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Last: Visual Tasks

Size?
Shape?
Distance?

- Cue combination

Constantine Brancusi



Last: Visual Tasks

Cue combination
tells us what to

see, not what to
do.

Planning of action.

Constantine Brancusi



Statistical Decision Theory

Abraham Wald

David Blackwell
M. A. Girshick

THEORY OF
GAMES AND
STATISTICAL
DECISIONS

Offers a unified method for developing stdtistical deci-
sion concepts from the point of view of game theory

1954



Bayesian Decision Theory

Objective Information
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Bayesian Decision Theory

Internal Representations

Prior j

Posterior j The organism has
Likelihood J J - Action EZ‘ZCGSS fo only
Value ese ...

BDT with incorrect internal representations of
probabilities, values.




The Three Elements of SDT
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Bayesian Decision Theory (BDT)

decision

A d(x) X

Action

Fig. 1



Goal: select

d: X oA

to maximize expected gain



Translated for

New Yorkers ...
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Bayesian Decision Theory (BDT)

Maximize expected Bayes gain

EBG(d) =[[G(d( p(x|w)z(w)dxdw

by choice of a dec:s:on rule

d: X > A




EBG(d) :”G(d(x),w) p(x|w)z(w)dxdw

Two stages: pick a random world: prior 7Z'(W)
Generate a random perception from that world:
likelihood p(X|w)

Maximize your expected gain over both random events.



EBG(d) =[[G(d(x).w)

£86(d) = [[6(d(x),

Bayes Theorem:

likelihood prior

p(xw) 7(w)

dx dw

posterior

W) ﬁ(w | x) dx dw



BDT, Perception and Action:
A Brief History

Barlow(1950)
Geisler (1989)

@
”G (x|w) z(w)dxdw



BDT, Perception and Action:
A Brief History

Barlow(1950)
Geisler (1989)

U

”G(d(x),w) p(x|w)z(w)dxdw

U

Knill & Richards (1996) ]Eslﬂﬂ[]“ﬂﬂ
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BDT, Perception and Action:
A Brief History

Barlow(1950)
Geisler (1989)

U

HG(d(x),W) p(x\w)n(w) axadw

U

The gain function is Knill & Richards (1996)
Yuille & Bulthoff

the problem posed by Tanenbaum &Giriffiths
the world to the Many more
organism



Are you
Bayesian?



‘Black Urn’ ‘White Urn’
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‘Unknown Urn’
Ward Edwards



'YX YoI Jolehs

Doooooo.007

What is the probability that the unknown urn
Is the ‘black’ urn?

Please write down your estimate.



'YoX X 1 Yo! 2o
'YX YoI Jolehs

How can we estimate this probability using
Bayesian methods?



Suppose we draw one black ball (b)

What is the probability now that the urn is the
black one P[B|b]?

[

pist) = LT




Suppose we draw one black ball (b)

What is the probability now that the urn is the
black one P[B|b]?

D' 7 likelihood

/

P|b|B]P[B] <— prior
P|B|b] =
7 P|b]
posterior




Suppose we draw one black ball (b)

What is the probability now that the urn is the
black one P[B|b]?

[

pisip) = “op 1!
— P[b|W]P[W]

P|b]



Suppose we draw one black ball (b)

What is the probability now that the urn is the
black one P[B|b]?

[

posterior odds —— P(B|b] _ P[b|B] P[B]
P[W|b] ~ P[b|W]P[W]

T

likelihood ratio

prior odds
v




Suppose we draw one black ball (b)

What is the probability now that the urn is the
black one P[B|b]?

[

P[B|b]  P[b|B] P[B]

P[W|b] ~ P[b|W]P[W]

P[BIb] _ 2/3 1/2 _
P[W|b]  1/3 1/2




Suppose we draw one black ball (b)

What is the probability now that the urn is the
black one P[B|b]?

)

D 7 log likelihood ratio

log posz‘eriorH P[B|b] _ P[b|B] P[B].— log prior
odds log P[W|b] log P[b|W] + log P[W] odds

P[B|b] _
log PIwin] 1+0




Next we draw a white ball (w)

What is the probability now that the urn is the
black one P[B|bw]?

|

log prior after b
P[B|bw] P[w|B] P[B|b]
]OgP[Wlbw] = log P[w|W] + log P[W|b]
P|B|bw]
log =—1+1=0

P{W|bw]



Log Odds

P[B|d,d | n Pl

P(B]

log =Y log d,18] + log, ——=
*PlWld,-d | & TPP[d W] 2Plw ]
d =b,w
log posterior odds log likelihood ratio(s)  log prior odds
+1 black 0

-1 white



Log Odds

P[B|d,d | n Pld |B]

P a] ~E %Rl w] "

d =b,w

'YX Yof Yolohs

D000000.007

Sample
- 32
32:1 = 32/,

Only the difference matters

6 white
11 black
5 difference

Probability that
The urn is the
black urn



Log Odds

00000000‘7
'YX Yof Yolohs

Sample
+5 = 32:1 = 3%3

Only the difference matters

Is that your intuition?

