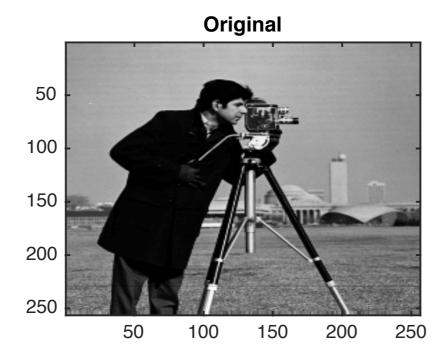
Linear, Shift-Invariant Systems

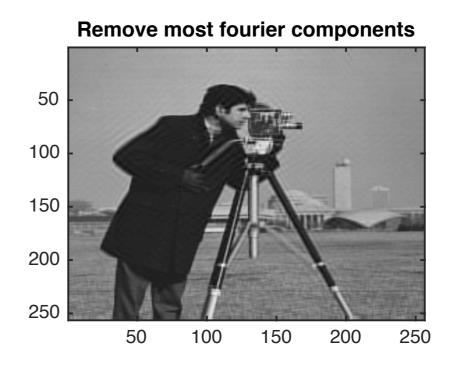
- Linearity: scalar rule and additivity
- Applied to impulse, sums of impulses
- Applied to sine waves, sums of sine waves

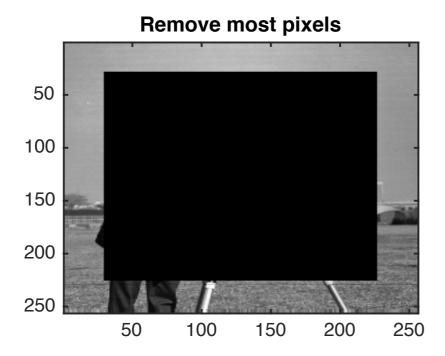
Summary: Linear Systems Theory

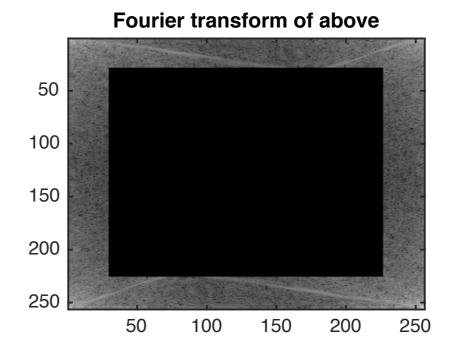
- Signals can be represented as sums of sine waves
- Linear, shift-invariant systems operate "independently" on each sine wave, and merely scale and shift them.
- A simplified model of neurons in the visual system, the linear receptive field, results in a neural image that is linear and shift-invariant.
- Psychophysical models of the visual system might be built of such mechanisms.
- It is therefore important to understand visual stimuli in terms of their spatial frequency content.
- The same tools can be applied to other modalities (e.g., audition) and other signals (EEG, MRI, MEG, etc.).

The Fourier transform is a useful change of basis for many signals









The Fourier transform is a useful change of basis for many signals

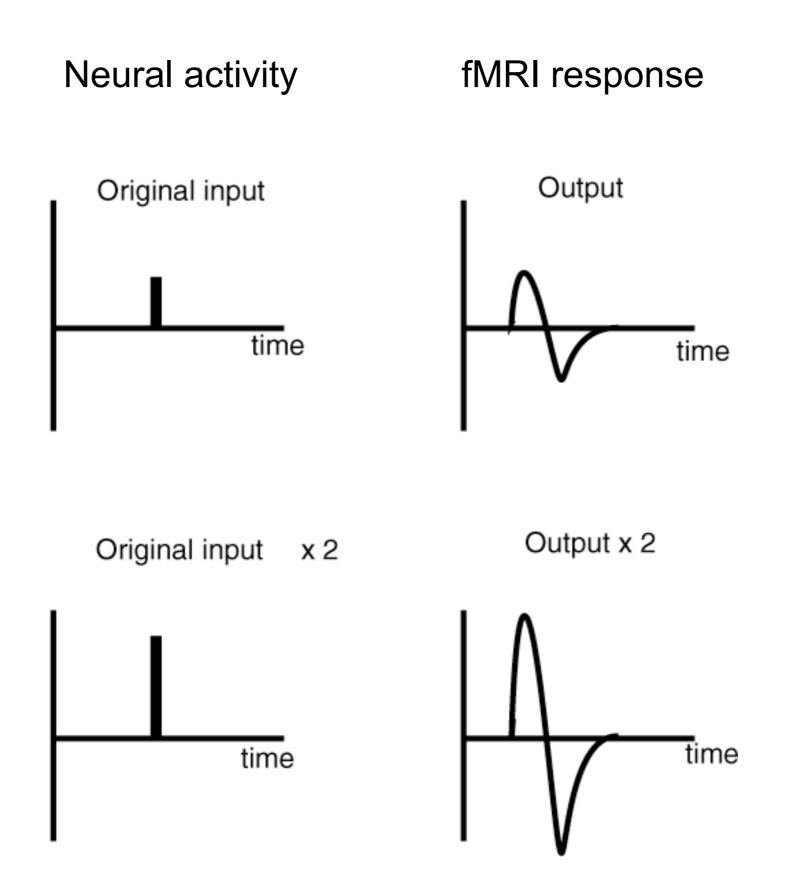
```
x = imread('cameraman.tif');
F = fft2(x); % Fourier transorm
n = 30; % Keep Fourier coefficients up to n
F(n+1:end-n+1, n+1:end-n+1) = 0; % zero out the rest
x2 = ifft2(F); % transform back to image domain
```

```
figure; colormap gray
subplot(2,2,1), imagesc(x), title('Original')
subplot(2,2,2), imagesc(x2), title('Remove most fourier components')
subplot(2,2,4), imagesc(log(abs(F))), title('Fourier transform of above')
% now zero out most of the pixels for comparison
```

