conflict stimulus. The
disparity-only stimulus was a sparse random-
dot textured plane viewed binocularly and the
texture-only stimulus was a Voronoi-textured
plane viewed monocularly. On each trial, one
interval contained a two-cue stimulus, and
the other contained one of the two single-cue
stimuli. Observers indicated the one containing
the greater perceived slant. No feedback was
provided. The slant of the single-cue stimulus
was varied according to a staircase procedure
to find the value that appeared the same as
the two-cue stimulus. Figure 1.7 shows the
results. Each data point represents the disparity-
and texture-specified slants that yielded the
same perceived slant as a particular two-
cue, disparity-texture stimulus. Clearly, the
disparity- and texture-specified slants were
highly correlated and one was not biased relative
to the other, showing that the disparity and
texture estimators were calibrated relative to one
another.

Variable Cue Weights

This discussion brings up one last point: Cue
weights need not be constant, independent of
the value of the parameter being estimated.
Effective cue reliability can vary with conditions,
including with changes in the parameter itself.
This phenomenon has been observed, for
example, with estimation of surface slant.
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Figure 1.7 The slants of single-cue stimuli that
matched the apparent slant of two-cue stimuli. The
data are from Experiment 2 of Girshick and Banks
(2009). On each trial, two stimuli were presented
in sequence. One was a single-cue stimulus: either
texture only or disparity only. The other was a two-
cue stimulus: texture plus disparity. The two-cue,
texture-disparity stimulus had various amounts
of conflict between the slants specified by the
two cues; some conflicts were as large as 75o .
After each trial, observers indicated which of the
two stimuli had the greater perceived slant. Each
data point represents the disparity- and texture-
specified slants that yielded the same perceived slant
as a particular two-cue, disparity-texture stimulus.
Different symbols represent different conflicts
between the texture- and disparity-specified slants
and different observers. (Adapted from Girshick &
Banks, 2009.)

The JND for discrimination of surface slant from
texture varies substantially with base slant (Knill,
1998) and the JND for slant from disparity
varies with base slant as well (Hillis et al.,
2004). Of course, JNDs can also vary with other
stimulus parameters. For example, the reliability
of slant estimates based on disparity varies with
viewing distance (Hillis et al., 2004). As a result,
one predicts changes in the relative weights of
texture and disparity with changes in base slant
(Hillis et al., 2004; Knill & Saunders, 2003) and
distance (Hillis et al., 2004). For a large, slanted
surface, one predicts changes in cue weights for

different locations along the surface itself (Hillis
et al., 2004).

The interesting point is that the optimal cue
weights can change rapidly, from moment to
moment or from location to location, sensitive to
local conditions. These optimal weight settings
are in response to changes in estimated cue
reliability. This raises the question of how human
observers estimate and represent cue reliability.
One suggestion is that a neural population code
can simultaneously encode both the estimate
and its associated uncertainty (see Chapter 21
and Beck, Ma, Latham, & Pouget, 2007; Ma
et al., 2006).

Simulation of the Observer

In the development of the linear model for a
Bayesian observer, we pointed out that observers
make measurements for each cue, then form the
product of likelihood functions derived from
these measurements and the prior distribution
(Eq. 1.7). This results in the linear rule for
Gaussian distributions. One can prove this
by multiplying the likelihood functions corre-
sponding to the expected cue measurements and
the prior. But real observers do not have access to
the expected cue measurement on any given trial.
Rather, they have samples and must derive (and
multiply) likelihood functions based on those
samples. For symmetric likelihood functions like
Gaussians, the predictions do not differ from
those based on the expected measurements.
However, for non-Gaussian likelihood functions
or priors (e.g., mixture priors), one is forced to
consider the variability of the cue estimates in
formulating predictions.

In formulating Bayesian models incorpo-
rating both likelihoods and priors, one must
confront the issue of where the prior comes
from and how to estimate it. Three different
approaches have been used in recent years. In
one line of research, natural-image statistics
are gathered and used to estimate a given
prior distribution, and then human behavior
is compared to the performance of a Bayesian
ideal observer using that prior (see Chapter 11
and Elder & Goldberg, 2002; Fowlkes, Martin,
& Malik, 2007; Geisler, Perry, Super, & Gallogly,
2001). An alternative approach is to ask what
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prior distribution is consistent with observers’
behavior independent of whether it accurately
reflects the statistics of the environment. The
technique of Stocker and Simoncelli (2006)
provides such an approach, by taking advantage
of the differential effect of a prior on stimuli that
differ in reliability. Others have fit parametric
models of the prior distribution to psychophys-
ical data (Knill, 2007b; Mamassian & Landy,
2001). Finally, Knill (2007a) has examined how
the visual system adapts its internal prior to the
current statistics of the environment.

OPEN QUESTIONS

The research on cue integration has been wide
ranging, and it has led to interesting data and
many successful models. Nevertheless, there is
plenty of room for further progress. Here is a
short list of interesting open questions:

1. How is cue reliability estimated and
represented in the nervous system? Observers
seem to be able to estimate cue reliability in
novel environments, so this is presumably
not learned in specific environments and
then applied when one of the learned
environments is encountered again. Clearly,
cue reliability depends on many factors,
and thus estimation of reliability is itself a
problem of cue integration.

2. Are there general methods the perceptual
system uses to determine when cues should be
integrated and when, instead, they should be
kept separate and attributed to different envi-
ronmental causes? This problem can be cast
as a statistical problem of causal inference.

3. How optimal is cue integration with respect
to the information that is available in the envi-
ronment? Scientists tend to classify environ-
mental properties into distinct categories. The
classical list of depth cues is an example. There
are surely many other sources of depth infor-
mation that observers’ brains know about,
but scientists’ brains do not. A rigorous analy-
sis of the linkages between information in nat-
ural scenes and human perceptual behavior
should reveal previously unappreciated cues.

4. When human cue integration is
demonstrably suboptimal, what design

considerations does the suboptimality
reflect? Are there examples in which the
task and required mechanisms have been
characterized correctly and the task is
undeniably important to the organism, yet
perception is nonetheless suboptimal?

5. There are now many examples in which
Bayesian priors are invoked to explain
aspects of human perception: a prior for
slowness, light from above, shape convexity,
and many more. Do these priors actually
correspond to the probability distributions
encountered in the natural environment?
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