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Computational theory of 
the responses of V1 & MT 
neurons and psychophysics 
of motion perception

~50,000 neurons per cubic mm 
~6,000 synapses per neuron 
~10 billion neurons & ~60 trillion synapses in cortex

Neural circuits perform computations

Computational theory: how do neurons 
compute motion?



Direction 
selectivity

Hubel & Wiesel (1968)

Motion is like orientation in space-time and 
spatiotemporally oriented filters can be used to detect 
and measure it.

Orientation in space-time

Adelson & Bergen (1985)

XYTMotion is orientation in space-time



Strong response for motion in 
preferred direction.

Weak response for motion in 
non-preferred direction.

Direction selectivity model

Ohzawa, DeAngelis, & Freeman

Space-time 
receptive field

t

x

0
preferred speed

Population code

Distributed 
representation 
of speed

Each spatiotemporal filter 
computes something like a 
derivative of image 
intensity in space and/or 
time. “Perceived speed” is 
the orientation 
corresponding to the 
gradient in space-time 
(max response).



Impulse response

Strong response to preferred direction

Note: negative responses not 
seen in neural firing rates

Weak response to opposite direction



Stimulus

Off response

On response

‘On’ and ‘off’ responses

Complex cells: theory

Complex cells & position invariance
Oriented stimulus as seen by both subunits at two 
different locations:



Preferred direction Opposite direction
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Motion energy responses to moving grating

Time (s)

τ dy1/dt = -y1 + y0

Cascade of recursive (streaming) low pass filters:

τ dyn/dt = -yn + yn-1

Biphasic temporal fliters:

f1 = y3 - y5

f2 = y5 - y7

y0(x,t): stimulus 
yi(x,t): spatial array of temporally-filtered responses

Computing space-time RFs & motion 
energy

Cascade of temporal low-pass filters

Temporal impulse responses
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Odd- and even-phase spatial weights

Spatial convolution kernels
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Space-time separable impulse responses

Space-time oriented impulse responses
leftEven = oddFast + evenSlow;
leftOdd = -oddSlow + evenFast;
etc.



n = [3,5,5,7];
for tt = 1:size(input,1)
  
  % Temporal filters
  deltaY = (deltaT/tau) * (- y(1,:) + input(tt,:));
  y(1,:) = y(1,:) + deltaY;
  for nn = 2:max(n)
    deltaY = (deltaT/tau) * (-y(nn,:) + y(nn-1,:));
    y(nn,:) = y(nn,:) + deltaY;
  end
  rtFast = y(n(1),:)-y(n(2),:);
  rtSlow = y(n(3),:)-y(n(4),:);
  
  % Spatial filters
  oddFast = spatialConvolution(rtFast,oddFilt);
  oddSlow = spatialConvolution(rtSlow,oddFilt);
  evenSlow = spatialConvolution(rtSlow,evenFilt);
  evenFast = spatialConvolution(rtFast,evenFilt);
  
  % Direction selective filters and motion energy
  leftEven = oddFast + evenSlow;
  leftOdd = -oddSlow + evenFast;
  leftEnergy = leftEven.^2 + leftOdd.^2;
  rightEven = -oddFast + evenSlow;
  rightOdd = oddSlow + evenFast;
  rightEnergy = rightEven.^2. + rightOdd.^2;

end

Matlab 
code
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“Aperture Problem”
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Fig. 1. Three different motions that produce the same physical stimulus.

moves to the left. Note that  in all three cases the appearance of the

moving grating, as seen through the window, is identical: the bars appear

to move up and to the left, normal to their own orientation, as if produced

by the arrangement shown in Fig. 1A. The fact that a single stimulus can

have many interpretations derives from the structure of the stimulus rather

than from any quirk of the visual system. Any motion parallel to a gra-

ting's bars is invisible, and only motion normal to the bars can be detected.

Thus, there will always be a family of real motions in two dimensions that

can give rise to the same motion of an isolated contour or grating

(Wohlgemuth, 1911, Wallach, 1935; Fennema and Thompson, 1979; Marr

and Ullman, 1981).

[Wallach 1935; Horn & Schunck 1981; Marr & Ullman 1981]

Figure: Movshon, Adelson, Gizzi, Newsome, 1985

The “aperture problem”

These three motions are different but look the same when 
viewed through a small aperture (i.e., that of a direction-
selective receptive field).

