
Linear, Shift-Invariant Systems

• Linearity: scalar rule and additivity 
• Applied to impulse, sums of impulses 
• Applied to sine waves, sums of sine waves



Summary: Linear Systems Theory

• Signals can be represented as sums of sine waves 
• Linear, shift-invariant systems operate “independently” on 

each sine wave, and merely scale and shift them. 
• A simplified model of neurons in the visual system, the 

linear receptive field, results in a neural image that is 
linear and shift-invariant. 

• Psychophysical models of the visual system might be 
built of such mechanisms. 

• It is therefore important to understand visual stimuli in 
terms of their spatial frequency content. 

• The same tools can be applied to other modalities (e.g., 
audition) and other signals (EEG, MRI, MEG, etc.).

From lecture 1



The Fourier transform is a useful change 
of basis for many signals
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The Fourier transform is a useful change 
of basis for many signals

x = imread('cameraman.tif');
F = fft2(x); % Fourier transorm
n = 30; % Keep Fourier coefficients up to n
F(n+1:end-n+1, n+1:end-n+1) = 0; % zero out the rest
x2 = ifft2(F); % transform back to image domain
 
figure; colormap gray
subplot(2,2,1), imagesc(x), title('Original')
subplot(2,2,2), imagesc(x2), title('Remove most fourier components')
subplot(2,2,4), imagesc(log(abs(F))), title('Fourier transform of above')
 
% now zero out most of the pixels for comparison 
x3 = x; 
x3(n+1:end-n+1, n+1:end-n+1) = 0;
 
subplot(2,2,3), imagesc(x3), title('Remove most pixels')



1. Homogeneity (scalar rule)

Neural activity fMRI response



2. Additivity



Shift invariance



Linear systems

A system (or transform) converts (or maps) an input signal into an 
output signal: 
    y(t) = T[x(t)]                 

A linear system satisfies the following properties: 

1) Homogeneity (scalar rule): 
    T[a x(t)] = a y(t)                 
2) Additivity: 
    T[x1(t) + x2(t)] = y1(t) + y2(t)                 

Often, these two properties are written together and called 
superposition: 
    T[a x1(t) + b x2(t)] = a y1(t) + b y2(t)                



Shift invariance

For a system to be shift-invariant (or time-invariant) means that a 
time-shifted version of the input yields a time-shifted version of the 
output: 
    y(t) = T[x(t)]                 

    y(t - s) = T[x(t - s)]                 

The response y(t - s) is identical to the response y(t), except that it 
is shifted in time.
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Neural Image - Reprise

A spatial receptive field may also be treated as a linear 
system, by assuming a dense collection of neurons with the 
same receptive field translated to different locations in the 
visual field. In this view, it is a linear, shift-invariant system. 

See code on next slide



Neural Image - Reprise

% Make a Difference of Gaussian receptive field using fspecial
DoG = fspecial('gaussian', 20,2) -  fspecial('gaussian', 20,5);
im = imread('cameraman.tif');
 
% Make a neural image by convolution
neuralim = conv2(double(im), DoG);
 
% Show the image, the RF, and the neural image
figure,  subplot(1,3,1), imshow(im), subplot(1,3,2), surf(DoG)
subplot(1,3,3), imagesc(neuralim); colormap gray, axis image off
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Linear, Shift-Invariant Systems

• Linearity: Scalar rule and additivity 
• Applied to impulse, sums of impulses 
• Applied to sine waves, sums of sine waves



Convolution as sum of impulse responses

Input:

Impulse response:

Output:

+



Convolution as sum of impulse responses

Input S(t):

Impulse response I(t):

1I(t t 1):

2I(t t 2):

3I(t t 3):

8I(t t 8):

9I(t t 9):

14I(t t 14):

i 1

14
i I(t ti):

141 2 3 4 5 6 7 8 9 10111213
% time vector
dt = 0.01;  T = 25;
t = dt:dt:T-dt;
 
% impulse response function
h = exp(-(t)); 
 
% signal
x = zeros(size(t));
x(t<19) = 2;
x(t<12) = 4;
x(t<5)  = 0;
 
% output of system by convolution
r = conv(x,h/sum(h), 'full'); 
r = r(1:length(t));
 
figure(1), clf,
plot(t,x, 'k', 'LineWidth', 4); hold on
plot(t,r, 'LineWidth', 4);
 
% Suppose our sampling was just one time point per 
second
x2 = zeros(size(t));
x2(1:100:end) = x(1:100:end);
 
r2 = conv(x2,h, 'full'); 
r2 =r2(1:length(t));
 
stem(t,x2)
plot(t, r2, 'LineWidth', 4)



Convolution

Discrete-time signal: x[n] = [x1, x2, x3, ...] 

