
• Receptive fields and neural images 
• Shift-invariant linear systems and convolution 
• Fourier transform and frequency response 
• Applications of linear systems to spatial vision 

– Contrast sensitivity 
– Spatial frequency and orientation channels 
– Spatial frequency and orientation adaptation  
– Masking

Spatial pattern vision and linear systems 
theory

• In any modality: that region of the sensory apparatus 
that, when stimulated, can directly affect the firing 
rate of a given neuron 

• Spatial vision: spatial receptive field can be mapped in 
visual space or on the retina 

• Examples:

LGN V1

Receptive field

A spatial receptive field is an image:

Receptive field



No stimulus in 
receptive field: 
no response

Non-preferred stimulus: 
no response

Preferred stimulus: 
large response

Orientation selective receptive field

Input image 
(cornea)

“Neural image” 
(retinal ganglion cells)

Neural image: retinal ganglion cell 
responses

Array of center-surround 
receptive fields

Neural image: simple cell responses

Input image 
(cornea)

“Neural image” 
(V1 simple cells)

Array of orientation-
selective receptive fields



Lots of neural images: V1 simple cells

Lots of neural images

Simple cells Complex cells

Neural image of a sine wave

For a linear, shift-invariant system such as a linear model 
of a receptive field, an input sine wave results in an 
identical output sine wave, except for a possible lateral 
shift and scaling.



Frequency response

This scaling of contrast by a linear receptive field in the 
neural image is a function of spatial frequency 
determined by the shape of the receptive field.
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Spatial Frequency

Frequency response

This scaling of contrast by a linear receptive field in the 
neural image is a function of spatial frequency 
determined by the shape of the receptive field.
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Spatial Frequency

Orientation tuning

If a receptive field is not circularly symmetric, the 
scaling of contrast is also a function of orientation (for a 
given spatial frequency) determined by the shape of the 
receptive field.
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Measure the 
impulse response

Measure the 
frequency response

Space/time method

Frequency method

Input stimulus

Express as sum 
of shifted and 
scaled impulses

Calculate the 
response to 
each impulse

Sum the 
impulse 

responses

Express as sum 
of shifted and 
scaled sinusoids

Calculate the 
response to 
each sinusoid

Sum the 
sinusoidal 
responses

Linear systems analysis

• Receptive fields and neural images 
• Shift-invariant linear systems and convolution 
• Fourier transform and frequency response 
• Applications of linear systems to spatial vision 

– Contrast sensitivity 
– Spatial frequency and orientation channels 
– Spatial frequency and orientation adaptation  
– Masking

Spatial pattern vision and linear systems 
theory

Functions and Systems

A function: a relation between a set of inputs and a set of 
permissible outputs with the property that each input is 
related to exactly one output.

  Examples 

• f(x) = x^2
• f(x) = cos(x)
• f(x,y) = sqrt(x^2 + y^2)

wikipedia



Functions and Systems

A system: a generalization of a function whereby inputs and 
outputs can be numbers or objects, discrete or continuous, any 
dimensionality

Examples

• Physiological optics: Input: scene spectral irradiance; Output: retinal image
• Eye: Input: scene spectral irradiance; Output: retinal ganglion cell firing rate 
• Human: Input: scene spectral irradiance; Output: knob adjustment (eg color match)
• fMRI: Input: neuronal activity Output: T2*w image

Linear Systems Analysis

Systems with signals as input and output 

• 1-d: low- and high-pass filters in electronic equipment, 
fMRI data analysis, or in sound production 
(articulators) or audition (the ear as a filter) 

y(t) = T{x(t)} 
• 2-d: optical blur, spatial receptive field 

g(x,y) = T{f(x,y)} 
• 3-d: spatio-temporal receptive field 

g(x,y,t) = T{f(x,y,t)}

Homogeneity (scaling)

Visual stimulus RGC firing rate



Additivity
Visual stimulus RGC firing rate

Shift invariance

Visual stimulus RGC firing rate

Shift-invariant linear 
systems and impulses



Convolution

Discrete-time signal: x[n] = [x1, x2, x3, ...] 

A system or transform maps an input signal into an output 
signal: 
      y[n] = T{x[n]} 

A shift-invariant, linear system can always be expressed as a 
convolution: 

      y[n] =     x[m] h[n-m] 

where h[n] is the impulse response.