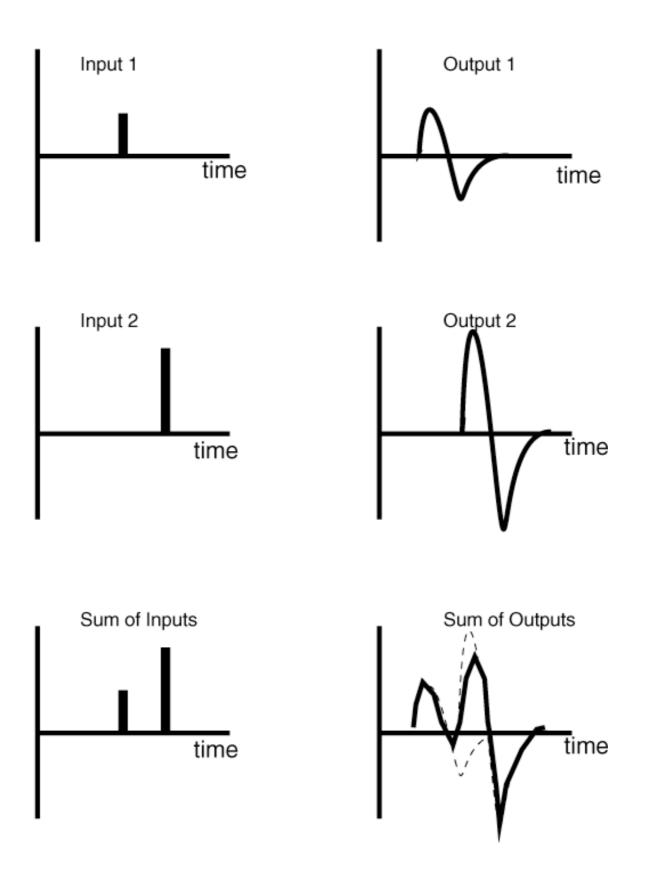
```
x3 = x;
x3(n+1:end-n+1, n+1:end-n+1) = 0;
```

```
subplot(2,2,3), imagesc(x3), title('Remove most pixels')
```

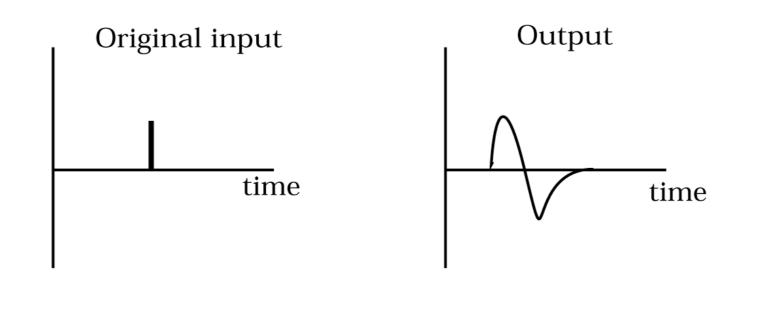
1. Homogeneity (scalar rule)

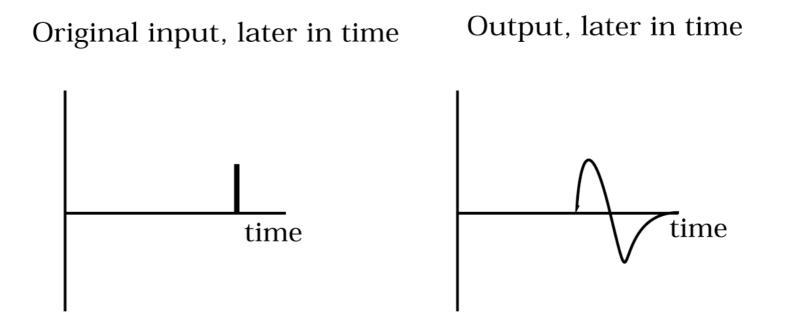


2. Additivity



Shift invariance





Linear systems

A system (or transform) converts (or maps) an input signal into an output signal:

$$y(t) = \mathsf{T}[x(t)]$$

A linear system satisfies the following properties:

1) Homogeneity (scalar rule): T[a x(t)] = a y(t)2) Additivity: $T[x_1(t) + x_2(t)] = y_1(t) + y_2(t)$

Often, these two properties are written together and called superposition:

T[a $x_1(t)$ + b $x_2(t)$] = a $y_1(t)$ + b $y_2(t)$

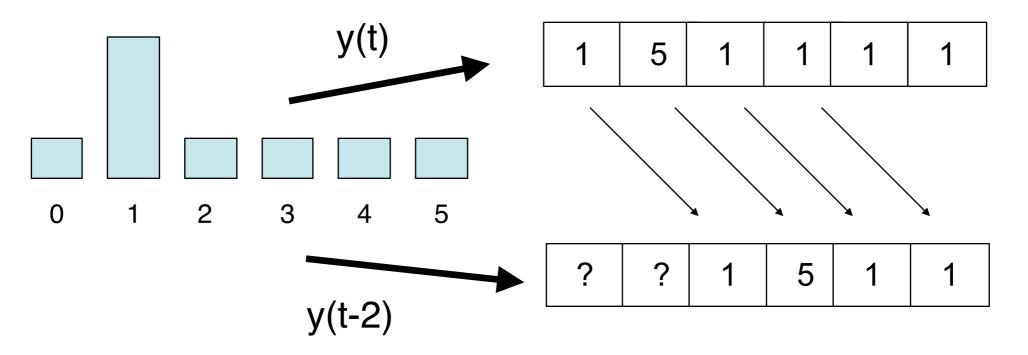
Shift invariance

For a system to be shift-invariant (or time-invariant) means that a time-shifted version of the input yields a time-shifted version of the output:

 $y(t) = \mathsf{T}[x(t)]$

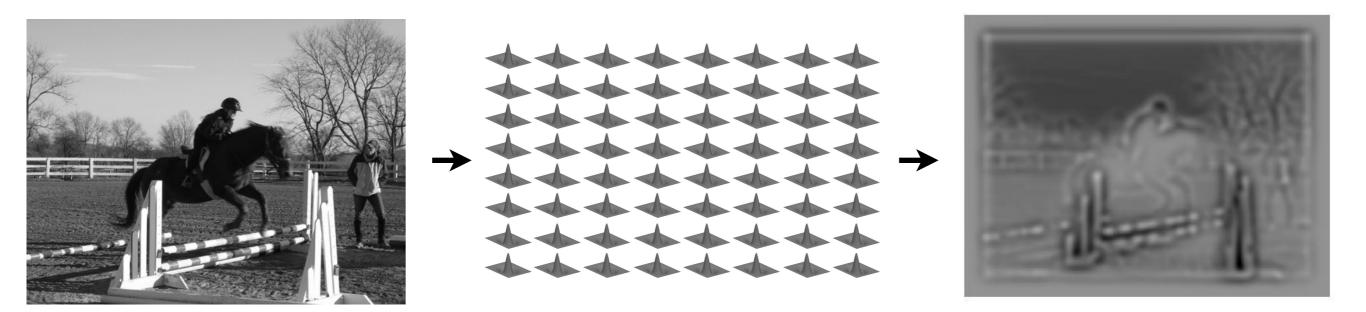
 $y(t-s) = \mathsf{T}[x(t-s)]$

The response y(t - s) is identical to the response y(t), except that it is shifted in time.

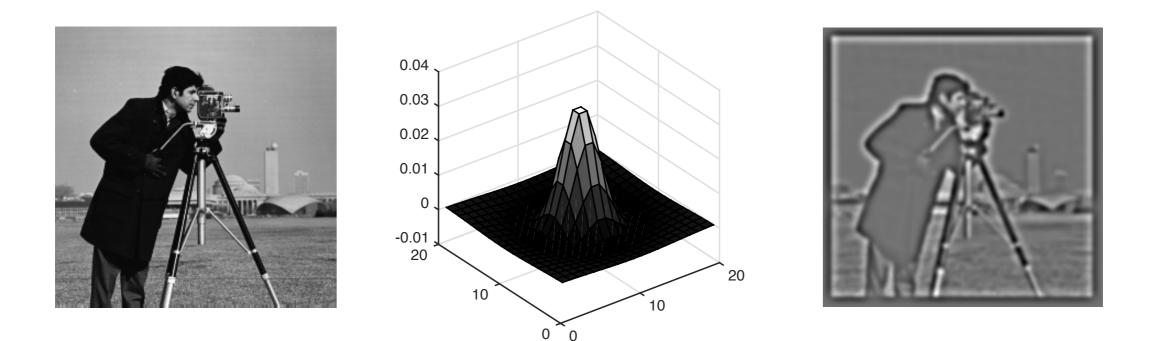


Neural Image - Reprise

A spatial receptive field may also be treated as a linear system, by assuming a dense collection of neurons with the same receptive field translated to different locations in the visual field. In this view, it is a linear, shift-invariant system.



Neural Image - Reprise



```
% Make a Difference of Gaussian receptive field using fspecial
DoG = fspecial('gaussian', 20,2) - fspecial('gaussian', 20,5);
im = imread('cameraman.tif');
```