Probability that
The urn is the

black urn
B W
5 0
11 ©

95 90



Are you
Bayesian?

Probably not.

People tend to pick odds closer to 1:1
than the correct odds. This error is an
example of human tendency to distort
probability.

Conservatism [Ward Edwards]



BDT in Action:

Signal Detection Theory



Origin of SDT: WW2 radar
operator

Are the blobs enemy aircraft? Or just Radar screen
noise (e.g. clouds)?

Decision has consequences:
— If you miss an aircraft, people
might get killed

— If you mistake “noise” for an
aircraft, fuel, time & resources

are wasted




World States
Actions

Stimulus Intensity



Decision outcomes

SIGNAL: are the blobs real enemy aircraft?

S S
i False
Y Hit
alarm
DECISION:
should you alert
the air force? _ Correct
N Miss reject




W
A ={Y,N}  p[XI|S]p[XIS] iikelinood
X

— (—oo, oo)
S S
Y i VYS —Vy§_ gain
N _—VNS Vis




probability

Likelihood Functions

p[X|§] p[X|S]

noise aircraft

X Blob size (stimulus intensity)



Computing Expected Bayes Gain
EBG(Y|X) = V,ep[ X|S]|n(S)-V,ep| X|S |x(S)
EBG(N|X) =-V,p[X|S]x(S)+V,p| XIS |x(S)
RULE: "SayY" < EBG(Y|X)>EBG(N|X)

p;Xls; S VY§+VN§X7T(§)
p_X|§_ Vs + Vs n(S)




likelinood — P[XIS] _ Vig+Vis 7(S)  criterion
ratio p[ XS] Vis +Vys  7(S)

probability

aircraft

X Blob size (stimulus intensity)



How should we set criterion?

likelihood ratio prior odds

' p| XIS ”(S){Vys +VN8:|

posterior odds Bayes Theorem

PISIX]  Vis +Vis
p[SIX|  Vs+Vis

Given the stimulus X are the posterior odds large
enough to motivate a Yes response?



How should we set criterion?

S
Y < Iogp[x §] > Iogﬂ() + Iog{VYSJFVNS}
p[X S] 7(S) Vis + Vs
Y < log p[X §] >
o[ X13]

log likelihood ratio

Compare the LLR to a criterion, log [

This is equivalent to X > c for the right
choice of c.



How well do people do?

We can estimate log beta [optimal]
and compatre it to the log beta
people choose.



Vary prior odds
Estimate criterion [

4

R?:0.99

-2 p, :0.51
-4
4 -2 0 2 4
log

Tanner, Swets, & Green (1956)



Conservatism

4

R?:0.99

-2 p, :0.51
-4
4 -2 0 2 4
log

Tanner, Swets, & Green (1956)



Themes

Managing uncertainty to maximize gain
IS the central task of a biological organism.

The use of explicit cost and rewards allow us to probe
a much wider range of behavior than previously
explored (Trommershauser et al, 2003, 2008)

We can test SDT/BDT as a framework for modeling
perception and action (Maloney & Mamassian, 2009)



Aside

The gain function is the
organism’s link to the
environment,

It represents a problem, posed
by the environment, a problem
that can rapidly change.

Only the Iluckiest organism can choose its gain function.



Planning Actions
Maximizing
Expected Gain

One example
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Experimental Task
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500 ms before
target onset

(114.2 mm x 80.6 mm)




Experimental Task

700 ms)

(

>
©
Q.
D
©
e
)
(@)
©
T




Experimental Task
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Experimental Task

L




Experimental Task

The red target is hit:

-500 points




Experimental Task

N




Experimental Task

Scores add if both

targets are hit:




Experimental Task




Experimental Task

The screen is hit
later than 700 ms
after target display:
-700 points.

If you are on time but
Miss the targets, O.
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Choice among Movement Strategies

What should Paulina do?



Distribution of
movement end points

Yhit~Ymean (mm)

-20  -10 0 10 20
Xhit"Xmean (IIlIIl)

Subject S4, ¢ = 3.62 mm,
72x15 = 1080 end points

D — —_
S © o o

Expected Normal Value
s S

Lo
o o O

Q-Q Plot

Xhit"Xmean (mm)

Observed Value



If there were no red penalty circle ....

