Spatial pattern vision and linear systems
theory

*+ Receptive fields and neural images
 Shift-invariant linear systems and convolution
+ Fourier transform and frequency response
+ Applications of linear systems to spatial vision
— Contrast sensitivity
— Spatial frequency and orientation channels
— Spatial frequency and orientation adaptation
— Masking

Receptive field

+ In any modality: that region of the sensory apparatus
that, when stimulated, can directly affect the firing
rate of a given heuron

+ Spatial vision: spatial receptive field can be mapped in
visual space or on the retina

+ Examples:

LGN V1

Receptive field

A spatial receptive field is an image:
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Orientation selective receptive field

No stimulus in
receptive field:
no response

0

Preferred stimulus:
large response

b

Non-preferred stimulus:
no response

Neural image: retinal ganglion cell

responses

Input image
(cornea)

Array of center-surround
receptive fields

00000

“Neural image”
(retinal ganglion cells)

Neural image: simple cell responses

Input image
(cornea)

Array of orientation-
selective receptive fields

“Neural image”
(V1 simple cells)




Lots of neural images: V1 simple cells

zx

o0

e
/

Lots of neural images

Simple cells Complex cells

Neural image of a sine wave

For a linear, shift-invariant system such as a linear model
of a receptive field, an input sine wave results in an
identical output sine wave, except for a possible lateral
shift and scaling.
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Frequency response

This scaling of contrast by a linear receptive field in the
neural image is a function of spatial frequency
determined by the shape of the receptive field.

Contrast Gain

Spatial Frequency

Frequency response

This scaling of contrast by a linear receptive field in the
neural image is a function of spatial frequency
determined by the shape of the receptive field.

Contrast Gain

Spatial Frequency

Orientation tuning

If areceptive field is not circularly symmetric, the
scaling of contrast is also a function of orientation (for a
given spatial frequency) determined by the shape of the

receptive field.

Contrast Gain
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Linear systems analysis

Measure the 4
impulse response Space/time method

Express as sum Calculate the Sum the
of shifted and = response to — impulse
scaled impulses each impulse responses

Input stimulus

“\\.| Expressas sum Calculate the Sum the
of shifted and — response o — sinusoidal
scaled sinhusoids each sinusoid responses

Measure the Frequency method
frequency response

Spatial pattern vision and linear systems
theory

* Receptive fields and neural images

Shift-invariant linear systems and convolution
* Fourier transform and frequency response

+ Applications of linear systems to spatial vision
— Contrast sensitivity

— Spatial frequency and orientation channels

— Spatial frequency and orientation adaptation
— Masking

Functions and Systems

A function: a relation between a set of inputs and a set of
permissible outputs with the property that each input is
related to exactly one output.

Examples INPUT x
« f(x) = x"2

« f(x) = cos(x)
« f(x,y) = sqrt(x"2 + y"2)

FUNCTION f:

v
OUTPUT f(x)

wikipedia




Functions and Systems

A system: a generalization of a function whereby inputs and
outputs can be numbers or objects, discrete or continuous, any
dimensionality

Examples

« Physiological optics: Input: scene spectral irradiance; Output: retinal image

« Eye: Input: scene spectral irradiance; Output: retinal ganglion cell firing rate

« Human: Input: scene spectral irradiance; Output: knob adjustment (eg color match)
« fMRI: Input: neuronal activity Output: T2*w image

Scene spectral Physiological Photo Retinal Inference
radiance opties transduction processing

Linear Systems Analysis

Systems with signals as input and output

+ 1-d: low- and high-pass filters in electronic equipment,
fMRI data analysis, or in sound production
(articulators) or audition (the ear as a filter)

y(1) = T{x(1)}

+ 2-d: optical blur, spatial receptive field

g(xy) = T{f(x.y)}

+ 3-d: spatio-temporal receptive field

g(xy.t) = T{f(xy. 1)}

Homogeneity (scaling)

Visual stimulus RGC firing rate
Original input Output
time time
Original input ~ x 2 Output x 2

time V time




Additivity
Visual stimulus ~ RGC firing rate

Input 1 Output 1

1 A
time \/ time

Input 2 Output 2

time V time

Sum of Inputs Sum of Outputs

ime
Shift invariance
Visual stimulus RGC firing rate
Original input Output
time ; / time
Original input, later in time Output, later in time

time S / time

Shift-invariant linear
systems and impulses

Impulse Impulse Responsa
-
I
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Each Impulse Creales a
Scaled and Shifted Impulse Response

The sum of all the impulse responsas
is the final system response




Convolution

Discrete-time signal: x[n] = [x1, x2, x3, ...]

