Linear, Shift-Invariant Systems

* Linearity: scalar rule and additivity
* Applied to impulse, sums of impulses
* Applied to sine waves, sums of sine waves



Summary: Linear Systems Theory

Signals can be represented as sums of sine waves

Linear, shift-invariant systems operate “independently” on
each sine wave, and merely scale and shift them.

A simplified model of neurons in the visual system, the
linear receptive field, results in a neural image that is
linear and shift-invariant.

Psychophysical models of the visual system might be
built of such mechanisms.

It is therefore important to understand visual stimuli in
terms of their spatial frequency content.

The same tools can be applied to other modalities (e.g.,
audition) and other signals (EEG, MRI, MEG, etc.).

From lecture 1



The Fourier transform is a useful change
of basis for many signals
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The Fourier transform is a useful change
of basis for many signals

X = imread( 'cameraman.tif');

F = £fft2(x); % Fourier transorm

n = 30; % Keep Fourier coefficients up to n
F(nt+l:end-n+l, n+l:end-n+l) = 0; % zero out the rest
x2 = ifft2(F); % transform back to image domain

figure; colormap gray

subplot(2,2,1), imagesc(x), title( 'Original’)

subplot(2,2,2), imagesc(x2), title( Remove most fourier components')
subplot(2,2,4), imagesc(log(abs(F))), title('Fourier transform of above')

% now zero out most of the pixels for comparison
X3 = X;

x3(n+l:end-n+l1, n+l:end-n+l) = 0;

subplot(2,2,3), imagesc(x3), title( Remove most pixels')



1. Homogeneity (scalar rule)

Neural activity fMRI response
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2. Additivity
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Shift invariance
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Linear systems

A system (or transform) converts (or maps) an input signal into an
output signal:

y(£) = T[x(£)]
A linear system satisfies the following properties:

1) Homogeneity (scalar rule):
T[a x(f)] = a y(t)
2) Additivity:
TIx, (1) + x,(0)] = y,(f) + y,(1)

Often, these two properties are written together and called
superposition:
T[a x,(f) + b x,()] = a y,(f) + b y,(f)



Shift invariance

For a system to be shift-invariant (or time-invariant) means that a
time-shifted version of the input yields a time-shifted version of the

output:
y(t) = T[x(®)]
y(t-s) = T[x(t - s)]

The response y(t - s) is identical to the response y(f), except that it
IS shifted in time.
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Neural Image - Reprise

A spatial receptive field may also be treated as a linear
system, by assuming a dense collection of neurons with the
same receptive field translated to different locations in the
visual field. In this view, it is a linear, shift-invariant system.
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See code on next slide



Neural Image - Reprise

0.04
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% Make a Difference of Gaussian receptive field using fspecial
DoG = fspecial( 'gaussian', 20,2) - fspecial( 'gaussian', 20,5);
im = imread( 'cameraman.tif');

% Make a neural image by convolution
neuralim = conv2(double(im), DoG);

% Show the image, the RF, and the neural image
figure, subplot(1l,3,1), imshow(im), subplot(1l,3,2), surf(DoG)
subplot(1,3,3), imagesc(neuralim); colormap gray, axis image off



Linear, Shift-Invariant Systems

» Linearity: Scalar rule and additivity
* Applied to impulse, sums of impulses
* Applied to sine waves, sums of sine waves



Convolution as sum of impulse responses

Input:

Impulse response: |

Output:
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Convolution as sum of impulse responses

% time vector
Input S(1): 1AA0AdBONTEEE dt = 0.01; T = 25

t dt:dt:T-dt;

% impulse response function
h = exp(-(t));

Impulse response 1(¢):

% signal

A I(t—ty): X = zeros(size(t));
x(t<19) = 2;
x(t<12)
x(t<5) = 0;

|
oS
~e

A I(t—t5):

oo

output of system by convolution
r = conv(x,h/sum(h), 'full');
A3 I(t—t5): r = r(l:length(t));

figure(l), clf,
plot(t,x, 'k', 'LineWidth', 4); hold on
plot(t,r, 'LinewWidth', 4);

Agl(t—tg):

% Suppose our sampling was Jjust one time point per
A9[Q;¢9y second

X2 = zeros(size(t));

X2(1:100:end) = x(1:100:end);

Argd(t—114): r2 = conv(x2,h, 'full');
r2 =r2(l:length(t));

\ stem(t,x2)

14
}:Ailg_ﬁ)3 plot(t, r2, 'Linewidth', 4)
i=1




Convolution

Discrete-time signal: x[n] = [x1, X2, X3, ...]

A system or transform maps an input signal into an output signal:
yln] = T{x[n]}

A shift-invariant, linear system can always be expressed as a
convolution:

yln] = "x{m] h[n-m]

where h[n] is the impulse response.



Convolution derivation

Homogeneity:
Ta x[n]} = a T{x[n]}

Additivity:
T{x4[n] + x5[n]} = T{x4[n]} + T{x,[n]}

Superposition:
T{a x4[n] + b x,[n]} = a T{x,4[n]} + b T{x,[n]}

Shift-invariance:
yln] = T{x[n]} => y[n-m] = T{x[n-m]}



Convolution derivation (contd.)