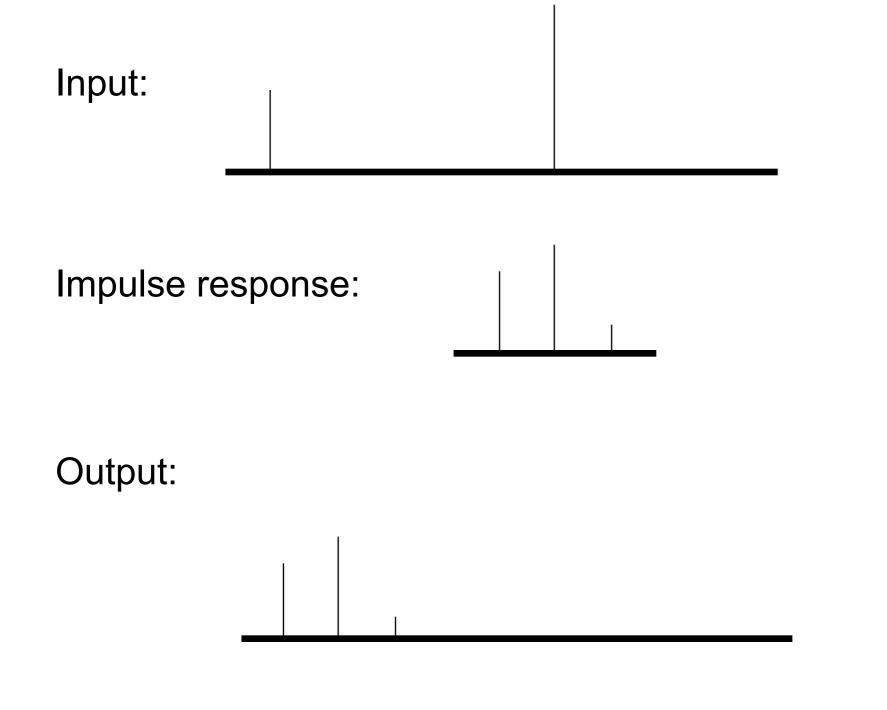
```
% Make a neural image by convolution
neuralim = conv2(double(im), DoG);
```

```
% Show the image, the RF, and the neural image
figure, subplot(1,3,1), imshow(im), subplot(1,3,2), surf(DoG)
subplot(1,3,3), imagesc(neuralim); colormap gray, axis image off
```

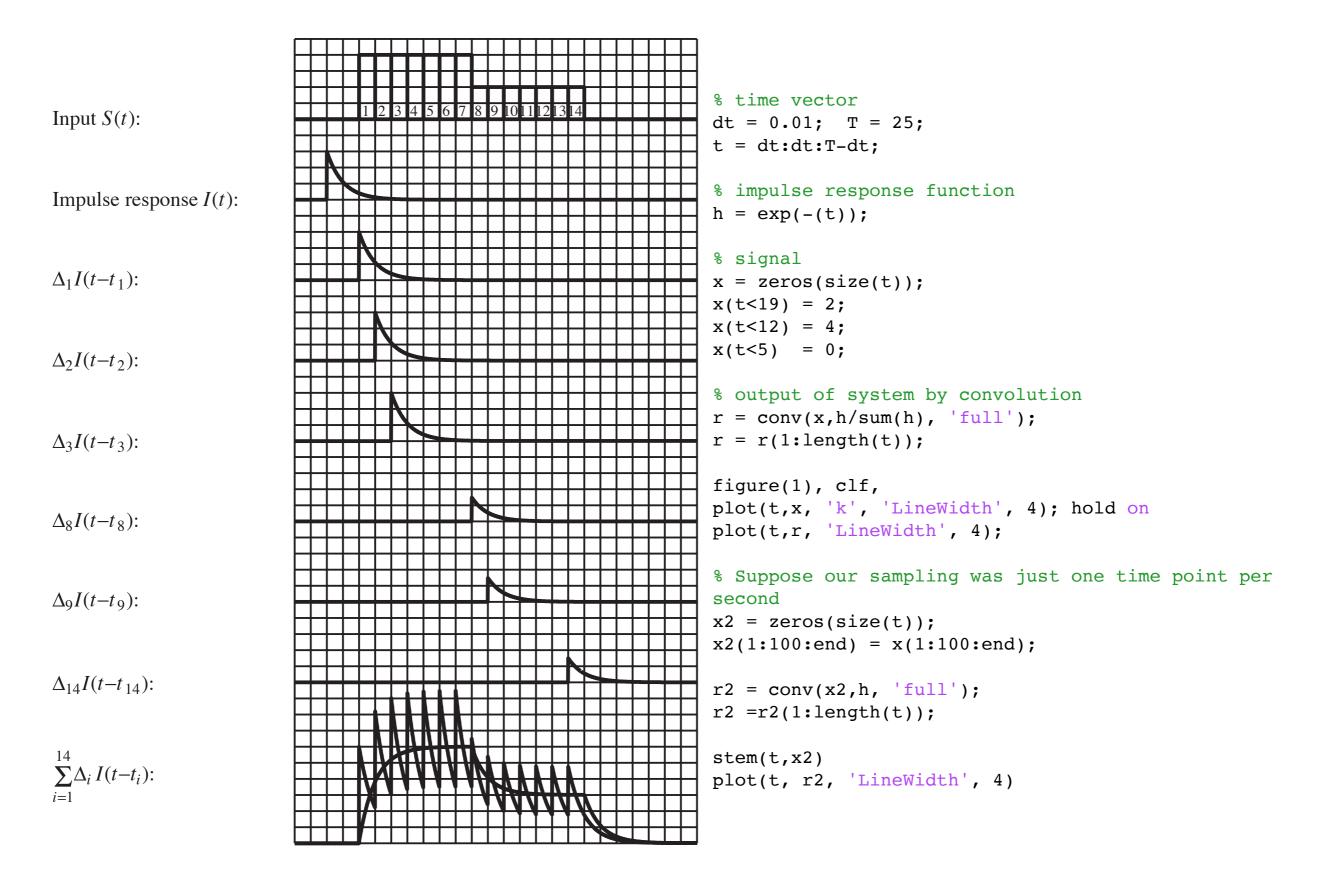
Linear, Shift-Invariant Systems

- Linearity: Scalar rule and additivity
- Applied to impulse, sums of impulses
- Applied to sine waves, sums of sine waves

