Computational theory of the responses of V1 & MT neurons and psychophysics of motion perception

Neural circuits perform computations

~50,000 neurons per cubic mm
~6,000 synapses per neuron
~10 billion neurons & ~60 trillion synapses in cortex

Computational theory: how do neurons compute motion?
Motion is like orientation in space-time and spatiotemporally oriented filters can be used to detect and measure it.

Adelson & Bergen (1985)
Strong response for motion in preferred direction.

Weak response for motion in non-preferred direction.

Direction selectivity model

Ohzawa, DeAngelis, & Freeman

Space-time receptive field

Distributed representation of speed

Each spatiotemporal filter computes something like a derivative of image intensity in space and/or time. "Perceived speed" is the orientation corresponding to the gradient in space-time (max response).
Impulse response

Note: negative responses not seen in neural firing rates

Strong response to preferred direction

Note: negative responses not seen in neural firing rates

Weak response to opposite direction
'On' and 'off' responses

Stimulus

Off response

On response

Complex cells: theory

Complex cells & position invariance

Oriented stimulus as seen by both subunits at two different locations:
Motion energy responses to moving grating

<table>
<thead>
<tr>
<th>Preferred direction</th>
<th>Opposite direction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Relative responses

energy

Time (s)

Computing space-time RFs & motion energy

Cascade of recursive (streaming) low pass filters:

\[\tau \frac{dy}{dt} = -y_1 + y_0 \]
\[\tau \frac{dy}{dt} = -y_3 + y_1 \]

\(y_0(x,t) \): stimulus
\(y_i(x,t) \): spatial array of temporally-filtered responses

Biphasic temporal filters:

\(f_1 = y_3 - y_5 \)
\(f_2 = y_5 - y_7 \)

Cascade of temporal low-pass filters

![Temporal impulse responses](image3)
Odd- and even-phase spatial weights

Spatial convolution kernels

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4
-0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04

Space-time separable impulse responses

Space-time oriented impulse responses

leftEven = oddFast + evenSlow;
leftOdd = -oddSlow + evenFast;

etc.
The “aperture problem”

These three motions are different but look the same when viewed through a small aperture (i.e., that of a direction-selective receptive field).

Wallach (1935)
Intersection of constraints

With two different motion components within the aperture, there is a unique solution:

![Diagram showing intersection of constraints](image)

Adelson & Movshon (1981)

Component vs. pattern motion (perception)

\[
\text{strong pattern-motion percept} = \text{component + pattern motion} \\
\text{weak pattern-motion percept} = \text{component} + \text{pattern motion}
\]

Adelson & Movshon (1981)
Component vs. pattern motion selectivity

Component-motion cell
- Grating component moving up-right => strong response

Pattern-motion cell
- Pattern moving up-right => strong response

Component vs. pattern motion: single neurons

Movshon et al., 1983
- A: Component gratings
- B: Adapted direction plaids
- C: Component gratings
- D: Mixed direction plaids

Model
- E: Component gratings
- F: Gratings
- G: Gratings
- H: Plaids

Component vs. pattern motion: fMRI adaptation

Component gratings
- Adapted direction plaids

Component gratings
- Mixed direction plaids

Huk & Heeger (2002)
Pattern motion selectivity across visual areas

Huk & Heeger (2002)

Pattern motion selectivity model

Simoncelli & Heeger (1998)

Intersection of constraints (two components)

Each component activates a different V1 neuron, selective for a different orientation and speed.
Intersection of constraints (many components)

Each component activates a different V1 neuron, selective for a different orientation and speed.

How do you get selectivity for the moving pattern as a whole, not the individual components?

Neural implementation of IOC

Answer: For each possible 2D velocity, add up the responses of those V1 neurons whose preferred orientation and speed is consistent with that 2D velocity.

Spatiotemporal frequency domain

Spatiotemporal frequency response of space-time oriented linear filter.

Frequency responses of filters that are all consistent with one velocity.
Distributed representation of 2D velocity

Brightness at each location represents the firing rate of a single MT neuron with a different preferred velocity. Location of peak corresponds to perceived velocity.

Predictions of the theory

Velocity of a random dot stimulus and the velocities of each oriented component.

A single component velocity is consistent with two pattern velocities at faster speed.

Kuman & Uka (2013)

Testing the theory: pattern cell

For CDS predictions, a periodic spline curve was interpolated to the direction-tuning data at the optimal speed. The direction tuning for a speed higher than the optimal speed was computed as the sum of two interpolated curves, each shifted by an amount determined from the ratio of the optimal speed to each speed.

For PDS predictions, the interpolated curve was used across all speeds.

Kuman & Uka (2013)
Testing the theory: component cell

Kumano & Uka (2013)

Visual motion ambiguity

Stone et al. 1990

Total contrast

5%
10%
20%
40%

Stone, Watson, & Mulligan (1990)

Bias in perceived velocity
Perception is our best guess as to what is in the world, given our current sensory input and our prior experience (Helmholtz, 1866).

Goal: explain "mistakes" in perception as "optimal" solutions given the statistics of the environment.

Prior bias for slower speeds

Simoncelli (1993)

Bayesian estimation of velocity
Bayesian estimation of velocity

\[P(m|v) \times P(v) \sim P(v|m) \]
Bayesian model predictions

stimulus idealization model

Bayesian model predictions

stimulus idealization model

Prior for slow speeds explains bias in perceptual bias
Bayesian model predictions

- **Stimulus**
- **Idealization**
- **Model**

Theory fits lots of behavioral data

- Stone & Thompson, '90
- Stone et al., '90
- Loreceau et al., '92
- Yo & Wilson, '92
- Burke & Wende, '93
- Bowers, '96

How does the brain represent the prior?

-
-
-
-
-
-

Ganguli & Simoncelli (2014, 2016)
The “principles”

- Perception is an inference that has evolved/developed to match the statistics of the environment (Bayesian estimation with priors that embody statistics of environment).
- Functional specialization. Each brain area (defined on the basis of physiology, architecture, connections, topography) performs a different function.
- Computational theory. Canonical computation (linear sum, threshold or sigmoid nonlinearity, adaptation) cascaded across a pathway of visual cortical areas. Selectivity and invariance.

A computational theory of motion appearance

A computational theory of color appearance
What distinguishes neural activity that underlies conscious visual appearance?

- Neural activity in certain brain areas.
- Activity of specific subtypes of neurons.
- Particular temporal patterns of neural activity (e.g., oscillations).
- Synchronous activity across groups of neurons in different brain areas.
- Neural activity that is driven by a coherent combination of bottom-up sensory information and top-down recurrent processing (e.g., linked to attention).
- Nothing. Once you know the computations, you’re done!