A system or transform maps an input signal into an output
signal:
y[n] = T{x[n]}

A shift-invariant, linear system can always be expressed as a
convolution:

yln] =) x[m] h{n-m]
m

where h[n] is the impulse response.

Convolution as sum of impulse responses

Input: ‘

Impulse response:

Output: ‘ ‘
\

¥ |

Convolution as sequence of weighted sums

past present future
0 ? (f I 0O 0 0 0 O input (impulse)

18 1/4 12 — weights

0O 0 0 121418 0 0 O output (impulse response)

1 1 1 input (step)
1/8 1/4 1(2 — weights

0O 0 O 1/23/47/8 7/8 7/8 7/8 output (step response)




Convolution as matrix multiplication

Linear system <=> matrix multiplication
Shift-invariant linear system <=> Toeplitz matrix

: : 1
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Columns contain shifted copies of the impulse response.
Rows contain time-reversed copies of impulse response.

Convolution as matrix multiplication
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Columns contain shifted copies of the impulse response.
Rows contain time-reversed copies of impulse response.

Derivation: shift-invariant linear
system => convolution

Homogeneity:
Ta x[n]} = a Wx[n]}
Additivity:
T{x,[n] + x,[n]} = T{x,[n]} + T{x,[n])

Superposition:
Ta x,[n]+ b x,[n]} = a T{x,[n]} + b T{x,[n]}

Shift-invariance:
yIn] = x[n]} => y[n-m] = T{x[n-m]}




Convolution derivation (cont)

Impulse sequence:
d[n]=1for n=0,d[n] = 0 otherwise

Any sequence can be expressed as a sum of impulses:
x[n] =Zx[m] d[n-m]
m
where
d[n-m] is impulse shifted to sample m

x[m] is the height of that impulse

Example:

Convolution derivation (cont)
x[n]: input
y[n] = T{x[n]}: output
h[n] = T{d[n]}: impulse response

1) Represent input as sum of impulses:
y[n] = T{x[n]}

yln] = T{;x[m] din-m]}

2) Use superposition:

y[n1 =Y x[m] T{d[n-m]}
m

3) Use shift-invariance:

y[n] =3 x[m] h{n-m]
m

Matrix multiplication => scaling

NxN Toeplitz
Nx1 vector matrix Nx1 vector
yi X
X
Y2 Impulse 2
Y3 | = X3
. response .
M .
.
YN XN

ay1 ax
ayz axz
Impulse
ay mpuls axs
response .
. .
. :
a;/N axXN




Matrix multiplication => additivity

y1 X1 4l w1
X2 Z2 w2
Y2 Impulse Impulse W
ys | = x3| and z3| = 3
response . response .
. . : :
YN N N WN
yi z1 Xtow
X2 W2
Y2 z2
vor 7| = Impulse X3+ Ws
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Toeplitz matrix => shift invariance
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Neural image and convolution

A spatial receptive field may also be treated as a linear system, by
assuming a dense collection of neurons with the same receptive field
translated to different locations in the visual field. In this view, it
is a linear, shift-invariant system*s.
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* This is the basis of CNNs (convolutional neural networks).
S The nervous system doesn't actually work like this. (It's not linear and it's not shift invariant!)