A system or transform maps an input signal into an output signal: 
      y[n] = T{x[n]}                         

A shift-invariant, linear system can always be expressed as a 
convolution: 
      y[n] =    x[m] h[n-m]                         

where h[n] is the impulse response.



Convolution derivation

Homogeneity: 
     T{a x[n]} = a T{x[n]}                     

Additivity: 
     T{x1[n] + x2[n]} = T{x1[n]} + T{x2[n]}                     

Superposition:  
     T{a x1[n] + b x2[n]} = a T{x1[n]} + b T{x2[n]}                     

Shift-invariance: 
     y[n] = T{x[n]} => y[n-m] = T{x[n-m]}                    



Convolution derivation (contd.)
Impulse sequence: 
   d[n] = 1 for n = 0, d[n] = 0 otherwise             

Any sequence can be expressed as a sum of impulses: 
   x[n] =    x[m] d[n-m]             

where 
   d[n-m] is impulse shifted to sample m             
   x[m] is the height of that impulse             

Example: 

      =      +                    +                                              



Convolution derivation (cont)
x[n]: input 
y[n] = T{x[n]}: output 
h[n] = T{d[n]}: impulse response 

1) Represent input as sum of impulses: 
   y[n] = T{x[n]}             
   y[n] = T{    x[m] d[n-m] }             

2) Use superposition: 
   y[n] =    x[m] T{d[n-m]}             

3) Use shift-invariance: 
   y[n] =    x[m] h[n-m]            



Convolution as sum of impulse responses

Input S(t):

Impulse response I(t):

1I(t t 1):

2I(t t 2):

3I(t t 3):

8I(t t 8):

9I(t t 9):

14I(t t 14):
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Convolution as correlation with the 
“receptive field” (time-reversed impulse 
response): Input S(t):

RF 1(t):

RF 1(t)S(t):

RF 2(t):

RF 2(t)S(t):

RF 8(t):

RF 8(t)S(t):

RF 9(t):

RF 9(t)S(t):

F (t):

141 2 3 4 5 6 7 8 9 10 11 12 13

% time
dt = 0.1; t = dt:dt:25;
 
% signal (input)
x = zeros(size(t));
x(t<19) = 2; x(t<12) = 4; x(t<5)  = 0;
 
% impulse response function
h = exp(-(t)); 
 
% convert impulse response function to RF by time reversing it
rf = flip(h)/sum(h);
 
% output 
y = zeros(size(t));
 
% multiply time shifted RFs by (non-shifted) signal
figure(1); clf;
 
for ii = 1:length(t)
    % shift the receptive field by one time step 
    rf = rf([end 1:end-1]); 
    
    % correlate (multiply) receptive field with signal
    %   note that the signal does not shift; only the rf shifts.
    y(ii) = x*rf';
 
    % plot
    plot(t,x ,'k', t, rf*10,'r',t, y, 'b', 'LineWidth', 4);
    legend('signal', 'rf', ‘output’); drawnow();
end



Convolution as matrix multiplication

Columns contain shifted copies of the impulse response. 
Rows contain time-reversed copies of impulse response.

Linear system <=> matrix multiplication 
Shift-invariant linear system <=> Toeplitz matrix
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past present future
input (impulse)

output (impulse response)

input (step)

output (step response)

0     0     0   1/2  1/4  1/8    0     0     0

0     0     0     1     0     0     0     0     0

0     0     0     1     1     1     1     1     1

0     0     0   1/2  3/4  7/8   7/8  7/8  7/8

weights1/8  1/4  1/2

1/8  1/4  1/2 weights

Figure 3: Convolution as a series of weighted sums.

Using homogeneity,

Now let be the response of to the unshifted unit impulse, i.e., . Then by using

shift-invariance,

(4)

Notice what this last equation means. For any shift-invariant linear system , once we know its

impulse response (that is, its response to a unit impulse), we can forget about entirely, and

just add up scaled and shifted copies of to calculate the response of to any input whatsoever.

Thus any shift-invariant linear system is completely characterized by its impulse response .