3
m

Convolution as sum of impulse responses

Input:

Impulse response:

Output:

+

past present future
input (impulse)

output (impulse response)

input (step)

output (step response)

0     0     0   1/2  1/4  1/8    0     0     0

0     0     0     1     0     0     0     0     0

0     0     0     1     1     1     1     1     1

0     0     0   1/2  3/4  7/8   7/8  7/8  7/8

weights1/8  1/4  1/2

1/8  1/4  1/2 weights

Figure 3: Convolution as a series of weighted sums.

Using homogeneity,

Now let be the response of to the unshifted unit impulse, i.e., . Then by using

shift-invariance,

(4)

Notice what this last equation means. For any shift-invariant linear system , once we know its

impulse response (that is, its response to a unit impulse), we can forget about entirely, and

just add up scaled and shifted copies of to calculate the response of to any input whatsoever.

Thus any shift-invariant linear system is completely characterized by its impulse response .

The way of combining two signals specified by Eq. 4 is know as convolution. It is such a

widespread and useful formula that it has its own shorthand notation, . For any two signals and

, there will be another signal obtained by convolving with ,

Convolution as a series of weighted sums. While superposition and convolution may sound

a little abstract, there is an equivalent statement that will make it concrete: a system is a shift-

invariant, linear system if and only if the responses are a weighted sum of the inputs. Figure 3

shows an example: the output at each point in time is computed simply as a weighted sum of the

inputs at recently past times. The choice of weighting function determines the behavior of the

system. Not surprisingly, the weighting function is very closely related to the impulse response of

the system. In particular, the impulse response and the weighting function are time-reversed copies

of one another, as demonstrated in the top part of the figure.

7

Convolution as sequence of weighted sums



Convolution as matrix multiplication

1 
2 
0 
0 
-1 
2

5 
2 
-3 
4

1   2   3   0   0   0 
0   1   2   3   0   0 
0   0   1   2   3   0 
0   0   0   1   2   3

=

Columns contain shifted copies of the impulse response. 
Rows contain time-reversed copies of impulse response.

Linear system <=> matrix multiplication 
Shift-invariant linear system <=> Toeplitz matrix

0 
0 
1 
0 
0 
0

3 
2 
1 
0

1   2   3   0   0   0 
0   1   2   3   0   0 
0   0   1   2   3   0 
0   0   0   1   2   3

=

Convolution as matrix multiplication

Columns contain shifted copies of the impulse response. 
Rows contain time-reversed copies of impulse response.

Derivation: shift-invariant linear 
system => convolution

Homogeneity: 
     T{a x[n]} = a T{x[n]} 

Additivity: 
     T{x1[n] + x2[n]} = T{x1[n]} + T{x2[n]} 

Superposition:  
     T{a x1[n] + b x2[n]} = a T{x1[n]} + b T{x2[n]} 

Shift-invariance: 
     y[n] = T{x[n]} => y[n-m] = T{x[n-m]}



Convolution derivation (cont)
Impulse sequence: 
   d[n] = 1 for n = 0, d[n] = 0 otherwise 

Any sequence can be expressed as a sum of impulses: 

   x[n] =    x[m] d[n-m] 

where 
   d[n-m] is impulse shifted to sample m 
   x[m] is the height of that impulse 

Example: 

      =      +                    +

3m

Convolution derivation (cont)
x[n]: input 
y[n] = T{x[n]}: output 
h[n] = T{d[n]}: impulse response 

1) Represent input as sum of impulses: 
   y[n] = T{x[n]} 

   y[n] = T{    x[m] d[n-m] } 

2) Use superposition: 
   y[n] =    x[m] T{d[n-m]} 

3) Use shift-invariance: 

   y[n] =   x[m] h[n-m]

3

3

3

m

m
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x1 

x2 

x3 

xN

y1 

y2 

y3 

yN

Nx1 vector
NxN  Toeplitz 

matrix Nx1 vector

=

Matrix multiplication => scaling

αx1 

αx2 

αx3 

αxN

αy1 

αy2 

αy3 

αyN

=

Impulse 
response

Impulse 
response



Matrix multiplication => additivity
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response

Toeplitz matrix => shift invariance

0 
0 
1 
0 
0 
0

3 
2 
1 
0

1   2   3   0   0   0 
0   1   2   3   0   0 
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=

Neural image and convolution

A spatial receptive field may also be treated as a linear system, by 
assuming a dense collection of neurons with the same receptive field 
translated to different locations in the visual field. In this view, it 
is a linear, shift-invariant system*§.