Neural image and convolution

% Make a Difference of Gaussian receptive field using fspecial
DoG = fspecial( gaussian', 20,2) - fspecial('gaussian', 20,5);
im = imread('cameraman.tif');

% Make a neural image by convolution

neuralim = conv2(double(im), DoG);

% Show the image, the RF, and the neural image

figure, subplot(1,3,1), imshow(im), subplot(1,3,2), surf(DoG)
subplot(1,3,3), imagesc(neuralim); colormap gray, axis image off

Neural image and convolution

10

0o

% Shift the image and replot
im2 = im(:, [n:end 1:n]);
neuralim? = conv2(double(im2), DoG);

Continuous-time derivation of convolution




Linear systems requirements

A system (or transform) converts (or maps) an input signal into
an output signal:
(@) =Tx(®)]

A linear system satisfies the following properties.
1) Homogeneity (scalar rule):

Tlax(] =a ()
2) Additivity:

Tlx, () + x,(0] = y,(0) + y,(D)

Often, these two properties are written together and called
superposition:
Tlax, () +bx,()]=ay,(®) + by, ()

Pulses and impulses

oo if t=0
§(t) = { 0 otherwise
i Ljf 0<t<A
) a !
da(t) = { 0 otherwise

5(t) = lim da(1).

Staircase approximation to

continuous time signal

H) = 3 a(kA)da(t— kA A,

k=—00

z(t) = ilg%) > w(kA)da(t — kA) A

z(t) = /:’:C 2(s)8(t — 5) ds.




Shift invariance

For a system to be shift-invariant (or time-invariant) means
that a time-shifted version of the input yields a time-shifted
version of the output:

V(0 =Tx(9]
Wt -5)=T[x(t-5)]

The response y(¢ - s) is identical to the response y(7), except
that it is shifted in time.

Convolution

Representing the input signal as a sum of pulses:

g =Tla(®)] = T {/:Ol-(s) 5(t—s) ds}

T

k=—00

lim s x(A:A)d_\(t—A:A)A].
Using additivity,

y(O)= lim 3" Tla(kA) sa(t — k2) A]

Taking the limit,

y(t) = /Z Tla(s) 8(t — ) ds].
Using homogeneity (scalar rule),

y(t) = /f: Tla(s) 6(t — s) ds].
Defining /(1) as the impulse response,

y(t) = /j;z(s) h(t — s)ds.

Linear systems analysis

Measure the )
impulse response Space/time method

Express as sum Calculate the Sum the
of shifted and — response fo — impulse

scaled impulses each impulse responses

Input stimulus

“\\.| Express as sum Calculate the Sum the
of shifted and — response o — sinusoidal
scaled sinusoids ~ each sinusoid  responses

Measure the Frequency method
frequency response




Spatial pattern vision and linear systems
theory

* Receptive fields and neural images

+ Shift-invariant linear systems and convolution

+ Fourier transform and frequency response

+ Applications of linear systems to spatial vision
— Contrast sensitivity
— Spatial frequency and orientation channels
— Spatial frequency and orientation adaptation
— Masking

Fourier transform and frequency
response: summary

Signals can be represented as sums of sine waves
Linear, shift-invariant systems operate “independently” on each
sine wave, and merely scale and shift them.

A simplified model of neurons in the visual system, the linear
receptive field, results in a neural image that is linear and shift-
invariant.

Psychophysical models of the visual system might be built of such
mechanisms.

It is therefore important to understand visual stimuli in terms of
their spatial frequency content.

The same tools can be applied to other modalities (e.g., audition)
and other signals (EEG, MRI, MEG, etc.).

Temporal frequency and Fourier
decomposition

Additive synthesis:
(@) Add pure tones
to create complex

Figure 10.7
© )%%ﬂvﬂv% Additive synthesis. (a) Pressure
changes for a pure tone with fre-
quency of 440 Hz; (b) the second
harmonic of (a), with a frequency
of 880 Hz; (c) the third
@ harmonic, with a frequency of
Fourier analysis: 1,320 Hz. (d) The sum of the
Break complex three harmonics above creates
waveform into its the waveform for a complex tone.
pure tone components  \orking in the other direction,

applying Fourier analysis to the
complex tone reveals its pure tone
components.




