Computational theory of
the responses of V1 & MT
neurons and psychophysics
of motion perception

: Linear  Gain Output i Linear Gain Output
+ operator control nonlinearity : operator control non/inearity;

Neural circuits perform computations

o el

~50,000 neurons per cubic mm
~6,000 synapses per neuron
~10 billion neurons & ~60 trillion synapses in cortex

Computational theory: how do neurons
compute motion?
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Motion is like orientation in space-time and
spatiotemporally oriented filters can be used to detect
and measure it.

Adelson & Bergen (1985)

Motion is orientation in space-time




Direction selectivity model
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Ohzawa, DeAngelis, & Freeman

Distributed
representation
of speed

Each spatiotemporal filter
computes something like a
derivative of image
intensity in space and/or
time. “Perceived speed"” is
the orientation
corresponding to the
gradient in space-time
(max response).

preferred speed




Impulse response
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Complex cells & position invariance

Oriented stimulus as seen by both subunits at two
different locations:
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Motion energy responses to moving grating
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Computing space-time RFs & motion
energy

Cascade of recursive (streaming) low pass filters:

tdyi/dt=-y1 +yo
T dyn/dt = -yn + yn1

yo(x,t): stimulus
yi(x,t): spatial array of temporally-filtered responses
Biphasic temporal fliters:

fi=ys-ys
Hh=ys-y7

Cascade of temporal low-pass filters

Temporal impulse responses
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Odd- and even-phase spatial weights
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Space-time separable impulse responses
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leftEven = oddFast + evenSlow;
left0dd = -oddSlow + evenFast;
etc.
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Matlab
code

= 1[3,5,5,71;

for tt = l:size(input,1l)

% Temporal filters

deltaY = (deltaT/tau) * (- y(1l,:) + input(tt,:));

y(1,:) = y(1,:) + deltay;
for nn = 2:max(n)

deltaY = (deltaT/tau) * (-y(nn,:) + y(nn-1,:));

y(nn,:) = y(nn,:) + deltay;
end
rtFast = y(n(1l),:)-y(n(2),:);

rtSlow = y(n(3),:)-y(n(4),:);

% Spatial filters

oddFast = spatialConvolution(rtFast,oddFilt);
oddSlow = spatialConvolution(rtSlow,oddFilt);
evenSlow = spatialConvolution(rtSlow,evenFilt);
evenFast = spatialConvolution(rtFast,evenFilt);
% Direction selective filters and motion energy
leftEven = oddFast + evenSlow;

leftO0dd = -oddSlow + evenFast;

leftEnergy = leftEven.”2 + left0Odd."2;
rightEven = -oddFast + evenSlow;

rightodd = oddSlow + evenFast;

rightEnergy = rightEven.”2. + right0odd."2;

end

Direction-selective motion energy
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The “aperture problem”

These three motions are different but look the same when
viewed through a small aperture (i.e., that of a direction-

selective receptive field).

NS

P
2

0D

)

Wallach (1935)




Intersection of constraints

With two different motion components within the
aperture, there is a unique solution:

Adelson & Movshon (1981)

Component vs. pattern motion
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Component vs. pattern motion selectivity

component-motion cell pattern-motion cell
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grating component moving pattern moving up-right

up-right => strong response strong response

Component vs. pattern motion: single
neurons

Movshon et al., 1983 Model
A 80 B 80 C .70 D 70
40 40 .35 35
Al
E 24 E 24 G 50 H 50
12 12 .25 .25
MT
Gratings Plaids Gratings Plaids

Component vs. pattern motion: fMRI
adaptation
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Huk & Heeger (2002)




Pattern motion selectivity across visual
areas
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Pattern motion selectivity
model

: Linear Gain Output i Linear Gain Output
+ operator control  nonlinearity : operator  control nonlinearity :

By

Simoncelli & Heeger (1998)

Intersection of constraints (two
components)

‘@+®’:

Each component activates a different V1 neuron, selective
for a different orientation and speed.




Intersection of constraints (many
components)

@ > Each component activates a

different V1 neuron, selective for
a different orientation and speed.

How do you get selectivity for
the moving pattern as a whole,
not the individual components?

Neural implementation of TOC

&
Answer: For each possible 2D

velocity, add up the responses of
~ those V1 neurons whose preferred
orientation and speed is consistent
with that 2D velocity.

07— &

Spatiotemporal frequency domain

Spatiotemporal frequency Frequency responses of
response of space-time filters that are all
oriented linear filter. consistent with one velocity.




Distributed representation of 2D velocity

Y Brightness at each location
represents the firing rate
of a single MT neuron with a
different preferred
velocity. Location of peak
corresponds to perceived

vx velocity.
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Predictions of the theory
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Kuman & Uka (2013)

Testing the theory: pattern cell

C  component prediction

For CDS predictions, a periodic
spline curve was interpolated to
the direction-tuning data at the
optimal speed. The direction
tuning for a speed higher than
the optimal speed was
computed as the sum of two
interpolated curves, each
shifted by an amount

determined from the ratio of the  E
optimal speed to each speed

Pattern prediction F Rp-0ss _ For PDS predictions, the
% interpolated curve was used

across all speeds
Directon (deg) Horizontalspesd (degsec)

Kuman & Uka (2013)




Testing the theory: component cell
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Visual motion
ambiguity
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Bayesian models of perception

world observer

measurement estimate
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Perception is our best guess as to what is in the world, given
our current sensory input and our prior experience
(Helmholtz, 1866).

Goal: explain "mistakes” in perception as “"optimal” solutions
given the statistics of the environment.

Prior bias for slower speeds
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Simoncelli (1993)

Bayesian estimation of velocity

world observer
measurement estimate

@ noise! @ @
likelihood

probability

P(m|v)




Bayesian estimation of velocity
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measurement estimate
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posterior

probability

A P(m|v) x P(v) ~ P(v|m)
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Bayesian model predictions

stimulus idealization

Bayesian model predictions

stimulus idealization
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Prior for slow speeds explains bias in
perceptual bias

Human observers Model
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Bayesian model predictions

stimulus

idealization

model

Theory fits lots of behavioral data

Stone & Thompson, ‘90

max contrast 70%

Stone etal, ‘90

Lorenceau etal, ‘92
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How does the

Fisher information

argmax

brain represent the prior?
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The “principles”

*Perception is an inference that has evolved/developed to
match the statistics of the environment (Bayesian
estimation with priors that embody statistics of
environment).

« Functional specialization. Each brain area (defined on the
basis of physiology, architecture, connections,
topography) performs a different function.

« Computational theory. Canonical computation (linear sum,
threshold or sigmoid nonlinearity, adaptation) cascaded
across a pathway of visual cortical areas. Selectivity and
invariance.

A computational theory of
motion appearance

........................................................

: Linear Gain Output i * Linear Gain Output
» operator control nonlinearity : operator  control non/inearity;

................................ e 2

A computational theory of
color appearance

L+M-S L+M+S




What distinguishes neural activity that
underlies conscious visual appearance?

- Neural activity in certain brain areas.
- Activity of specific subtypes of neurons.

- Particular temporal patterns of neural activity (e.g.,
oscillations).

- Synchronous activity across groups of neurons in different
brain areas.

- Neural activity that is driven by a coherent combination of
bottom-up sensory information and top-down recurrent
processing (e.g., linked to attention).

- Nothing. Once you know the computations, you're donel