Impulse sequence:
d[n] = 1 for n = 0, d[n] = 0 otherwise

Any sequence can be expressed as a sum of impulses:

x[n] =Zx[m] d[n-m]
where
d[n-m] is impulse shifted to sample m

x[m] is the height of that impulse

Example:




Convolution derivation (cont)

]: input
] = T{x[n]}: output
n] = T{d[n]}: impulse response

lxl
>

0 =,
35

1) Represent input as sum of impulses:
y[n] = T{x[n]}

yin] = T{ 3 XIm] d[n-m] }
2) Use superposition:

y[n] =2X[m] Tid[n-m]}

3) Use shift-invariance:

y[n] = x[m] h[n-m]



Convolution as sum of impulse responses

Input S(¢): AN dBONIERE

Impulse response 1(¢):

A I(t—t):

A I(t—t5):

A;I(t—t3):

Agl(t—tg):

Agl(t—tg):

Aqgl(t—t14):

14
S A; I(1—t1;):
=1




Convolution as correlation with the
‘receptive field” (time-reversed impulse
response); s W

|
% time | :
dt = 0.1; t = dt:dt:25; RF ((1): /| |

% signal (input) l
X = zeros(size(t)); RF ((H)S(?): A
X | |

(t<19) = 2; x(t<12) = 4; x(t<5) = 0; |
impulse response function #Z£/4
= exp(-(t)); RF5(t):

5 o0

|
% convert impulse response function to RF by time reversing it L/4
rf = flip(h)/sum(h); RF,(1)S(1):

y = zeros(size(t)); RF 4 (1):

¢ multiply time shifted RFs by (non-shifted) signal

figure(l); clf;
J (1) RF3(1)S(1):

|
|
|
|
|
|
|
|
|
for ii = l:length(t) |
% shift the receptive field by one time step |
|

|

|

|

|

|

|

|

|

|

rf = rf([end l:end-1]); RF o(1):

% correlate (multiply) receptive field with signal

% note that the signal does not shift; only the rf shifts. RF o(1)S(1):
y(ii) = x*rf';

% plot

plot(t,x ,'k"', t, rf*10,'r',t, vy, 'b', 'Linewidth', 4); F(t):

legend( 'signal’', 'rf', ‘output’); drawnow();
end




Convolution as matrix multiplication

Linear system <=> matrix multiplication
Shift-invariant linear system <=> Toeplitz matrix

( \/ S
[0 5
5 O 0 0O
2 3 0 0 O
-3 | = 2 3 0 O
4 1 2 3 0
—.6 9123 5
\ ) : _3
\ / ;

)

( Columns contain shifted copies of the impulse response. )
Rows contain time-reversed copies of impulse response.




Convolution as matrix multiplication

Linear system <=> matrix multiplication
Shift-invariant linear system <=> Toeplitz matrix

[ )

I
W
I

)

Columns contain shifted copies of the impulse response.
[ Rows contain time-reversed copies of impulse response. ]




Convolution as sequence of weighted sums

past present future
o o o1 O O 0O o O input (impulse)

4 12 —> weights

O 0 0 121/41/8 0 0 O output (impulse response)

I 1 1 1 input (step)
4 1(2 — weights

O O O 1/2 3/4 7/8 7/8 7/8 7/8 output (step response)



Continuous-time derivation of convolution



Pulses and impulses

oo 1 t=0
0 otherwise

{l if 0<t<A

e (1) = |

unitputse  0a(t) = 8 otherwise

5(1) = Tim da (1).

A—0

S T R N



Staircase approximation to continuous-
time signal

A ]
= + + + +
o0 . L

% time

T (1) > 2(kA)da(t — kA) A

- L ]
Zﬁ& % signal (gaussian, centered at 5 with sd of 2)
. X = exp(-(t-5)."2/2"2);
k=—oc
% discretely sample signal at d = 1 second steps
D =1;
OO % show the sampling

figure(l), clf; hold on

ZC(t) — hm Z ZC(kA) 6A (t — kA) A o ][{~= vlvrﬁghTimePointl = min(abs(t-k*D));

plot(t,x, 'k', t, x(whichTimePoint) * (t-D*k < D & t-D*k>0),
A—0

_ pause(.3)
k__m end
% now do the same for finer sampling
D =0.2;
0@ figure(l), clf; hold on

for k = 1:10/D
x(t) J— x(S) (S(t e S) dS [~, whichTimePoint] = min(abs(t-k*D));
* plot(t,x, 'k', t, x(whichTimePoint) * (t-D*k < D & t-D*k>0),
— 0O pause(.05)

end



Convolution

Representing the input signal as a sum of pulses:

y(t) = Tla(t)] = T:/_o:ox(s)é(t—s)ds]

o

= T |lim Y x(kA)da(t —kA)A

A—0

k=—o0

Using additivity,
y(t) = lim > T[e(kA)ba(t — kA) Al

k=—0o0

Taking the limit,
y(t) = /_O; Tla(s) 6(t — s) ds].

Using homogeneity (scalar rule),
y(t) = /_ O:O:I:(s) T[S(t — 5)] ds.
Defining h(t) as the impulse response,

y(t) = /_O;x<3> h(t — s)ds.



Linear, Shift-Invariant Systems

» Linearity: Scalar rule and additivity
* Applied to impulse, sums of impulses
* Applied to sine waves, sums of sine waves



Shift-invariant linear
systems and impulses

Impulses

Impulse Impulse Response
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Each Impulse Creates a
Scaled and Shifted Impulse Response
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The sum of all the impulse responses
is the final system response




Shift-Invariant Linear Systems and Sinusoids

We measure the scaling and
shifting for each sinusoid

Scaled and Shifted

A sinusoidal outputs

Sinusoidal Inputs
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Shift-Invariant Linear Systems and Sinusoids

Sinusoidal
Inputs
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