Shift-invariant linear systems & sinusoids

Measure the scaling and shifting for each sinusoid

Scaled and Shifted
Sinusoidal Inputs sinusoidal outputs

AV—’
Py = N
WAL = e

Shift-invariant linear systems & sinusoids

Frequency response

Frequency Description
of the system

Sinusoidal Scaled and Shifted
Inputs dal autputs X

scaling
’

shifting

frequency

Linear systems analysis

Measure the )
impulse response Space/time method

Express as sum Calculate the Sum the
of shifted and — response fo — impulse
scaled impulses each impulse responses

Input stimulus

“\\.| Express as sum Calculate the Sum the
of shifted and — response o — sinusoidal
scaled sinusoids ~ each sinusoid  responses

Measure the Frequency method
frequency response




Convolution and multiplication

time sample

Convolution:

Fourier transform

frequency sample

/
x1[n] = x2[n] <= X1[k] Xz[k]

Multiplication:

x1[n] x2[n] <= (1/N) X1[k] * X2[k]

convolution

Linear filter example

Signal

Miles Davis
“Half Nelson”

©

Frequency content

Filter
Bass onIy
Low-pass or
Bass Filter
Treble only !
High-pass or
Treble Filter
ﬁ"l’_“ev 7600 2000
Tlme Next
Linear filter example
Signal Frequency content
Miles Davis !
“Half Nelson”
j Filter
Bass onIy
Low-pass or
Bass Filter
Treble only !
High-pass or
Treble Filter
':"“‘:ev 7600 2000

Tlme

Next




Linear filter example

Signal Frequency content

i

Miles Davis
“Half Nelson”

o o0 E

G

Filter
Bass only
@ Low-pass or
Bass Filter
Treble only: | !
High-pass or
Q Treble Filter
- S“I"“ev T 2000
Time Next
Linear filter example
Signal Frequency content
Miles Davis !
“Half Nelson”
’., Filter
Bass only
Low-pass or

Q Bass Filter
9 of
550 o 000 e

Treble onIy !
High-pass or
Q WWNMW Treble Filter

00 000 200

Prev
Next

Time

Input i lmage (cornea) "Neural image" (V1)

Linear
filter

Convolution with
impulse response

Fourier transform

Multiplication with
frequency response

Fourier spectrum Fourier spectrum
of input image of neural image




Fourier Analysis

Signals as sums of sine waves

+ 1d: time series
- fMRI sighal from a voxel or ROI
- mean firing rate of a neuron over time
- auditory stimuli

+ 2d: static visual image, neural image

+ 3d: visual motion analysis

Auditory example: Pure tones

Increased —
pressure t

|
Amplitude

Atmospheric
pressure Time

Air pressure

Decreased -
pressure

One cycle

Pure tones can be described by 3 numbers:

Frequency = rate of air pressure modulation (related to pitch)
Amplitude = sound pressure level (related to loudness)

Phase = sin vs. cosine vs. another horizontal shift

Frequency and amplitude

weak 100 Hz strong 100 Hz weak 1000 Hz strong 1000 Hz

; |

e Y-

T le1/100s | ‘
| |

Sound pressure level




Fourier spectrum representation of sound
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Lots of Fourier transforms

Name

Time domain

Freq domain

Fourier transform

Fourier series

DTFT

DFs

DFT

continuous, infinite

continuous, periodic

discrete, infinite

discrete, periodic

discrete, finite

continuous, infinite

discrete, infinite

continuous, periodic

discrete, periodic

discrete, finite

FFT algorithm

» Computes DFT of finite length input.

- Efficient for inputs of length N = mn.

« Produces 2 outputs, each of size/length equal to that of
the input: real part (cosine coeffs), imaginary part (sine

coeffs).

DFT of a cosine

1

cos(2rkn/N)

0
k = 4 cycles/image
N = 32 pixels
-1
16 32
sample number
o
3 .
=}
= 2rk /N
g‘ 5 (7 / 41in this case)
< a.
2n “n 0 T

0 T .
frequency (radians)

16 24 32 -16 -8
Frequency (cycles)

0 8

Frequency (cycles)

frequency (radians)

0 8 16




Real and imaginary parts

cosine sine

real part I |

0 T N 0
frequency frequency

imaginary part |

- 0 T T | 0 T
magnitude | | | |

- 0 T T 0 b
phase 0 2

DFT of impulse signal and constant signal

16 32 0 16 32
sample number sample number

Uncertainty principle

o o o o r
N o O

o o o o o

o N B O ® O
o o o o ©o o
o B N W s g

0 8 16 24 32 -16 -8 0 8 16
Time (sample number) Frequency (cycles)