* This is the basis of CNNs (convolutional neural networks). 
§ The nervous system doesn’t actually work like this. (It’s not linear and it’s not shift invariant!)



% Make a Difference of Gaussian receptive field using fspecial
DoG = fspecial('gaussian', 20,2) -  fspecial('gaussian', 20,5);
im = imread('cameraman.tif');
 
% Make a neural image by convolution
neuralim = conv2(double(im), DoG);
 
% Show the image, the RF, and the neural image
figure,  subplot(1,3,1), imshow(im), subplot(1,3,2), surf(DoG)
subplot(1,3,3), imagesc(neuralim); colormap gray, axis image off
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Neural image and convolution

% Make a Difference of Gaussian receptive field using fspecial
DoG = fspecial('gaussian', 20,2) -  fspecial('gaussian', 20,5);
im = imread('cameraman.tif');
 
% Make a neural image by convolution
neuralim = conv2(double(im), DoG);
 
% Show the image, the RF, and the neural image
figure,  subplot(1,3,1), imshow(im), subplot(1,3,2), surf(DoG)
subplot(1,3,3), imagesc(neuralim); colormap gray, axis image off
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% Shift the image and replot
im2 = im(:, [n:end 1:n]);
neuralim2 = conv2(double(im2), DoG);

Neural image and convolution

Continuous-time derivation of convolution



A system (or transform) converts (or maps) an input signal into 
an output signal: 
    y(t) = T[x(t)] 

A linear system satisfies the following properties. 
1) Homogeneity (scalar rule): 
    T[a x(t)] = a y(t) 
2) Additivity: 
    T[x1(t) + x2(t)] = y1(t) + y2(t) 

Often, these two properties are written together and called 
superposition: 
    T[a x1(t) + b x2(t)] = a y1(t) + b y2(t)

Linear systems requirements

and Young (1983), and Oppenheim and Schafer (1989).

Continuous-Time and Discrete-Time Signals

In each of the above examples there is an input and an output, each of which is a time-varying

signal. We will treat a signal as a time-varying function, . For each time , the signal has some

value , usually called “ of .” Sometimes we will alternatively use to refer to the entire

signal , thinking of as a free variable.

In practice, will usually be represented as a finite-length sequence of numbers, , in

which can take integer values between 0 and , and where is the length of the sequence.

This discrete-time sequence is indexed by integers, so we take to mean “the nth number in

sequence ,” usually called “ of ” for short.

The individual numbers in a sequence are called samples of the signal . The word

“sample” comes from the fact that the sequence is a discretely-sampled version of the continuous

signal. Imagine, for example, that you are measuring membrane potential (or just about anything

else, for that matter) as it varies over time. You will obtain a sequence of measurements sampled

at evenly spaced time intervals. Although the membrane potential varies continuously over time,

you will work just with the sequence of discrete-time measurements.

It is often mathematically convenient to work with continuous-time signals. But in practice,

you usually end up with discrete-time sequences because: (1) discrete-time samples are the only

things that can be measured and recorded when doing a real experiment; and (2) finite-length,

discrete-time sequences are the only things that can be stored and computed with computers.

In what follows, we will express most of the mathematics in the continuous-time domain. But

the examples will, by necessity, use discrete-time sequences.

Pulse and impulse signals. The unit impulse signal, written , is one at , and zero

everywhere else:

The impulse signal will play a very important role in what follows.

One very useful way to think of the impulse signal is as a limiting case of the pulse signal,

:

The impulse signal is equal to the pulse signal when the pulse gets infinitely short:

2

Pulses and impulses
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Figure 1: Staircase approximation to a continuous-time signal.

Representing signals with impulses. Any signal can be expressed as a sum of scaled and

shifted unit impulses. We begin with the pulse or “staircase” approximation to a continuous

signal , as illustrated in Fig. 1. Conceptually, this is trivial: for each discrete sample of the

original signal, we make a pulse signal. Then we add up all these pulse signals to make up the

approximate signal. Each of these pulse signals can in turn be represented as a standard pulse

scaled by the appropriate value and shifted to the appropriate place. In mathematical notation:

As we let approach zero, the approximation becomes better and better, and the in the limit

equals . Therefore,

Also, as , the summation approaches an integral, and the pulse approaches the unit impulse:

(1)

In other words, we can represent any signal as an infinite sum of shifted and scaled unit impulses. A

digital compact disc, for example, stores whole complex pieces of music as lots of simple numbers

representing very short impulses, and then the CD player adds all the impulses back together one

after another to recreate the complex musical waveform.

