G89.2223 Perception

Bayesian Decision Theory

Laurence T. Maloney

Last: Visual Tasks

Size? Shape? Distance?

Cue combination

Constantine Brancusi

Last: Visual Tasks

Constantine Brancusi

Cue combination tells us what to see, not what to do.

Planning of action.

Statistical Decision Theory

Abraham Wald

John von Neumann

David Blackwell

Oskar Morgenstern

David Blackwell M. A. Girshick

Bayesian Decision Theory

Bayesian Decision Theory

BDT with incorrect internal representations of probabilities, values.

The Three Elements of SDT

$$W = \{W_{1}, W_{2}, ..., W_{m}\}$$
$$A = \{a_{1}, a_{2}, ..., a_{p}\}$$
$$X = \{X_{1}, X_{2}, ..., X_{n}\}$$

possible states of the world

possible actions

possible sensory events

Bayesian Decision Theory (BDT) on o o o Perception likelihood P(w)prior decision d(x) **Action**

Fig. 1

Goal: select

$d: X \rightarrow A$

to maximize expected gain

Translated for

New Yorkers ...

To help you make money....

Bayesian Decision Theory (BDT)

Maximize expected Bayes gain

 $EBG(d) = \iint G(d(x), w) p(x | w) \pi(w) dx dw$ by choice of a decision rule

$$d: X \to A$$

$$EBG(d) = \iint G(d(x), w) p(x | w) \pi(w) dx dw$$

Two stages: pick a random world: prior $\pi(W)$ Generate a random perception from that world: likelihood p(x|w)

Maximize your expected gain over both random events.

$$Iikelihood \ prior$$

$$EBG(d) = \iint G(d(x),w) \left[p(x \mid w) \ \pi(w) \right] dx dw$$

$$EBG(d) \propto \iint G(d(x),w) \left[\tilde{p}(w \mid x) \right] dx dw$$

$$posterior$$

Bayes Theorem:

BDT, Perception and Action: A Brief History

Barlow(1950) Geisler (1989)

 $\iint G(d(x),w) p(x|w) \pi(w) dx dw$

BDT, Perception and Action: A Brief History

Barlow(1950) Geisler (1989)

 $\iint G(d(x),w) p(x|w) \pi(w) dx dw$

Knill & Richards (1996) Yuille & Bulthoff Tanenbaum &Griffiths *Many more*

BDT, Perception and Action: A Brief History

Barlow(1950) Geisler (1989) $\iint G(d(x),w) p(x|w) \pi(w) dx dw$

The gain function is the problem posed by the world to the organism Knill & Richards (1996) Yuille & Bulthoff Tanenbaum &Griffiths *Many more*

Are you Bayesian?

Ward Edwards

What is the probability that the unknown urn Is the 'black' urn?

Please write down your estimate.

How can we estimate this probability using Bayesian methods?

$$P[B|b] = \frac{P[b|B]P[B]}{P[b]}$$

$$P[B|b] = \frac{P[b|B]P[B]}{P[b]}$$
$$P[W|b] = \frac{P[b|W]P[W]}{P[b]}$$

$$\frac{P[B|b]}{P[W|b]} = \frac{P[b|B]}{P[b|W]} \frac{P[B]}{P[W]}$$
$$\frac{P[B|b]}{P[W|b]} = \frac{2/3}{1/3} \frac{1/2}{1/2} = 2$$

Next we draw a white ball (w)

What is the probability **now** that the urn is the black one P[B|bw]?

log prior after b

$$log \frac{P[B|bw]}{P[W|bw]} = log \frac{P[W|B]}{P[W|W]} + log \frac{P[B|b]}{P[W|b]}$$
$$log \frac{P[B|bw]}{P[W|bw]} = -1 + 1 = 0$$

Log Odds

$$\log_{2} \frac{P[B \mid d_{1} \cdots d_{n}]}{P[W \mid d_{1} \cdots d_{n}]} = \sum_{i=1}^{n} \log_{2} \frac{P[d_{i} \mid B]}{P[d_{i} \mid W]} + \log_{2} \frac{P[B]}{P[W]}$$
$$d_{i} = b, w$$
$$\log posterior odds \qquad log likelihood ratio(s) \qquad log prior odds$$
$$+1 \quad black \qquad 0$$

-1 white

Log Odds

$$\log_{2} \frac{P\left[B \mid d_{1} \cdots d_{n}\right]}{P\left[W \mid d_{1} \cdots d_{n}\right]} = \sum_{i=1}^{n} \log_{2} \frac{P\left[d_{i} \mid B\right]}{P\left[d_{i} \mid W\right]} + \log_{2} \frac{P\left[B\right]}{P\left[W\right]}$$
$$d_{i} = b, W$$

32/33

6 white 11 black <mark>5 difference</mark>

> *Probability that The urn is the black urn*

Only the difference matters

 $32:1 \Rightarrow$

Log Odds

Sample

Probability that The urn is the black urn

Only the difference matters

Is that your intuition?

Are *you* Bayesian?

Probably not.

People tend to pick odds closer to 1:1 than the correct odds. This error is an example of human tendency to distort probability.

