Color Outline

Wavelength encoding (trichromacy)

Three cone types with different spectral sensitivities. Each cone outputs only a single number that depends on how many photons were absorbed. If two physically different lights evoke the same responses in the 3 cones then the two lights will look the same (metamers). Explains when two lights will look the same, not what they will look like.

Color appearance

Color opponency: appearance depends on the differences between cone responses (R-G and B-Y).

Chromatic adaptation: color appearance also depends on context because the each cone adapts (like light and dark adaptation) to the ambient illumination.

Color constancy: visual system infers surface color, despite changes in illumination.

Color appearance Hue Brightness or value

Color opponency

Neural circuits: rod pathway

Neural circuits in the retina (monkey rod pathway)

Rod bipolar

AII amacrines

Parallel pathways (processing streams)

- 1. Anatomically distinct
- 2. Physiologically/functionally distinct
- 3. Complete coverage
- 4. Recombine

Example: rods and cones

Some retinal ganglion cell types

Parallel pathways: ganglion cells

Parasol ganglion cell:

- 1. Inputs from many photoreceptors
- 2. Fast/transient responses
- 3. Poor spatial resolution
- Combine all cones ("color blind")

Midget ganglion cell:

- 1. Inputs from few (or one) photoreceptors
- 2. Slow/sustained responses
- 3. High spatial resolution

Ganglion cell receptive fields & inputs from cone lattice

Field et al., Nature (2010)

Surface luminance levels

Sunlight: 10⁵ candelas/meter² (cd/m²)
 Approx. 10²² photons/m²/sec
 3%-90% of photons are reflected as luminance

• 3% for black surfaces, 90% for white surfaces

· Only some of the reflected photons enter the pupil of eye

Indoor lighting, CRTs: 10² cd/m²

 Moonlight: 10⁻¹ cd/m² • Starlight: 10^{-3} cd/m²

· The eye can adjust to changes in light level by a factor of 100,000,000!

• Yet firing rates only typically range from 0-400Hz.

Mechanisms of light/dark adaptation

- 1. Pupil size
- 2. Switchover between rods and cones
- 3. Bleaching/regeneration of photopigment
- 4. Feedback from horizontal cells to control the responsiveness of photoreceptors

Chromatic adaptation

adaptation (change of gain)

$$\begin{pmatrix} L \\ M \\ S \end{pmatrix} = \begin{pmatrix} G_{L} & 0 \\ G_{M} \\ 0 & G_{S} \end{pmatrix} \begin{pmatrix} L' \\ M' \\ S' \end{pmatrix}$$

Von Kries (1905)

Canonical context cone absorptions

What determines the gain Under the gain Color appearance judgments What determines the gain

Surface-illuminant equations

$$\begin{pmatrix}
R \\
G \\
B
\end{pmatrix} = \begin{pmatrix}
& & & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
&$$

$$G = \int E(\lambda)S(\lambda)R_g(\lambda)d\lambda$$

daylight

flourescent light

Daylight illumination examples

Simultaneous color contrast

Principles	
Psychophysics is part psycho and part physics. Theory: linear systems.	
Methodology: matching.	
Computation: linear summation, static nonlinearity, adaptation.	
Principle of univariance.	
Parallel pathways.	
Perceptual constancy (lightness, color, size, etc.), adaptation, and visual illusions (e.g., aftereffects).	