Convolution as sum of impulse responses



Convolution as sum of impulse responses



Convolution

Discrete-time signal: $x[n] = [x_1, x_2, x_3, ...]$

A system or transform maps an input signal into an output signal: $y[n] = T{x[n]}$

A shift-invariant, linear system can always be expressed as a convolution:

$$y[n] = \sum x[m] h[n-m]$$

where *h*[*n*] is the impulse response.

Convolution derivation

Homogeneity:

$$T{a x[n]} = a T{x[n]}$$

Additivity:

$$\mathsf{T}\{x_1[n] + x_2[n]\} = \mathsf{T}\{x_1[n]\} + \mathsf{T}\{x_2[n]\}$$

Superposition:

$$T\{a x_1[n] + b x_2[n]\} = a T\{x_1[n]\} + b T\{x_2[n]\}$$

Shift-invariance:

$$y[n] = T{x[n]} = y[n-m] = T{x[n-m]}$$

Convolution derivation (contd.)

Impulse sequence:

d[*n*] = 1 for *n* = 0, *d*[*n*] = 0 otherwise

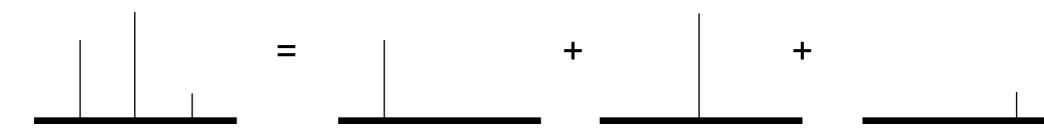
Any sequence can be expressed as a sum of impulses:

$$x[n] = \sum x[m] d[n-m]$$

where

d[*n*-*m*] is impulse shifted to sample *m x*[*m*] is the height of that impulse

Example:



Convolution derivation (cont)

x[n]: input
y[n] = T{x[n]}: output
h[n] = T{d[n]}: impulse response

1) Represent input as sum of impulses: $y[n] = T{x[n]}$ $y[n] = T{\sum x[m] d[n-m]}$

2) Use superposition:

 $y[n] = \sum x[m] T{d[n-m]}$

3) Use shift-invariance:

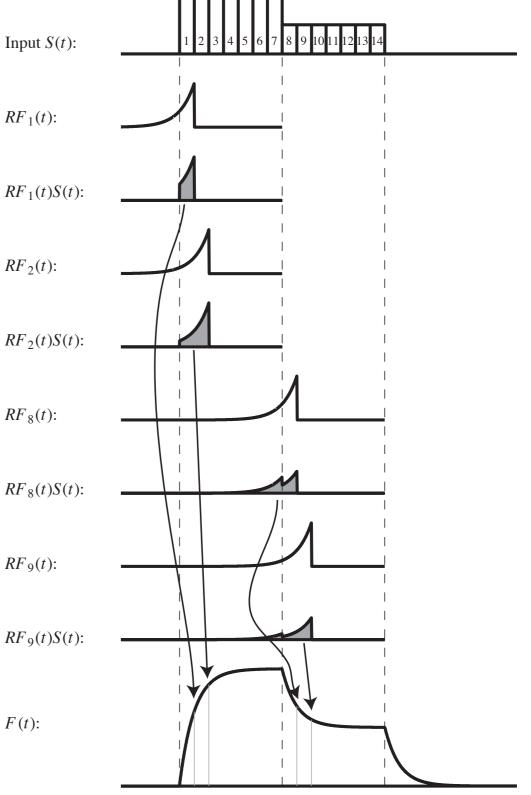
 $y[n] = \sum_{i=1}^{n} x[m] h[n-m]$

Convolution as sum of impulse responses

																			\mp	
Input $S(t)$:			1	2	3	4	5	6	7	8	9	10	11	12	13	14				
Impulse response $I(t)$:																				
$\Delta_1 I(t-t_1):$																				
$\Delta_2 I(t-t_2):$																				
$\Delta_3 I(t-t_3):$																				
$\Delta_8 I(t-t_8):$																				
$\Delta_9 I(t-t_9):$																				
$\Delta_{14}I(t-t_{14}):$																				
$\sum_{i=1}^{14} \Delta_i I(t-t_i):$																				
$\overline{i=1}$																				