The way of combining two signals specified by Eq. 4 is know as convolution. It is such a

widespread and useful formula that it has its own shorthand notation, . For any two signals and

, there will be another signal obtained by convolving with ,

Convolution as a series of weighted sums. While superposition and convolution may sound

a little abstract, there is an equivalent statement that will make it concrete: a system is a shift-

invariant, linear system if and only if the responses are a weighted sum of the inputs. Figure 3

shows an example: the output at each point in time is computed simply as a weighted sum of the

inputs at recently past times. The choice of weighting function determines the behavior of the

system. Not surprisingly, the weighting function is very closely related to the impulse response of

the system. In particular, the impulse response and the weighting function are time-reversed copies

of one another, as demonstrated in the top part of the figure.
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Convolution as sequence of weighted sums



Continuous-time derivation of convolution



and Young (1983), and Oppenheim and Schafer (1989).

Continuous-Time and Discrete-Time Signals

In each of the above examples there is an input and an output, each of which is a time-varying

signal. We will treat a signal as a time-varying function, . For each time , the signal has some

value , usually called “ of .” Sometimes we will alternatively use to refer to the entire

signal , thinking of as a free variable.

In practice, will usually be represented as a finite-length sequence of numbers, , in

which can take integer values between 0 and , and where is the length of the sequence.

This discrete-time sequence is indexed by integers, so we take to mean “the nth number in

sequence ,” usually called “ of ” for short.

The individual numbers in a sequence are called samples of the signal . The word

“sample” comes from the fact that the sequence is a discretely-sampled version of the continuous

signal. Imagine, for example, that you are measuring membrane potential (or just about anything

else, for that matter) as it varies over time. You will obtain a sequence of measurements sampled

at evenly spaced time intervals. Although the membrane potential varies continuously over time,

you will work just with the sequence of discrete-time measurements.

It is often mathematically convenient to work with continuous-time signals. But in practice,

you usually end up with discrete-time sequences because: (1) discrete-time samples are the only

things that can be measured and recorded when doing a real experiment; and (2) finite-length,

discrete-time sequences are the only things that can be stored and computed with computers.

In what follows, we will express most of the mathematics in the continuous-time domain. But

the examples will, by necessity, use discrete-time sequences.

Pulse and impulse signals. The unit impulse signal, written , is one at , and zero

everywhere else:

The impulse signal will play a very important role in what follows.

One very useful way to think of the impulse signal is as a limiting case of the pulse signal,

:

The impulse signal is equal to the pulse signal when the pulse gets infinitely short:

2

Pulses and impulses
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Figure 1: Staircase approximation to a continuous-time signal.

Representing signals with impulses. Any signal can be expressed as a sum of scaled and

shifted unit impulses. We begin with the pulse or “staircase” approximation to a continuous

signal , as illustrated in Fig. 1. Conceptually, this is trivial: for each discrete sample of the

original signal, we make a pulse signal. Then we add up all these pulse signals to make up the

approximate signal. Each of these pulse signals can in turn be represented as a standard pulse

scaled by the appropriate value and shifted to the appropriate place. In mathematical notation:

As we let approach zero, the approximation becomes better and better, and the in the limit

equals . Therefore,

Also, as , the summation approaches an integral, and the pulse approaches the unit impulse:

(1)

In other words, we can represent any signal as an infinite sum of shifted and scaled unit impulses. A

digital compact disc, for example, stores whole complex pieces of music as lots of simple numbers

representing very short impulses, and then the CD player adds all the impulses back together one

after another to recreate the complex musical waveform.

This no doubt seems like a lot of trouble to go to, just to get back the same signal that we

originally started with, but in fact, we will very shortly be able to use Eq. 1 to perform a marvelous

trick.

Linear Systems

A system or transform maps an input signal into an output signal :

where denotes the transform, a function from input signals to output signals.

Systems come in a wide variety of types. One important class is known as linear systems. To

see whether a system is linear, we need to test whether it obeys certain rules that all linear systems

obey. The two basic tests of linearity are homogeneity and additivity.

4
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% time
t = dt:dt:10;
 
% signal (gaussian, centered at 5 with sd of 2)
x = exp(-(t-5).^2/2^2);
 
% discretely sample signal at d = 1 second steps
D = 1;
 
% show the sampling
figure(1), clf; hold on
for k = 1:10
    [~, whichTimePoint] = min(abs(t-k*D));
    plot(t,x, 'k', t, x(whichTimePoint) * (t-D*k < D & t-D*k>0), 'b');
    pause(.3)
end
 
% now do the same for finer sampling
D = 0.2;
figure(1), clf; hold on
for k = 1:10/D
    [~, whichTimePoint] = min(abs(t-k*D));
    plot(t,x, 'k', t, x(whichTimePoint) * (t-D*k < D & t-D*k>0), 'b');
    pause(.05)
end
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Convolution
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Figure 2: Characterizing a linear system using its impulse response.