Wallach (1935)



Intersection-of-constraints (IOC)
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Fig. 4. A single grating (A) and a 90 deg plaid (B), and the representation of their motions in velocity
space. Both patterns move directly to the right, but have different orientations and 1-D motions. The
dashed lines indicate the families of possible motions for each component.

in spatial extent, and uniformly stimulated the entire retinal region they

covered. This sidesteps the issue which arises in considering stimuli like

the diamond of Fig. 2, of how the identification of spatially separate

moving borders with a common object takes place. Moreover, the plaid

patterns were the literal physical sum of the grating patterns, which makes

superposition models particularly simple to evaluate.

These stimuli were generated by a PDPll computer on the face of     

a display oscilloscope, using modifications of methods that are well-

established  (Movshon et al., 1978).  Gratings were generated by modulat-

[Adelson & Movshon, 1982]

vxvx

vyvy

Intersection of constraints

With two different motion components within the 
aperture, there is a unique solution:

Adelson & Movshon (1981)

Component vs. pattern motion 
(perception)

Adelson & Movshon (1981)
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Adelson & Movshon (1981)

Component vs. pattern motion 
(perception)



component-motion cell

=

pattern-motion cell

pattern moving up-right  
strong response

=

grating component moving  
up-right => strong response

Component vs. pattern motion selectivity

V1 MT

Gratings Plaids

V1

MT

Gratings Plaids
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Movshon et al., 1983 Model

.25

.35

.50

.25

.70

.35

Simoncelli and Heeger, 1998

Component vs. pattern motion: single 
neurons

Component gratings

Adapted 
direction 
plaids

Mixed 
direction 
plaids

Component gratings

Component vs. pattern motion: fMRI 
adaptation

Huk & Heeger (2002)
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tiples of 90° from trial to trial to minimize adaptation. The
response modulations in MT+ were not significantly different
from zero (A.C.H., p = 0.35; D.J.H., p = 0.74, two-tailed t-test),
demonstrating that the two blocks of plaids elicited similar
response levels when the effects of both component- and pat-
tern-motion adaptation were absent. This result provides further
evidence that adaptation, due to the repetition of pattern direc-
tion, was the key factor in the original experiment.

DISCUSSION
Our findings demonstrate that human MT+ contains a popula-
tion of pattern-motion cells and that the activity of those neu-
rons is linked to the perception of coherent pattern motion. The
pattern-motion responsivity of human MT+ adds to the case for
a homology to macaque MT, which includes a relatively large
proportion of pattern-motion cells1. We also observed lesser
degrees of pattern-motion adaptation in V2, V3, V3A and V4v.
Macaque V3 is known to have a minority of pattern-motion
cells13, but there are no published investigations of pattern-
motion cells in macaque V2, V3A or V4. Although our data
demonstrate pattern-motion responses in each of these visual
areas, we cannot determine if pattern motion is computed sepa-
rately in each visual area or if the responses in V2–V4 are affect-
ed by the adaptation that is taking place in MT+. We emphasize
that fMRI adaptation studies14–17 can reveal the selectivities of
subpopulations of neurons in the human brain, even when those
neurons are intermingled at a spatial scale that is finer than the
spatial sampling resolution (voxel size) of the fMRI measure-
ments.

METHODS
We collected fMRI data in 3 subjects, males, 25–39 years old, all with
normal or corrected-to-normal vision. Experiments were undertaken
with the written consent of each subject, and in compliance with the safe-
ty guidelines for MR research. Each subject participated in several scan-
ning sessions: one to obtain a high-resolution anatomical volume, one
to identify MT+, one to identify the retinotopically organized cortical
visual areas, 2–3 to measure motion adaptation, one to measure base-
line responses and 1–3 to perform control measurements. In each subject,
we collected 8–20 repeats of the pattern-motion adaptation experiment
and 8–16 repeats of the various control experiments.

Stimulus and protocol. Stimuli were presented on a flat-panel display (NEC,
multisynch LCD 2000, Itasca, Illinois) placed within a Faraday box with a
conducting glass front, positioned near the subjects’ feet. Subjects lay on
their backs in the MR scanner and viewed the display through binoculars.