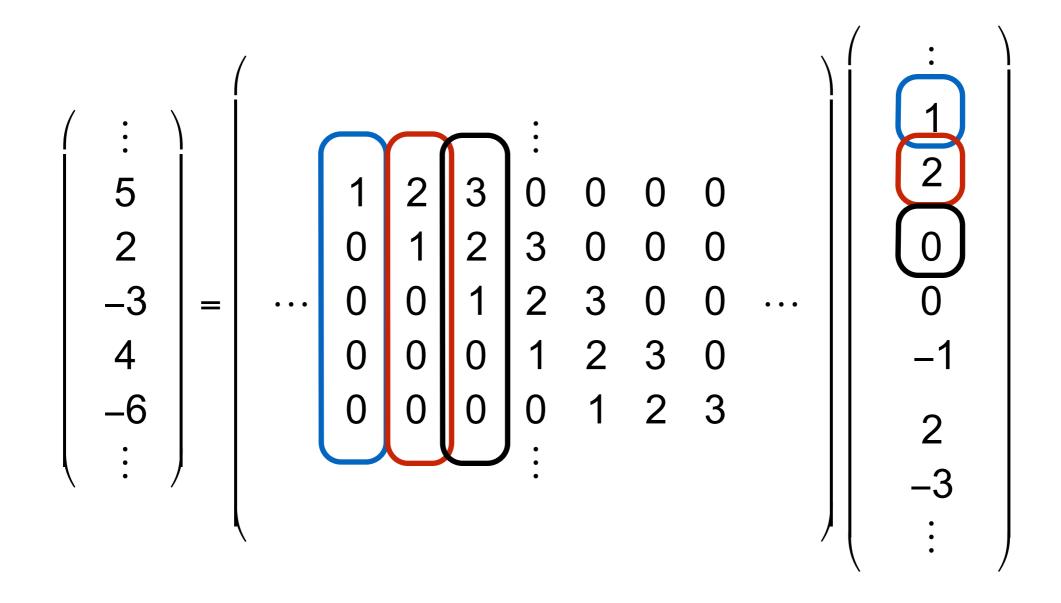
Convolution as correlation with the "receptive field" (time-reversed impulse response):

% time dt = 0.1; t = dt:dt:25;
<pre>% signal (input) x = zeros(size(t)); x(t<19) = 2; x(t<12) = 4; x(t<5) = 0;</pre>
<pre>% impulse response function h = exp(-(t));</pre>
<pre>% convert impulse response function to RF by time reversing it rf = flip(h)/sum(h);</pre>
% output y = zeros(size(t));
<pre>% multiply time shifted RFs by (non-shifted) signal figure(1); clf;</pre>
<pre>for ii = 1:length(t) % shift the receptive field by one time step rf = rf([end 1:end-1]);</pre>
<pre>% correlate (multiply) receptive field with signal % note that the signal does not shift; only the rf shifts. y(ii) = x*rf';</pre>
<pre>% plot plot(t,x ,'k', t, rf*10,'r',t, y, 'b', 'LineWidth', 4); legend('signal', 'rf', 'output'); drawnow(); end</pre>



Convolution as matrix multiplication

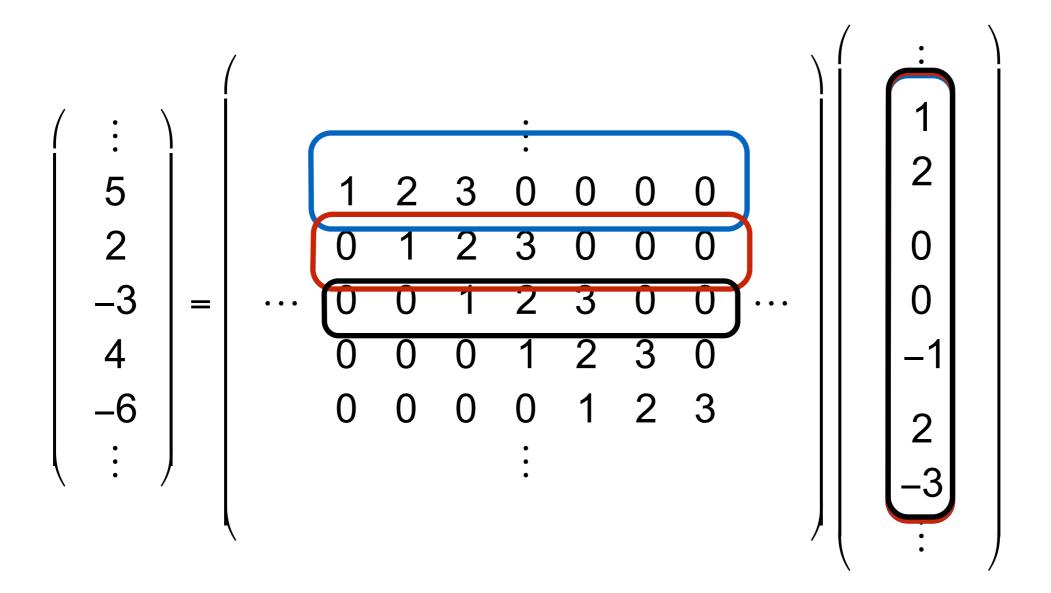
Linear system <=> matrix multiplication Shift-invariant linear system <=> Toeplitz matrix



Columns contain shifted copies of the impulse response. Rows contain time-reversed copies of impulse response.