This no doubt seems like a lot of trouble to go to, just to get back the same signal that we

originally started with, but in fact, we will very shortly be able to use Eq. 1 to perform a marvelous

trick.

Linear Systems

A system or transform maps an input signal into an output signal :

where denotes the transform, a function from input signals to output signals.

Systems come in a wide variety of types. One important class is known as linear systems. To

see whether a system is linear, we need to test whether it obeys certain rules that all linear systems

obey. The two basic tests of linearity are homogeneity and additivity.

4
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Shift invariance

For a system to be shift-invariant (or time-invariant) means 
that a time-shifted version of the input yields a time-shifted 
version of the output: 
    y(t) = T[x(t)] 

    y(t - s) = T[x(t - s)] 

The response y(t - s) is identical to the response y(t), except 
that it is shifted in time.

Representing the input signal as a sum of pulses: 

Using additivity, 

Taking the limit, 

Using homogeneity (scalar rule), 

Defining h(t) as the impulse response,

Convolution
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Figure 2: Characterizing a linear system using its impulse response.

The way we use the impulse response function is illustrated in Fig. 2. We conceive of the input

stimulus, in this case a sinusoid, as if it were the sum of a set of impulses (Eq. 1). We know the

responses we would get if each impulse was presented separately (i.e., scaled and shifted copies of

the impulse response). We simply add together all of the (scaled and shifted) impulse responses to

predict how the system will respond to the complete stimulus.

Nowwewill repeat all this in mathematical notation. Our goal is to show that the response (e.g.,

membrane potential fluctuation) of a shift-invariant linear system (e.g., passive neural membrane)

can be written as a sum of scaled and shifted copies of the system’s impulse response function.

The convolution integral. Begin by using Eq. 1 to replace the input signal by its repre-

sentation in terms of impulses:

Using additivity,

Taking the limit,
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membrane potential fluctuation) of a shift-invariant linear system (e.g., passive neural membrane)

can be written as a sum of scaled and shifted copies of the system’s impulse response function.

The convolution integral. Begin by using Eq. 1 to replace the input signal by its repre-

sentation in terms of impulses:

Using additivity,

Taking the limit,
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Figure 2: Characterizing a linear system using its impulse response.
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responses we would get if each impulse was presented separately (i.e., scaled and shifted copies of

the impulse response). We simply add together all of the (scaled and shifted) impulse responses to

predict how the system will respond to the complete stimulus.

Nowwewill repeat all this in mathematical notation. Our goal is to show that the response (e.g.,

membrane potential fluctuation) of a shift-invariant linear system (e.g., passive neural membrane)

can be written as a sum of scaled and shifted copies of the system’s impulse response function.

The convolution integral. Begin by using Eq. 1 to replace the input signal by its repre-

sentation in terms of impulses:

Using additivity,

Taking the limit,
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past present future
input (impulse)

output (impulse response)

input (step)

output (step response)

0     0     0   1/2  1/4  1/8    0     0     0

0     0     0     1     0     0     0     0     0

0     0     0     1     1     1     1     1     1

0     0     0   1/2  3/4  7/8   7/8  7/8  7/8

weights1/8  1/4  1/2

1/8  1/4  1/2 weights

Figure 3: Convolution as a series of weighted sums.

Using homogeneity,

Now let be the response of to the unshifted unit impulse, i.e., . Then by using

shift-invariance,

(4)

Notice what this last equation means. For any shift-invariant linear system , once we know its

impulse response (that is, its response to a unit impulse), we can forget about entirely, and

just add up scaled and shifted copies of to calculate the response of to any input whatsoever.

Thus any shift-invariant linear system is completely characterized by its impulse response .