Conservatism [Ward Edwards]

BDT in Action:

Signal Detection Theory

Origin of SDT: WW2 radar operator

- Are the blobs enemy aircraft? Or just noise (e.g. clouds)?
- Decision has consequences:
 - If you miss an aircraft, people might get killed
 - If you mistake "noise" for an aircraft, fuel, time & resources are wasted

 $W = \{S, \overline{S}\}$ $A = \{Y, N\}$ $X = (-\infty, \infty)$

World States Actions Stimulus Intensity
Decision outcomes

SIGNAL: are the blobs real enemy aircraft?

$$W = \{S, \overline{S}\}$$

$$A = \{Y, N\} \qquad p[X | S], p[X | \overline{S}] \text{ likelihood}$$

$$X = (-\infty, \infty)$$

$$\begin{array}{ccc} S & \overline{S} \\ Y & \begin{bmatrix} V_{YS} & -V_{Y\overline{S}} \\ -V_{NS} & V_{N\overline{S}} \end{bmatrix} & gain \end{array}$$

Computing Expected Bayes Gain

$$EBG(Y|X) = V_{YS}p[X|S]\pi(S) - V_{Y\overline{S}}p[X|\overline{S}]\pi(\overline{S})$$

$$EBG(N|X) = -V_{NS}p[X|S]\pi(S) + V_{N\overline{S}}p[X|\overline{S}]\pi(\overline{S})$$

$$RULE: "Say Y" \iff EBG(Y|X) > EBG(N|X)$$

$$\frac{p[X|S]}{p[X|\bar{S}]} > \frac{V_{Y\bar{S}} + V_{N\bar{S}}}{V_{YS} + V_{NS}} \times \frac{\pi(\bar{S})}{\pi(S)}$$

How should we set criterion?

posterior odds

Bayes Theorem

$$Y \Leftrightarrow \frac{p[S \mid X]}{p[\bar{S} \mid X]} > \frac{V_{YS} + V_{NS}}{V_{Y\bar{S}} + V_{N\bar{S}}}$$

Given the stimulus X are the posterior odds large enough to motivate a Yes response? How should we set criterion?

log likelihood ratio

Compare the LLR to a criterion, log β

This is equivalent to X > c for the right choice of c.

How well do people do?

We can estimate log beta [optimal] and compare it to the log beta people choose.

Tanner, Swets, & Green (1956)

Tanner, Swets, & Green (1956)

<u>Themes</u>

Managing uncertainty to maximize gain is the central task of a biological organism.

The use of explicit cost and rewards allow us to probe a much wider range of behavior than previously explored (Trommershäuser et al, 2003, 2008)

We can test SDT/BDT as a framework for modeling perception and action (Maloney & Mamassian, 2009)

<u>Aside</u>

The gain function is the organism's link to the environment.

It represents a problem, posed by the environment, a problem that can rapidly change.

Only the luckiest organism can choose its gain function.

Planning Actions Maximizing Expected Gain

One example

Start of trial: display of fixation cross (1.5 s)

Display of response area, 500 ms before target onset (114.2 mm x 80.6 mm)

Target display (700 ms)

The green target is hit: +100 points

The red target is hit: -500 points

Scores add if both targets are hit:

The screen is hit later than 700 ms after target display: -700 points.

If you are on time but Miss the targets, 0.

End of trial

Choice among Movement Strategies

What should Paulina do?

Subject S4, σ = 3.62 mm, 72x15 = 1080 end points

Observed Value

If there were no red penalty circle

Aim for center Select perceptual-motor strategies that **minimize variance**

Harris & Wolpert (1998)

Choice among Movement Strategies

What should Paulina do?

Thought Experiment

 σ = 4.83 mm

Thought Experiment

 σ = 4.83 mm

Expected value as function of mean movement end point (x,y):

Thought Experiment

x, y: mean movement end point [mm]

 σ = 4.83 mm

y [mm]

Movement plans as lotteries

Movement plans as lotteries

 σ = 4 mm

Lottery:

(1.3%, -500; 30.3%, -400; 60.9%, 100; 7.5%, 0)

Movement plans as lotteries

Optimal aim point: lottery with MEV

(6.6%, -500;	52.3%, -400;	37.0%, 100;	4.0%, 0)
(1.3%, -500;	30.3%, -400;	60.9%, 100;	7.5%, 0)
(0%, -500;	4.6%, -400;	62.6%, 100;	32.8%, 0)
(0%, -500;	0.7%, -400;	37.6%, 100;	61.7%, 0)

Reaching with Asymmetric Gain/Loss

Julia Trommershäuser

Trommershäuser, Maloney, Landy (2003) JOSA A

Test of the model: Experiment 1

4 stimulus configurations: (varied within block)

R = 9 mm

30[°]

4

3

30°

2 penalty conditions:0 and -500 points (varied between blocks)

5 "practiced movers"1 session of data collection: 360 trials24 data points per condition

General Methods: Training

For all experiments:

- All subjects practice the task for 360 trials or more until their variance stabilizes.
- The timeout limit is gradually decreased to 700 ms during training.
- There are no penalties during training (the concept is never mentioned).
- We verify that each subject's movement variance has stabilized.
- They are told only to make money.

Model prediction:

• model, penalty = 0

Model prediction: configuration 1

• model, penalty = 0

 \times model, penalty = 500

Model prediction: configuration 2

• model, penalty = 0

 \times model, penalty = 500

Model prediction: configuration 3

• model, penalty = 0

 \times model, penalty = 500

Model prediction: configuration 4

model, penalty = 0
model, penalty = 500

Comparison with experiment

 \circ exp., penalty = 0

- exp., penalty = 500
- × model, penalty = 500

<u>Conclusions</u>

BDT is a promising mode; of movement planning

The use of explicit cost and rewards allow us to probe a much wider range of behavior than previously explored.

Managing uncertainty is the central task of a biological organism.