Multiplication and convolution

NN L,

Discrete Fourier Transform (DFT)

Analysis:
N-1 )
S z[n] eI/ 0 <K< N -1
X[k] = n=0
0 otherwise
Synthesis:
N-1 )
L3 X[k IRr/NE 0 <n< N -1
z[n] = k=0

0 otherwise

z[n]: discrete, finite

X[K]: discrete, finite

Complex numbers and complex exponentials

amplitude phase

. imaginary

z=a+ jb=Ae” = A[cos(9) + jsin(¢)]
/ \ imaginary /\
real part part j

where: \

a = Acos(9) = +b*
A ¢ A a,,+ j=\/—_1
b = Asin(¢) p=tan"'(b/a)

Why bother with complex exponentials?

9 Je2y — J(¢1+¢y)
(A" )(A e’ )= A A"
amplitudes  phases

multiply add

real




Discrete Fourier transform matrix

Analysis:  X[K] = Y’ x{n] exp(-2rnkn/N)
n
For real valued inputs:

XdK =Y. xin cos(...)  Xe[Kl = -x{n] sin(...)
n n

XK cosines (x[n])

Rows of P called projection functions: iN P P=1I

Discrete Fourier transform matrix

Synthesis:  x{n] = Y, X[K] exp(j2rkn/N)
k

-

sines

XK

—

\cosines

Xs[K]

. . 1 T
Cols of B called basis functions. B = PT, NBB= |

Sine wave gratings and spatial frequency

Low SF High SF
1 cpd 4 cpd

Measured in cycles per degree (cpd or c¢/deg or ¢/°) of
visual angle.




Contrast

Two-dimensional Fourier spectra

Space domain Frequency domain

- - -

Two-dimensional Fourier spectrum

Intensity in the Fourier spectrum at each location
indicates amount of contrast (in the original image) for
each spatial frequency and orientation.




Input image (cornea)
i

“Neural image” (V1)

Linear
systems
analysis

Convolution with
impulse response

Fourier transform

Multiplication with
frequency response

oo

Fourier spectrum Fourier spectrum
of input image of neural image

Spatial pattern vision and linear systems
theory

* Receptive fields and neural images

+ Shift-invariant linear systems and convolution

* Fourier transform and frequency response

+ Applications of linear systems to spatial vision
— Contrast sensitivity
— Spatial frequency and orientation channels
— Spatial frequency and orientation adaptation
— Masking

Spatial contrast sensitivity

Contrast sensitivity

Spatial frequency (c/deg)

O e




Spatial contrast sensitivity

Spatial frequency (cycles/degree)

0.1 1 10 100 @
0001 — ! ! ! T _h1000 3
Invisible &
a— <
@ =
© <
‘g 0.01 — — 100 ’;:
o a2
s
[e]
= =5
g 01 —{10 o
o (e (@]
= Visible 8,
10 7 | | . L 2
0.1 1 10 100

Spatial frequency (cycles/mm on retina)

Spatial frequency channels

Sensitivity |

0.001 1,000

0.01— — 100

0.1~

Threshold contrast

(1se1ju00 ploysaiyy 1) AnAnisues

0.1 1 10 100

Spatial frequency
(cycles/degree)

Each channel is sensitive to a nharrow range of frequencies. Overall
contrast sensitivity depends on all of them together.

Theory of spatial pattern analysis by
the visual system

Low sf filters encode High sf filters encode

coarse-scale information fine-scale information
(large objects, overall (small objects, detail)

shape)




Multi-resolution model

Convolution Static
kernels nonlinearity  [Noisel

iy g

Nomc | |

g |
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N01se ‘ g \
Stimulus / R o
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Psychophysical/perceptual evidence for
spatial-frequency and orientation
selective channels

Orientation and spatial frequency
selective adaptation: appearance
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Spatial frequency selective adaptation:
appearance