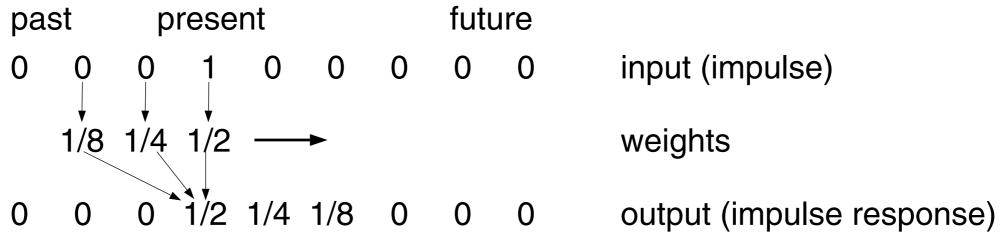
Convolution as matrix multiplication

Linear system <=> matrix multiplication Shift-invariant linear system <=> Toeplitz matrix



Columns contain shifted copies of the impulse response. Rows contain time-reversed copies of impulse response.

Convolution as sequence of weighted sums



0 0 0 1 1 1 1 1 1 1 input (step)

$$1/8 1/4 1/2 \longrightarrow$$
 weights
0 0 0 1/2 3/4 7/8 7/8 7/8 7/8 7/8 output (step)

ghts

put (step response)

Continuous-time derivation of convolution

Pulses and impulses

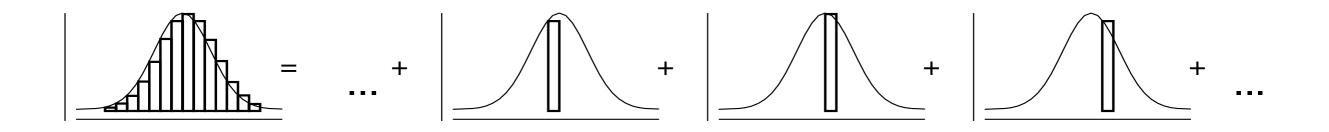
impulse

unit pulse

Ise
$$\delta(t) = \begin{cases} \infty & \text{if } t = 0 \\ 0 & \text{otherwise} \end{cases}$$

ulse $\delta_{\Delta}(t) = \begin{cases} \frac{1}{\Delta} & \text{if } 0 < t < \Delta \\ 0 & \text{otherwise} \end{cases}$
 $\delta(t) = \lim_{\Delta \to 0} \delta_{\Delta}(t).$

Staircase approximation to continuoustime signal



$$\tilde{x}(t) = \sum_{k=-\infty}^{\infty} x(k\Delta) \,\delta_{\Delta}(t-k\Delta) \,\Delta.$$

$$x(t) = \lim_{\Delta \to 0} \sum_{k=-\infty}^{\infty} x(k\Delta) \,\delta_{\Delta}(t-k\Delta) \,\Delta.$$

$$x(t) = \int_{-\infty}^{\infty} x(s) \,\delta(t-s) \, ds.$$

% time
t = dt:dt:10;

% signal (gaussian, centered at 5 with sd of 2) x = $\exp(-(t-5).^2/2^2);$

 $\$ discretely sample signal at d = 1 second steps D = 1;

```
% now do the same for finer sampling
D = 0.2;
figure(1), clf; hold on
for k = 1:10/D
    [~, whichTimePoint] = min(abs(t-k*D));
    plot(t,x, 'k', t, x(whichTimePoint) * (t-D*k < D & t-D*k>0), 'b');
    pause(.05)
end
```

Convolution

Representing the input signal as a sum of pulses:

$$y(t) = T[x(t)] = T\left[\int_{-\infty}^{\infty} x(s)\,\delta(t-s)\,ds\right]$$
$$= T\left[\lim_{\Delta \to 0} \sum_{k=-\infty}^{\infty} x(k\Delta)\,\delta_{\Delta}(t-k\Delta)\,\Delta\right].$$

Using additivity,

$$y(t) = \lim_{\Delta \to 0} \sum_{k=-\infty}^{\infty} T[x(k\Delta) \,\delta_{\Delta}(t-k\Delta) \,\Delta].$$