The way we use the impulse response function is illustrated in Fig. 2. We conceive of the input

stimulus, in this case a sinusoid, as if it were the sum of a set of impulses (Eq. 1). We know the

responses we would get if each impulse was presented separately (i.e., scaled and shifted copies of

the impulse response). We simply add together all of the (scaled and shifted) impulse responses to

predict how the system will respond to the complete stimulus.

Nowwewill repeat all this in mathematical notation. Our goal is to show that the response (e.g.,

membrane potential fluctuation) of a shift-invariant linear system (e.g., passive neural membrane)

can be written as a sum of scaled and shifted copies of the system’s impulse response function.

The convolution integral. Begin by using Eq. 1 to replace the input signal by its repre-

sentation in terms of impulses:

Using additivity,

Taking the limit,
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Figure 3: Convolution as a series of weighted sums.

Using homogeneity,

Now let be the response of to the unshifted unit impulse, i.e., . Then by using

shift-invariance,

(4)

Notice what this last equation means. For any shift-invariant linear system , once we know its

impulse response (that is, its response to a unit impulse), we can forget about entirely, and

just add up scaled and shifted copies of to calculate the response of to any input whatsoever.

Thus any shift-invariant linear system is completely characterized by its impulse response .

The way of combining two signals specified by Eq. 4 is know as convolution. It is such a

widespread and useful formula that it has its own shorthand notation, . For any two signals and

, there will be another signal obtained by convolving with ,

Convolution as a series of weighted sums. While superposition and convolution may sound

a little abstract, there is an equivalent statement that will make it concrete: a system is a shift-

invariant, linear system if and only if the responses are a weighted sum of the inputs. Figure 3

shows an example: the output at each point in time is computed simply as a weighted sum of the

inputs at recently past times. The choice of weighting function determines the behavior of the

system. Not surprisingly, the weighting function is very closely related to the impulse response of

the system. In particular, the impulse response and the weighting function are time-reversed copies

of one another, as demonstrated in the top part of the figure.
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Representing the input signal as a sum of pulses:

Taking the limit,

Using homogeneity (scalar rule),

Defining h(t) as the impulse response,



Linear, Shift-Invariant Systems

• Linearity: Scalar rule and additivity 
• Applied to impulse, sums of impulses 
• Applied to sine waves, sums of sine waves
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The way we use the impulse response function is illustrated in Fig. 2. We conceive of the input
stimulus, in this case a sinusoid, as if it were the sum of a set of impulses (Eq. 1). We know the
responses we would get if each impulse was presented separately (i.e., scaled and shifted copies of
the impulse response). We simply add together all of the (scaled and shifted) impulse responses to
predict how the system will respond to the complete stimulus.

Nowwewill repeat all this in mathematical notation. Our goal is to show that the response (e.g.,
membrane potential fluctuation) of a shift-invariant linear system (e.g., passive neural membrane)
can be written as a sum of scaled and shifted copies of the system’s impulse response function.

The convolution integral. Begin by using Eq. 1 to replace the input signal by its repre-
sentation in terms of impulses:

Using additivity,

Taking the limit,
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Figure 5: Characterizing a system using its frequency response.

shift and the scale. This makes the job of measuring the response to sinusoids at many different
frequencies quite practical.

Often then, when scientists characterize the response of a system they will not tell you the
impulse response. Rather, they will give you the frequency response, the values of the shift and
scale for each of the possible input frequencies (Fig. 5). This frequency response representation
of how the shift-invariant linear system behaves is equivalent to providing you with the impulse
response function (in fact, the two are Fourier transforms of one another). We can use either to
compute the response to any input. This is the main point of all this stuff: a simple, fast, economical
way to measure the responsiveness of complex systems. If you know the coefficients of response
for sine waves at all possible frequencies, then you can determine how the system will respond to
any possible input.

Linear filters. Shift-invariant linear systems are often referred to as linear filters because they
typically attenuate (filter out) some frequency components while keeping others intact.

For example, since a passive neural membrane is a shift invariant linear system, we know
that injecting sinusoidally modulating current yields membrane potential fluctuations that are si-
nusoidal with the same frequency (sinusoid in, sinusoid out). The amplitude and phase of the
output sinusoid depends on the choice of frequency relative to the properties of the membrane.
The membrane essentially averages the input current over a period of time. For very low frequen-
cies (slowly varying current), this averaging is irrelevant and the membrane potential fluctuations
follow the injected current. For high frequencies, however, even a large amplitude sinusoidal cur-
rent modulation will yield no membrane potential fluctuations. The membrane is called a low-pass
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