Functional specialization Achromatopsia Prosopagnosia Alexia

Visual area STS responds to biological motion

Macaque visual areas

Flattening the brain

Defining visual cortical areas

PhACT

Physiology

Architecture

ture **C**onnections

ons

Topography

Physiology

Example: direction selectivity in V1

Cytoarchitecture: Brodmann's areas

Korbinian Brodmann (1868-1918)

~50 cytoarchitectural areas defined by cell size, cell density, number of layers, density of myelinated axons.

Different stains for different features

Golgi stain: small fraction of cell bodies and dendrites

Nissel stain: only cell bodies

Weigert myelin stain for axons

Cortical layers

Primary visual cortex slice (Nissl stain)

Architecture V2: stripes V1: blobs/puffs MT: dense

Example: cytochrome oxidase staining in human visual cortex

Connections: white matter bundles

Superior longitudinal (arcuate): connects language centers (Broca's, Wernicke's).

Superior occipitofrontal: dorsal (where) visual pathway.

Inferior occipitofrontal: ventral (what) visual pathway.

Tracing connections with diffusion tensor imaging

Ben-Shachar, Dougherty, Wandell (2007)

Retinotopy (human V1)

Tatsuji Inouye (1880-1976)

Visual Disturbances Following
Gunshot Wounds of the Cortical
Visual Area
Based on observations of the wounded in
the recent Japanese wars
German edition first published in 1909

Horton & Hoyt, 1991

Topography (human V1) lower vertical meridian lower vertical meridian upper vertical meridian

Retinotopy (monkey V1)

2-deoxyglucose

Tootell, Silverman, Switkes, & DeValois (1982)

Measuring retinotopic maps

Angular component

Engel et al (1994)

Retinotopy: radial component | Description | Prever, Wandell, & Logothetis | Prever, Wandell, & Logothetis | Prever | Prevenue | Prever |

Functional specialization

Match each cortical area to its corresponding function:

V1	Motion
V2	Stereo
V3	Color
V3 <i>A</i>	Texture
V3B	Segmentation, grouping
V4	Recognition
V5	Attention
V7	Working memory
LO1	Mental imagery
IPS1	Decision-making
IPS2	Sensorimotor integration
Etc.	Etc.

Cortical area MT is specialized for visual motion perception

- Neurons in MT are selective for motion direction.
- Neural responses in MT are correlated with the perception of motion.
- Damage to MT or temporary inactivation causes deficits in visual motion perception.
- Electrical stimulation in MT causes changes in visual motion perception.
- Computational **theory** quantitatively explains both the responses of MT neurons and the perception of visual motion.
- Well-defined **pathway** of brain areas (cascade of neural computations) underlying motion specialization in MT.

Neurons in MT are selective for motion direction

MT responses correlated with motion perception

Britten, Shadlen, Newsome & Movshon (1992)

Maunsell and Van Essen, 1983

Damage to MT causes deficits in motion perception

(Akinetopsia: motion blindness)

Microstimulation in MT changes motion perception

Salzman, Britten, Newsome (1990)

Human MT

Beware of circular reasoning in brain mapping

- Hypothesize that there is a particular visual/cognitive process that is localized to a functionally specialized brain area.
- 2. Design an experiment with two stimuli/tasks, one of which you believe imposes a greater demands on that cognitive process.
- Run the experiment and find sure enough that there is a brain area that responds more strongly during trials with high demand on that visual/cognitive process then low demand trials.

What can you conclude from this?

Topography in human MT subject ARW right hamisphere dorsal to mm A Localizer B Retinotopy (MT) os of the property of the pr

Huk, Dougherty, & Heeger (2002)

Topography in human MT/MST TO-1 = MT TO-2 = MST TO-2 = MST Amano, Dumoulin, & Wandell, J Neuophysiol (2009)

Is MT specialized for only visual motion perception?

- Neurons in MT are also selective for binocular disparity.
- Neural responses in MT are also correlated with the perception of depth.
- Motion discrimination performance mostly recovers following carefully circumscribed lesions to MT in monkeys.
- \bullet Electrical stimulation in MT causes changes in stereo depth perception.

Even so... **computational theory** quantitatively explains the responses of MT neurons.