Subjects viewed a pair of circular patches 12° in diameter centered 7.5°
to the left and right of a central fixation point. Patches were filled with
a plaid stimulus comprised of two superimposed sinusoidal gratings.
Individual component gratings had 20% contrast, and spatial and tem-
poral frequencies were selected to yield a variety of pattern directions
when superimposed in various combinations (Fig. 1 ).

Each scan consisted of 6 (32-s) cycles; each cycle consisted of alter-
nating adapted-direction and mixed-direction blocks. Adapted-direc-
tion blocks consisted of 8 consecutive trials in which the plaid stimulus
always appeared to move in the same direction (horizontally, at 12.9 or
1.9°/s; Fig. 1 a); mixed-direction blocks consisted of 8 trials in which the
direction of the plaids varied from trial-to-trial (possible plaid direc-
tions, computed from the intersection-of-constraints of the component
gratings, were ±31°, ±123° from horizontal at 5.3°/s and 6.3°/s; Fig. 1 b).
The component gratings with orientations of ±72° had spatial frequen-
cies of 0.5 cycles/degree and temporal frequencies of 2 cycles/second 
(Fig. 1 a, components above first plaid); the component gratings with
orientations ±45° had spatial frequencies of 0.5 cycles/degree and tem-
poral frequencies of 0.67 cycles/second (Fig. 1 a, components above sec-
ond plaid). In the component-motion experiment, perceptual
transparency was achieved by scaling one component’s spatial frequency
up to 1 cycle/degree and the other down to 0.125 cycle/degree, producing
a 3-octave separation. (Temporal frequencies were also scaled accord-
ingly to leave component velocities unchanged.)

To control attention, subjects performed a speed discrimination judg-
ment on each stimulus presentation16. Each 2-s trial consisted of 
1300 ms of plaid motion followed by a 700-ms luminance-matched blank
period during which subjects pressed a button to indicate which plaid
(left or right of fixation) moved faster. The speed differences were deter-
mined by an adaptive staircase procedure, adjusting the speeds from trial
to trial so that subjects would be approximately 80% correct.

Across different blocks and experiments, we chose to equate percent-
correct performance, instead of the exact stimulus speed (although speeds
did remain within a few percent), because in previous work, we and oth-
ers have noted large attentional effects on MT+ responses, but no effects
of slight differences in speed18–20. Although the speed discrimination
thresholds were larger for non-coherent (transparent gratings) than for
coherent plaids (but not for mixed- versus adapted-direction blocks),
the differences were not very large (percent speed-increment thresholds
were �15% versus �10% for non-coherent versus coherent, respective-
ly). These small speed differences might affect the responses of some
individual neurons (although speed tuning curves of all direction-selec-
tive cells are rather broad), but these speed differences would not be
expected to evoke measurable changes in the pooled activity (as mea-
sured with fMRI) of large populations of neurons.

In the adaptation experiments, equal numbers of scans were collected
with the plaids moving in opposite directions (for example, inward
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Pattern motion selectivity 
model

Simoncelli & Heeger (1998)

Intersection of constraints (two 
components)

Each component activates a different V1 neuron, selective 
for a different orientation and speed.



Intersection of constraints (many 
components)

Each component activates a 
different V1 neuron, selective for 
a different orientation and speed.  

How do you get selectivity for 
the moving pattern as a whole, 
not the individual components?

+ + + +

Answer: For each possible 2D 
velocity, add up the responses of 
those V1 neurons whose preferred 
orientation and speed is consistent 
with that 2D velocity.

Neural implementation of IOC

WT

WX

WY

W
t

W
x

W
y

Construction of MT pattern cell velocity selectivity via combination

of V1 complex cell afferents, shown in the Fourier domain.

Linear velocity selectivity

Simoncelli,  1993

Add spectral energy on plane

Subtract spectral energy off plane

Spatiotemporal frequency domain

Spatiotemporal frequency 
response of space-time 
oriented linear filter.

Frequency responses of 
filters that are all 
consistent with one velocity.
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Distributed representation of 2D velocity

Brightness at each location 
represents the firing rate 
of a single MT neuron with a 
different preferred 
velocity. Location of peak 
corresponds to perceived 
velocity.

+ + + +

vx

vy

Predictions of the theory

Kuman & Uka (2013)

Velocity of a random dot 
stimulus and the velocities of 
each oriented component.

A single component velocity 
is consistent with two pattern 
velocities at faster speed.