The way of combining two signals specified by Eq. 4 is know as convolution. It is such a

widespread and useful formula that it has its own shorthand notation, . For any two signals and

, there will be another signal obtained by convolving with ,

Convolution as a series of weighted sums. While superposition and convolution may sound

a little abstract, there is an equivalent statement that will make it concrete: a system is a shift-

invariant, linear system if and only if the responses are a weighted sum of the inputs. Figure 3

shows an example: the output at each point in time is computed simply as a weighted sum of the

inputs at recently past times. The choice of weighting function determines the behavior of the

system. Not surprisingly, the weighting function is very closely related to the impulse response of

the system. In particular, the impulse response and the weighting function are time-reversed copies

of one another, as demonstrated in the top part of the figure.
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• Receptive fields and neural images 
• Shift-invariant linear systems and convolution 
• Fourier transform and frequency response 
• Applications of linear systems to spatial vision 

– Contrast sensitivity 
– Spatial frequency and orientation channels 
– Spatial frequency and orientation adaptation  
– Masking

Spatial pattern vision and linear systems 
theory

Fourier transform and frequency 
response: summary

• Signals can be represented as sums of sine waves 
• Linear, shift-invariant systems operate “independently” on each 

sine wave, and merely scale and shift them. 
• A simplified model of neurons in the visual system, the linear 

receptive field, results in a neural image that is linear and shift-
invariant. 

• Psychophysical models of the visual system might be built of such 
mechanisms. 

• It is therefore important to understand visual stimuli in terms of 
their spatial frequency content. 

• The same tools can be applied to other modalities (e.g., audition) 
and other signals (EEG, MRI, MEG, etc.).

Temporal frequency and Fourier 
decomposition



Shift-invariant linear systems & sinusoids

Measure the scaling and shifting for each sinusoid

Shift-invariant linear systems & sinusoids

Frequency response
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sinusoidal 
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Linear systems analysis



Convolution and multiplication

Convolution: 

x1[n] * x2[n]           X1[k] X2[k] 

Multiplication: 

x1[n] x2[n]           (1/N) X1[k] * X2[k]

convolution

time sample

frequency sample

Fourier transform

Linear filter example

Low-pass or 
Bass Filter

High-pass or 
Treble Filter

Miles Davis 
“Half Nelson”

Bass only:

Treble only:

Time

Signal Frequency content

Filter

Next
Prev
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Treble only:

Time

Signal Frequency content

Filter
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Prev

Linear filter example



Low-pass or 
Bass Filter

High-pass or 
Treble Filter

Miles Davis 
“Half Nelson”

Bass only:

Treble only:

Time

Signal Frequency content

Filter

Next
Prev

Linear filter example
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Bass Filter

High-pass or 
Treble Filter
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Linear filter example

Input image (cornea) “Neural image” (V1)
Convolution with 
impulse response

Fourier spectrum 
of input image

Fourier spectrum 
of neural image

Linear 
filter

Multiplication with 
frequency response

Fourier transform



Fourier Analysis

Signals as sums of sine waves 
• 1d: time series 

– fMRI signal from a voxel or ROI 
– mean firing rate of a neuron over time 
– auditory stimuli 

• 2d: static visual image, neural image 
• 3d: visual motion analysis 

Auditory example: Pure tones

Pure tones can be described by 3 numbers: 
Frequency = rate of air pressure modulation (related to pitch) 
Amplitude = sound pressure level (related to loudness) 
Phase = sin vs. cosine vs. another horizontal shift

Frequency and amplitude

weak 100 Hz strong 100 Hz weak 1000 Hz strong 1000 Hz

Time

1/100 s

So
un

d 
pr

es
su

re
 le

ve
l



Fourier spectrum representation of sound

Frequency (Hz)

A
m

pl
it

ud
e

Pure tone

White noise

Violin note

100 10,0001000

Fourier spectra of some sounds

Fundamental frequency and harmonics



Lots of Fourier transforms

Name Time domain Freq domain

Fourier transform continuous, infinite continuous, infinite

Fourier series continuous, periodic discrete, infinite

DTFT discrete, infinite continuous, periodic

DFS discrete, periodic discrete, periodic

DFT discrete, finite discrete, finite

FFT algorithm

• Computes DFT of finite length input. 

• Efficient for inputs of length N = mn. 

• Produces 2 outputs, each of size/length equal to that of 
the input: real part (cosine coeffs), imaginary part (sine 
coeffs).

frequency (cycles per scan) frequency (cycles per scan)

DFT of a cosine

frequency (cycles per scan) frequency (cycles per scan)

cos 2πkn
N

⎛
⎝⎜

⎞
⎠⎟

k = 4  cycles/scan
N = 32 time points

(π / 4 in this case)
2πk / N

DFT of a cosine

Real and imaginary parts

real part

imaginary part

magnitude

phase

sinecosine

DFT of impulse signal and constant signal

frequency frequency

? ?

cos(2πkn/N)

Frequency (cycles)      Frequency (cycles)      



Real and imaginary parts

real part

imaginary part

magnitude

phase

sinecosine

DFT of impulse signal and constant signal

frequency frequency

? ?