(a) No adaptation (b) Low frequency (c) High frequency
adaptation adaptation
z 2 B z
z Z Z
= I~ I~
N 5K ENTTN
Spatial frequency Spatial frequency Spatial frequency
- Test - Test Test
. L i I . L B
Q o Q
@ @ @
=1 =) =1
<) S <)
o ] =% m o
] ! 5 =i 2 =
~ [ | ~ ml] o fon |
N | I [l ol
Channel Channel Channel

Spatial frequency selective adaptation:
sensitivity

Spatial frequency selective adaptation:
sensitivity




Contrast
sensitivity
before & after
adaptation

1000
>
.g 100 E
g F
=
S -
hd .
g L
5
o 10g
E Adapting
L frequency
1 SR R DI B 50 F R T B
0.1 1 10
Spatial frequency (cycles/degree)
Figure 3.22

Squares and solid curve: Contrast sensitivity function for a
sine-wave grating. (From Campbell & Robson, 1968.) Dot-
ted curve: Contrast sensitivity measured after adaptation to
a 7.5 cycles/degree grating.

Contrast sensitivity before & after

adaptation
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10 & F.W.C. ,51'0 E
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Orientation selective adaptation

Orientation selective adaptation

N
N\
N
N

Orientation selective adaptation




Applications: Optical Line Spread Function
(Campbell & Gubisch, 1966)

(a) Grating response (b) Modulation transfer () Linespread function
function
g 10 - 5 c/deg. g 10
2
= g -]
°
£ : E
::‘ 05 £ 05 s
> 2 g
b= 4 <
K
Q A
[ | 711
0 0 30 60 3 0 3
Distance alon : \/\/ [sA Spatial frequency (c/deg.)  Angular distance (min)
Fig. 1. Equ© f optical quality. (a) As the fineness of a black-and-
white grat| ¢ tale illumi modulation of its image decreases.
(b) The co © ibing this decrease of contrast is the modulation
transfer fu P i distribution in the image of a thin line is

termed the linespread function; it is also obtained as the Fourier transform of the
modulation transfer function.

Applications: Optical Line Spread Function
(Campbell & Gubisch, 1966)

49 mm

20 mm

Angular distance (minutes of arc)

Applications: Optical Line Spread Function
(Campbell & Gubisch, 1966)

os| N\ Pupil dismeters in mm are: +, 2:0; @, 3:0; v, 3:8; A, 40; W, 58; ¢, 6:6.

Contrast transmission




Applications: Optical Line Spread Function
(Westheimer, 1986)

1.0

0.8

0.6

0.4

Relative intensity

0.2

-4 -2 0 2 4

Visual angle (minutes of arc)

Westheimer's Linespread
Function. Analytic
approximation of the human
linespread function for an
eye with a 3.0mm diameter
pupil (Westheimer, 1986).

Applications: Optical Line Spread Function
(Westheimer, 1986)

1.0

0.5

Amplitude scale factor

| Williams et al.

0.0

10 20 30 40 50 60

Spatial frequency (cycles per degree)

Modulation transfer function
measurements of the optical
quality of the lens made
using visual interferometry
(Williams et al., 1995;
described in Chapter 3). The
data are compared with the
predictions from the
linespread suggested by
Westheimer (1986) and a
curve fit through the data by
Williams et al. (1995).

Applications: Optical Line Spread Function,
Wavelength Dependency

)
“¢

i
:‘\\:‘\’o’o’o
i

A

voes

i

QR
NN e
) W 'i','ll,,'l: e

Vi
Wl 'Ill,,,'
7

W

ottt
Il
oy l',,,llgéll

7R

Sy,
e s
."'""5""3"

Loy

PSS,
.Qh

%

2%
5%
5%
be3ss
K2

L7

X7

2z

<
R
ke
R
AN
R

L
SSEE

IS

2R
2222
L

<
2%
<%

.\
s 30 .r‘;\&ﬁe

OTF of Chromatic Aberration: Two views of the modulation transfer function of a model eye at
various wavelengths. The model eye has the same chromatic aberration as the human eye (see
Figure 2.23) and a 3.0mm pupil diameter. The eye is in focus at 580nm; the curve at 580nm is
diffraction limited. The retinal image has no contrast beyond four cycles per degree at short
wavelengths. (From Marimont and Wandell, 1993).




Applications: Optical Line Spread Function,
Wavelength Dependency
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