Taking the limit,

$$y(t) = \int_{-\infty}^{\infty} T[x(s)\,\delta(t-s)\,ds].$$

Using homogeneity (scalar rule),

$$y(t) = \int_{-\infty}^{\infty} x(s) T[\delta(t-s)] ds.$$

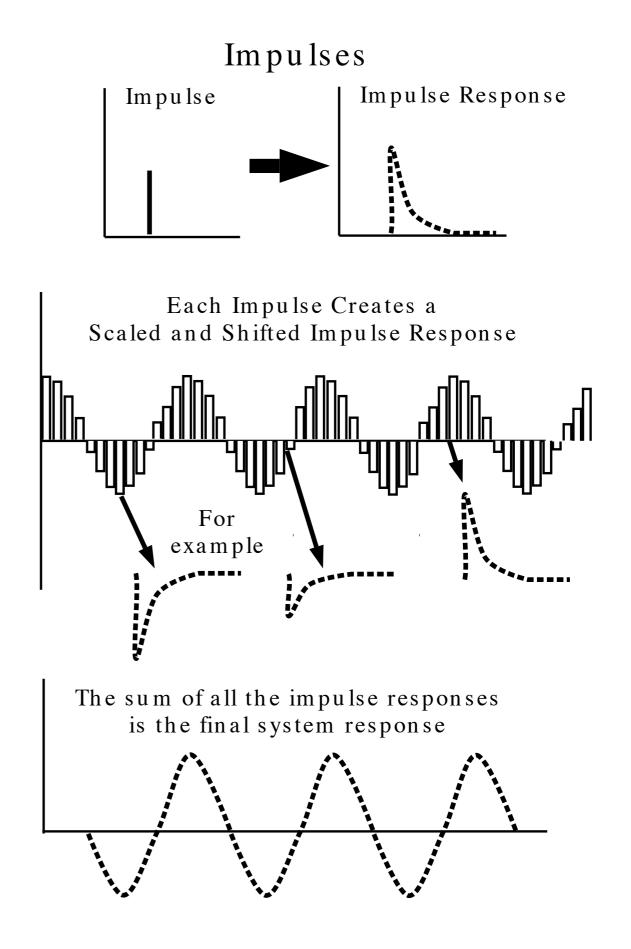
Defining h(t) as the impulse response,

$$y(t) = \int_{-\infty}^{\infty} x(s) h(t-s) \, ds.$$

Linear, Shift-Invariant Systems

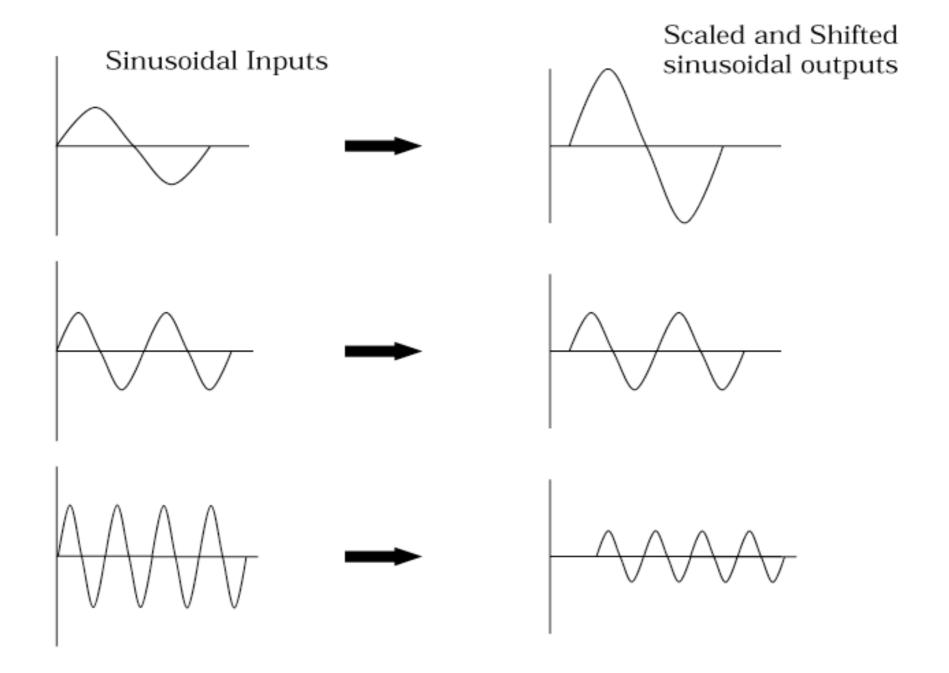
- Linearity: Scalar rule and additivity
- Applied to impulse, sums of impulses
- Applied to sine waves, sums of sine waves

Shift-invariant linear systems and impulses

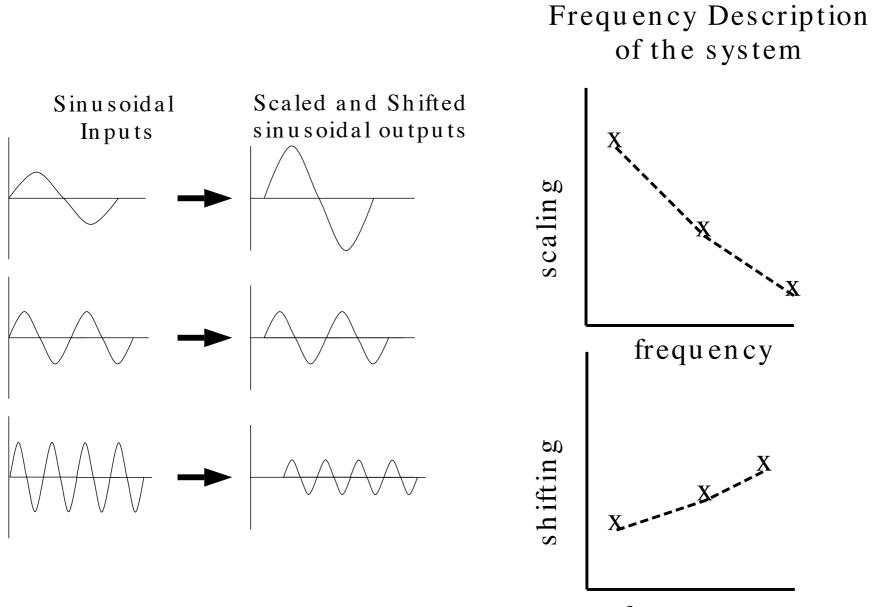


Shift-Invariant Linear Systems and Sinusoids

We measure the scaling and shifting for each sinusoid



Shift-Invariant Linear Systems and Sinusoids



frequency