Time (TR)

-16       -8       0       8       16  

-16       -8       0       8       16  

0       8       16       24       32

0       8       16       24       32

Uncertainty principle

Frequency (cyc/scan)Time (sample number) Frequency (cycles)      



?

?

?

Multiplication and convolution

Discrete Fourier Transform (DFT)

real

imaginary

Complex numbers and complex exponentials

real part
imaginary 
part

amplitude phase

where:

Why bother with complex exponentials?

amplitudes 
multiply

phases 
add



Discrete Fourier transform matrix

Discrete Fourier transform matrix

Sine wave gratings and spatial frequency

Measured in cycles per degree (cpd or c/deg or c/º) of 
visual angle.

1 cpd 4 cpd



Contrast = 1

Contrast = 0.5

Contrast

Two-dimensional Fourier spectra

Two-dimensional Fourier spectrum

Intensity in the Fourier spectrum at each location 
indicates amount of contrast (in the original image) for 
each spatial frequency and orientation.



Input image (cornea) “Neural image” (V1)
Convolution with 
impulse response

Fourier spectrum 
of input image

Fourier spectrum 
of neural image

Linear 
systems 
analysis

Multiplication with 
frequency response

Fourier transform

• Receptive fields and neural images 
• Shift-invariant linear systems and convolution 
• Fourier transform and frequency response 
• Applications of linear systems to spatial vision 

– Contrast sensitivity 
– Spatial frequency and orientation channels 
– Spatial frequency and orientation adaptation  
– Masking

Spatial pattern vision and linear systems 
theory

Spatial frequency (c/deg)
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Spatial contrast sensitivity

Spatial frequency channels

Each channel is sensitive to a narrow range of frequencies. Overall 
contrast sensitivity depends on all of them together.

Theory of spatial pattern analysis by 
the visual system

Low sf filters encode 
coarse-scale information 
(large objects, overall 
shape)

High sf filters encode 
fine-scale information 
(small objects, detail)



Multi-resolution model

Psychophysical/perceptual evidence for 
spatial-frequency and orientation 
selective channels

Orientation and spatial frequency 
selective adaptation: appearance



Emma by Chuck Close



28 CHAPTER 1. PATTERN SENSITIVITY
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Figure 1.13: A multiresolution model can explain certain aspects of pattern adaptation.
(a) In normal viewing, the bar width is inferred from the relative responses of a collec-
tion of component-images, each responding best to a selected spatial frequency band.
The spatial frequency selectivity of each component-image is shown above and the
amplitude of the component-image encoding of the test stimulus is shown in the bar
graph below. (b) Following adaptation to a low frequency stimulus (shown in inset),
the sensitivity of the neurons comprising certain component-images is reduced. Con-
sidering the responses of all the component-images, the response to the test is similar
to the unadapted response to a high frequency target. (c) Following adaptation to a
high frequency pattern (shown in inset), the neural representation is consistent with
the unadapted response to a low frequency target.

Spatial frequency selective adaptation: 
appearance

Spatial frequency selective adaptation: 
sensitivity

Spatial frequency selective adaptation: 
sensitivity



Contrast 
sensitivity 
before & after 
adaptation

246 C. BLAKEMORE AND F. W. CAMPBELL
to 23-8 c/deg., at one quarter octave steps, was determined by briefly inter-
polating the low contrast test grating which the subject set to threshold.
The results are shown with their S.E. (n = 6). It is clear that the sensi-

tivity has been dramatically depressed in the region of 7 1 c/deg. but that
there is practically no effect beyond the frequencies 2-5 and 11 9 c/deg.

A -P
B c0

100 g1.0100~ ~~~n F.W. c. 0
0>

0 0

lo ~~~~~~~~~0.1
0 4-D~~~~~~~~~

0

-0 I I I" 1 I" I I1111" 0-01 I Il ll l 1 I I I I ll
10 10 100 1-0 10 100

Spatial frequency (c/deg.)
Text-fig. 6. The effect of adapting at 7-1 c/deg. A. The continuous curve from Text-
fig. 5 is reproduced. The filled circles and vertical bars are the means and S.E. (n = 6)
for re-determinations of contrast sensitivity at a number of spatial frequencies
while F. W.C. was continuously adapting to a grating of 7-1 c/deg., 1-5 log. units
above threshold. The exact procedure is described in the text.

