- Receptive fields and neural images
- Shift-invariant linear systems and convolution
- Fourier transform and frequency response
- Applications of linear systems to spatial vision
 - Contrast sensitivity
 - Spatial frequency and orientation channels
 - Spatial frequency and orientation adaptation
 - Masking

Orientation selective receptive field

Neural image: simple cell responses Input image (cornea) Array of orientationselective receptive fields "Neural image" (V1 simple cells) Image: Cornea Ima

Neural image of a sine wave

For a linear, shift-invariant system such as a linear model of a receptive field, an input sine wave results in an identical output sine wave, except for a possible lateral shift and scaling.

Frequency response

This scaling of contrast by a linear receptive field in the neural image is a function of spatial frequency determined by the shape of the receptive field.

Frequency response

This scaling of contrast by a linear receptive field in the neural image is a function of spatial frequency determined by the shape of the receptive field.

Orientation tuning

If a receptive field is not circularly symmetric, the scaling of contrast is also a function of orientation (for a given spatial frequency) determined by the shape of the receptive field.

- Receptive fields and neural images
- Shift-invariant linear systems and convolution
- Fourier transform and frequency response
- Applications of linear systems to spatial vision
 - Contrast sensitivity
 - Spatial frequency and orientation channels
 - Spatial frequency and orientation adaptation
 - Masking

Linear Systems Analysis Systems with signals as input and output

- 1-d: low- and high-pass filters in electronic equipment, fMRI data analysis, or in sound production (articulators) or audition (the ear as a filter) y(t) = T{x(t)}
- 2-d: optical blur, spatial receptive field $g(x,y) = T{f(x,y)}$
- 3-d: spatio-temporal receptive field $g(x,y,t) = T{f(x,y,t)}$

Additivity

Convolution

past

ò

0

present

0 0 0 1/2 1/4 1/8 0 0 0

0 0 0 1 1 1 1 1 1

1/8 1/4 1/2 -

0 0 0 1/2 3/4 7/8 7/8 7/8 7/8 7/8

0 1

1/8 1/4 1/2 -

Discrete-time signal: x[n] = [x1, x2, x3, ...]

A system or transform maps an input signal into an output signal:

y[n] = T{x[n]}

A shift-invariant, linear system can always be expressed as a convolution:

$$y[n] = \sum_{m} x[m] h[n-m]$$

where h[n] is the impulse response.

future

input (impulse)

weights

input (step)

weights

0 0 0 0 0

Convolution as matrix multiplication

Linear system <=> matrix multiplication Shift-invariant linear system <=> Toeplitz matrix

Columns contain shifted copies of the impulse response. Rows contain time-reversed copies of impulse response.

Rows contain time-reversed copies of impulse response.

Derivation: shift-invariant linear system => convolution

Homogeneity:

T{a x[n]} = a T{x[n]}

Additivity:

 $T{x_1[n] + x_2[n]} = T{x_1[n]} + T{x_2[n]}$

Superposition:

 $T{a x_1[n] + b x_2[n]} = a T{x_1[n]} + b T{x_2[n]}$

Shift-invariance:

y[n] = T{×[n]} => y[n-m] = T{×[n-m]}

Neural image and convolution

A spatial receptive field may also be treated as a linear system, by assuming a dense collection of neurons with the same receptive field translated to different locations in the visual field. In this view, it is a linear, shift-invariant system^{*§}.

* This is the basis of CNNs (convolutional neural networks). ⁵ The nervous system doesn't actually work like this. (It's not linear and it's not shift invariant!)

Shift invariance

For a system to be shift-invariant (or time-invariant) means that a time-shifted version of the input yields a time-shifted version of the output:

$$y(t) = \mathbf{T}[x(t)]$$

 $y(t-s) = \mathbf{T}[x(t-s)]$

The response y(t - s) is identical to the response y(t), except that it is shifted in time.

- Receptive fields and neural images
- Shift-invariant linear systems and convolution
- Fourier transform and frequency response
- Applications of linear systems to spatial vision
 - Contrast sensitivity
 - Spatial frequency and orientation channels
 - Spatial frequency and orientation adaptation
 - Masking

Fourier transform and frequency response: summary

- Signals can be represented as sums of sine waves
- Linear, shift-invariant systems operate "independently" on each sine wave, and merely scale and shift them.
- A simplified model of neurons in the visual system, the linear receptive field, results in a neural image that is linear and shift-invariant.
- Psychophysical models of the visual system might be built of such mechanisms.
- It is therefore important to understand visual stimuli in terms of their spatial frequency content.
- The same tools can be applied to other modalities (e.g., audition) and other signals (EEG, MRI, MEG, etc.).

Temporal frequency and Fourier decomposition

Figure 10.7 Additive synthesis. (a) Pressure chamges for a pure tone with frequency of 440 Hz; (b) the second harmonic of (a), with a frequency of 850 Hz; (c) the third harmonic, with a frequency of 1.320 Hz; (d) The sum of the three harmonics above creates the waveform for a complex tone. Working in the other direction, applying Fourier analysis to the complex tone reveals its pure tone components.

ots of Fourie	r transforms	
Name	Time domain	Freq domain
Fourier transform	continuous, infinite	continuous, infinite
Fourier series	continuous, periodic	discrete, infinite
DTFT	discrete, infinite	continuous, periodic
DFS	discrete, periodic	discrete, periodic
DFT	discrete, finite	discrete, finite
DFT	discrete, finite	discrete, finite

FFT algorithm Computes DFT of finite length input. Efficient for inputs of length N = mⁿ. Produces 2 outputs, each of size/length equal to that of the input: real part (cosine coeffs), imaginary part (sine coeffs).

Real and imaginary parts

Multiplication and convolution

Discrete Fourier transform matrix

Analysis:
$$X[k] = \sum_{n} x[n] \exp(-j2\pi kn/N)$$

For real valued inputs:

Intensity in the Fourier spectrum at each location indicates amount of contrast (in the original image) for each spatial frequency and orientation.

- Receptive fields and neural images
- Shift-invariant linear systems and convolution
- Fourier transform and frequency response
- Applications of linear systems to spatial vision
 - Contrast sensitivity
 - Spatial frequency and orientation channels
 - Spatial frequency and orientation adaptation
 - Masking

Theory of spatial pattern analysis by the visual system

Low sf filters encode coarse-scale information (large objects, overall shape) High sf filters encode fine-scale information (small objects, detail)

Emma by Chuck Close

Spatial freque sensitivity	ncy selective	adaptation:

]			