Testing the theory: pattern cell

Kuman & Uka (2013)

For CDS predictions, a periodic 
spline curve was interpolated to 
the direction-tuning data at the 
optimal speed. The direction 
tuning for a speed higher than 
the optimal speed was 
computed as the sum of two 
interpolated curves, each 
shifted by an amount 
determined from the ratio of the 
optimal speed to each speed

For PDS predictions, the 
interpolated curve was used 
across all speeds



Testing the theory: component cell

Kumano & Uka (2013)
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Bias in perceived velocity
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Perception is our best guess as to what is in the world, given 
our current sensory input and our prior experience 
(Helmholtz, 1866). 

Goal: explain “mistakes” in perception as “optimal” solutions 
given the statistics of the environment.

Bayesian perception

memory

Bayesian models of perception
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Prior bias for slower speeds

Simoncelli (1993)
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Bayesian estimation of velocity



Bayesian perception
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Vy

stimulus idealization model
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[Simoncelli & Heeger, ARVO ‘92]
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stimulus idealization model
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Weiss, Simoncelli, & Adelson (2002) 
see also Stocker & Simoncelli (2006)

Theory fits lots of behavioral data

How does the brain represent the prior?
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A closed form solution is readily obtained using calculus of variations:

d(s) = Np(s), w(s) ∝
1

d(s)
=

1

Np(s)
, g(s) = R. (1)

The structure of the optimally efficient population directly reflects the statistical properties of the
environment, as specified by p(s). Specifically, the cell density is proportional to the stimulus
distribution, ensuring that frequently occurring stimuli are encoded with greater precision, using
a larger number of cells with correspondingly narrower tuning. On the other hand, we see that
the maximal response (gain) of the cells in the optimal population is constant, independent of the
preferred stimulus value. Since we have assumed the tuning widths are inversely proportional to
cell density, and thus to the stimulus distribution, this solution implies that the average response of
each neuron (over stimuli encountered in the world), is identical for all neurons in the population.
Finally, the unknown total resource values {N,R} appear only as multiplicative scale factors in
the expressions for gain and density, and thus the optimal solution provides a unique and testable
predictions for the shapes of both the cell density and tuning width as a function of preferred
stimulus.

Finally, substituting the optimal cell density and gain into the expression for accuracy given above al-
lows us to make a prediction about the minimum discriminination thresholds that could be achieved
based on this population :

δmin(s) ∝
1

√

d2(s)g(s)
=

1

N
√
Rp(s)

(2)

The solution predicts that frequently occurring stimuli should be more discriminable (specifically, in-
verse discrimination thresholds should be proportional to the probability of encountering a stimulus
value). The shape of this solution is again a simple function of the stimulus probability, p(s), scaled
by a multiplicative factor that depends on neural resources and an additional factor that depends
on the experimental conditions under which discrimination thresholds are measured (e.g., criterion
value, stimulus duration, or intensity). As a result, the solution provides a unique prediction of the
shape of perceptual discrimination as a function of stimulus value.

Efficient population coding predicts explicit relationships between sensory statistics, physiological
tuning properties, and perceptual discriminability (Eqs. 1 &2). We tested these relationships in the
context of two auditory attributes (acoustic frequency and modulation frequency), and three visual
attributes (local orientation, spatial frequency, and retinal speed) (Fig. 2). Each of these attributes
exhibits substantial heterogeneity in their statistical, physiological, and perceptual representations.
Data in the first column (Fig. 2a-e) correspond to stimulus distributions for each attribute, as esti-
mated from large databases of photographic images or sounds obtained from natural environments
(see Methods). Physiological data (Fig. 2f-j) are taken from single-cell electrophysiological record-
ings in primate or cat that report the independently measured tuning widths of a large population
of neurons as a function of their preferred stimuli. These measurements were gathered across mul-
tiple animals, and in a diverse set of brain areas (the auditory nerve fibers, the inferior colliculus,
the primary visual cortex, and the middle temporal cortex), each chosen based on a substantial
literature identifying the tuning properties of those neurons for the stimulus feature of interest. For
the case of local orientation, we also analyzed another physiological data set in which tuning widths
are reported (see Appendix). Estimates of the cell density in each area (Fig. 2k-o) are obtained
with a histogram binned over the preferred stimuli. Discrimination thresholds for each sensory
attribute (Fig. 2p-t) were measured in human perceptual experiments. In some cases, data are re-
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this should be the case, or how these heterogeneities might be related to each other.