B. The depression in sensitivity due to adaptation at 7-1 c/deg. is plotted, with
open circles, as relative threshold elevation against spatial frequency. The vertical
difference between each point and the smooth curve in Text-fig. 6A is the ratio of
sensitivity before and after adaptation. The relative threshold elevation is the anti-
logarithm of this difference minus 1, so that no change in threshold would give a
value of zero on the ordinate. The continuous curve is the function [eif2e_(2f)2]2,
fitted by eye to the data points. The filled arrows show the adapting frequency of
7-1 c/deg. The open arrow marks the value on the ordinate for a threshold elevation
equivalent to 212 times an average s.E. for determining contrast sensitivity.

It is conceivable that adaptation at one specific frequency might have
affected contrast threshold at all measurable spatial frequencies. If such
were the case the over-all contrast sensitivity curve should have been
uniformly lowered. This is not so, and we therefore conclude that the'
adapting pattern is principally depressing the sensitivity ofsome 'channel',
independently of others, and that this channel is adapted by a limited
range of spatial frequency.

In order to define its characteristics more specifically we have reduced

Contrast sensitivity before & after 
adaptation

Contrast 
sensitivity 
before & after 
adaptation
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Applications: Optical Line Spread Function 
(Campbell & Gubisch, 1966)

Note the double passage

Applications: Optical Line Spread Function 
(Campbell & Gubisch, 1966)

OPTICAL QUALITY OF THE HUMAN EYE
coming from scatter (Fry, 1965) or defects of focus which increase with
pupil diameter. A comparison of the linespread estimates of Flamant
(1955), Westheimer & Campbell (1962), and Krauskopf (1962) with ours is
given in Fig. 11.
The linespread functions in Fig. 10 are about twice as narrow as the

30mm 38mm

2-4mm 4-9mm,

2-0 mm 58m<,-J-J *--<_ C/ .............~~~~~~~~~~~~~~~~~~~~~~......... -----;'---- .
15 mm A

4 2 0 2 4 4 2 0 2 4
Angular distance (minutes of arc)

Fig. 10. Optical linespread functions of the human eye. Each curve represents the
normalized distribution of illuminance occurring on the fundus for a thin line
source of light. Dots occur at 0-1 min increments. Narrower curve indicates the
diffraction image of a line at the given pupil diameter.
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Applications: Optical Line Spread Function 
(Campbell & Gubisch, 1966)
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Fig. 7. Modulation transfer functions for the eyes of three subjects. The curves
display for various pupil sizes the transmission of contrast to an object imaged
on the fundus; they are corrected for the double traverse of the eye made by the
measured linespread function. Symbols are as in Fig. 6.
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Fig. 6. Linespreads measured external to the eyes of three subjects. Angular
distances are taken from the centres of the synumetrical curves and only the right
halves are shown. Pupil diameters in mm are: +, 2-0; *, 3 0; V, 3-8; A, 4-9;
*, 5-8; *, 6-6.
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Fig. 6. Linespreads measured external to the eyes of three subjects. Angular
distances are taken from the centres of the synumetrical curves and only the right
halves are shown. Pupil diameters in mm are: +, 2-0; *, 3 0; V, 3-8; A, 4-9;
*, 5-8; *, 6-6.



Applications: Optical Line Spread Function 
(Westheimer, 1986)

Westheimer's Linespread 
Function. Analytic 
approximation of the human 
linespread function for an 
eye with a 3.0mm diameter 
pupil (Westheimer, 1986).

Applications: Optical Line Spread Function 
(Westheimer, 1986)

Modulation transfer function 
measurements of the optical 
quality of the lens made 
using visual interferometry 
(Williams et al., 1995; 
described in Chapter 3). The 
data are compared with the 
predictions from the 
linespread suggested by 
Westheimer (1986) and a 
curve fit through the data by 
Williams et al. (1995).

Applications: Optical Line Spread Function, 
Wavelength Dependency 

OTF of Chromatic Aberration: Two views of the modulation transfer function of a model eye at 
various wavelengths. The model eye has the same chromatic aberration as the human eye (see 
Figure 2.23) and a 3.0mm pupil diameter. The eye is in focus at 580nm; the curve at 580nm is 
diffraction limited. The retinal image has no contrast beyond four cycles per degree at short 
wavelengths. (From Marimont and Wandell, 1993).



Applications: Optical Line Spread Function, 
Wavelength Dependency 
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