Aim for center
Select perceptual-motor strategies that
minimize variance

Harris & Wolpert (1998)



Choice among Movement Strategies

What should Paulina do?
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c=4.83 mm

Thought Experiment

() : 100 points (2.5 ¢)

-10 -5 0 S5 10 15 20

X (mm)

100 points



© :-500

-10

c=4.83 mm

Thought Experiment

() : 100 points (2.5 ¢)

100 points
100 points

-10 -5 0 5 10 15 20

X (mm)

200 points



Thought Experiment
@ 500  ():100 points (2.5 ¢)

100 points
100 points
100 points

300 points

-10 -5 0 5 10 15 20
X (mm)

c=4.83 mm



Thought Experiment

© :-500

() : 100 points (2.5 ¢)

100 points
100 points
100 points
-400 points

-10 -5

c=4.83 mm

0 5
X (mm)

10 1

5

20

-100 points



Thought Experiment
@ 500  ():100 points (2.5 ¢)

100 points
100 points
100 points
-400 points

-0.3 pts. per trial

10 5 0 5 10 15 20

c=4.83 mm



Thought Experiment

@ 500  ():100 points (2.5 ¢)

X (mm)
c =4.83 mm

- 0.3 pts. per trial




Thought Experiment

© :-500

() : 100 points (2.5 ¢)

-10 -5

c=4.83 mm

0 5 10 15 20
X (mm)

- 0.3 pts. per trial

25.5 pts. per trial




Thought Experiment
@ 500  ():100 points (2.5 ¢)

1ok c . . oe® > |-0.3 pts. per trial
.. Go
€ 2
E Or ® o |25.5pts. per trial
> * ¢
> °e 22.6 pts. per trial
-10F ’

-10 -5 0 5 10 15 20

c=4.83 mm



Expected value as function of
mean movement end point (X,y):

points
10 per trial
A S 30
£ -0 ;. 15
; ;;';i! 0
-5 15
10 =

c=4.83mm penalty: -500



Thought Experiment

penalty: O
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Movement plans as lotteries

%%

(P4, -500; py, -400; p3, 100; pg4, 0)



Movement plans as lotteries

c =4 mm

Lottery:
(1.3%, -500; 30.3%, -400; 60.9%, 100; 7.5%, 0)



Movement plans as lotteries

Optimal aim point: lottery with MEV

c =4 mm

(6.6%, -500; 52.3%, -400; 37.0%, 100; 4.0%, 0)
(1.3%, -500; 30.3%, -400; 60.9%, 100; 7.5%, 0)

( 0%, -500; 4.6%, -400; 62.6%, 100; 32.8%, 0)




Experiment 1

Reaching with Asymmetric Gain/Loss

Julia Trommershauser

Trommershéauser, Maloney, Landy (2003) JOSA A



Test of the model: Experiment 1

1

2 3 4
4 stimulus
configurations: Q O 300® @300
(varied within block) -

. R=9mm
2 penalty conditions:

0 and -500 points (varied between blocks)

5 “practiced movers”
1 session of data collection: 360 trials
24 data points per condition



General Methods: Training

For all experiments:

All subjects practice the task for 360 trials
or more until their variance stabilizes.

The timeout limit is gradually decreased
to 700 ms during training.

There are no penalties during training
(the concept is never mentioned).
We verify that each subject’'s movement

variance has stabilized.

(0) +100

They are told only to
make money.



Results: Experiment 1

Model prediction:

e model, penalty =0

o

105 0 5710
X (mm)

y (mm)

Subject S5, 6 = 2.99 mm



Results: Experiment 1

Model prediction: configuration 1

e model, penalty =0
x model, penalty = 500

Subject S5, 6 = 2.99 mm



Results: Experiment 1

Model prediction: configuration 2

e model, penalty =0
x model, penalty = 500

Subject S5, 6 = 2.99 mm



Results: Experiment 1

Model prediction: configuration 3

e model, penalty =0
x model, penalty = 500

Subject S5, 6 = 2.99 mm



Results: Experiment 1

Model prediction: configuration 4

e model, penalty =0
x model, penalty = 500

Subject S5, 6 = 2.99 mm



Results: Experiment 1

Comparison with experiment
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Results: Experiment 1
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Results: Experiment 1
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Conclusions

BDT is a promising mode; of movement planning

The use of explicit cost and rewards allow us to probe
a much wider range of behavior than previously
explored.

Managing uncertainty is the central task of a
biological organism.