We have recently proposed that these variations could arise when the tuning curves of a neu-
ral population are arranged so as to maximize the information transmitted about stimuli that are
heterogeneous in their frequency of occurrence10,11. Here, we show that this theory provides remark-
ably accurate predictions of neural and perceptual heterogeneity for a variety of different sensory
attributes. Consider a stimulus variable, s, that is to be encoded in the responses of a population of
N noisy neurons. For simplicity, assume that the neuronal response variability is Poisson-distributed
with a rate parameter defined by the tuning curve5, and that for any stimulus, the responses of the
neurons in the population are uncorrelated. 1 In addition to fixing the number of neurons, we also
restrict the the total spike rate of the population to a maximum value of R, reflecting a limitation
on metabolic resources13,14.

The presence of neural response noise, in concert with the two resource constraints, place limits on
the accuracy with which stimuli can be represented by the population. The literature on population
coding has thoroughly examined this issue in the case of a homogeneous population. If one assumes
that the population covers the stimulus space, with adjacent cells overlapping so as to leave no gaps,
the accuracy with which a decoder can recover the stimulus value from the population response 2

scales inversely with N2R. Thus, the accuracy of the representation improves when either N or R
are increased.

Suppose the environment is inhomogeneous, in that the frequency of occurrence of a stimulus vari-
able, expressed as a probability distribution, p(s), varies significantly over the range of s. Intuitively,
a “good” sensory system would allocate a higher proportion of neurons or spikes (or both) to the
most frequently occurring stimuli, improving the encoding accuracy of those stimuli at the cost of
decreasing the encoding accuracy of infrequently occurring stimuli. Is there a choice that is optimal?
In order to answer this question, we parameterize a nonuniform allocation of neurons using a con-
tinuous function, d(s), that represents the cell density. The heterogeneous population is formed by
using this density function to warp a homogenous population, as depicted in (Fig. 1). An important
feature of this parameterization is that it enforces an inverse relationship between tuning widths
and cell density, and thus preserves the relative overlap between adjacent tuning curves. If the
homogeneous population is chosen so that the tuning curves cover their stimulus space with modest
overlap, then the warped heterogeneous population will do the same. Similarly, we parameterize a
nonuniform allocation of spikes using a continuous gain function, g(s), which is simply multiplied
by each of the warped tuning curves. Under this local parameterization of resource allocation,
the accuracy of the representation scales inversely with d(s)2g(s), analogous to the homogeneous
case10.

This parameterization allows us to optimize the population for the transmission of stimulus in-
formation. Specifically, the average of the log accuracy provides a lower bound on transmitted
information17, and thus we need to solve the following constrained optimization problem:

argmax
d(s),g(s)

∫

p(s) log
(

d2(s)g(s)
)

ds, subject to

∫

d(s) ds = N, and

∫

p(s)g(s) ds = R,

1The derivation can be generalized to a class of distributions that include correlations12 without changing the

form of the result11.
2Technically, the result is stated in terms of the Fisher information, which provides a bound on the variance of

any unbiased estimator that attempts to recover the stimulus value from the population15. The Fisher information

also provides a bound on the perceptual discriminability that can be achieved using any estimator, even one that is

biased16.
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The “principles”

•Perception is an inference that has evolved/developed to 
match the statistics of the environment (Bayesian 
estimation with priors that embody statistics of 
environment). 

•Functional specialization. Each brain area (defined on the 
basis of physiology, architecture, connections, 
topography) performs a different function. 

•Computational theory. Canonical computation (linear sum, 
threshold or sigmoid nonlinearity, adaptation) cascaded 
across a pathway of visual cortical areas. Selectivity and 
invariance.

A computational theory of 
motion appearance
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A computational theory of 
color appearance



What distinguishes neural activity that 
underlies conscious visual appearance?

- Neural activity in certain brain areas. 

- Activity of specific subtypes of neurons. 

- Particular temporal patterns of neural activity (e.g., 
oscillations). 

- Synchronous activity across groups of neurons in different 
brain areas. 

- Neural activity that is driven by a coherent combination of 
bottom-up sensory information and top-down recurrent 
processing (e.g., linked to attention). 

- Nothing. Once you know the computations, you’re done!


