(1) covert attention

(2) effects on contrast sensitivity

(3) effects on spatial resolution

attention affects spatial resolution

- I. definition
- 2. linking psychophysical and neurophysiological evidence NRN, 2013
- 3. recent studies

vision is limited by spatial resolution

- the ability to discriminate two nearby points in space
- depends on receptor size, number, and spacing

average filter size inversely correlated with preferred spatial frequency

spatial resolution declines with eccentricity

- retinal receptor density
- ganglion cell density
- mapping of photoreceptors
- receptive field size & density
- cortical magnification

spatial resolution declines with eccentricity

Carrasco & Barbot, 2015

attention and spatial resolution

- benefits performance; e.g. visual search, acuity and crowding
- changes the appearance of spatial stimulus attributes; e.g. gap size

reviews: Carrasco & Yeshurun, PBR 2009 Carrasco, Vis Res 2011; Carrasco & Barbot, CSH: Cognition 2015

- changes receptive field size, structure and position
- linking psychophysical and neurophysiological evidence

Anton-Erxleben & Carrasco, Nature Reviews Neurosci. 2013

attention alters RF profiles

Anton-Erxleben & Carrasco, NRN 2013

RFs can shrink or expand with attention

Wolmersdorf et al. 2006; Anton-Erxleben et al. 2009; Niebergall et al. 2011

visual search

b

Anton-Erxleben & Carrasco, NRN 2013

SEARCH: cortical magnification & exogenous attention

Carrasco & Frieder 1997

Carrasco & Yeshurun 1998

Carrasco & Barbot 2015

acuity

Anton-Erxleben & Carrasco, NRN 2013

ACUITY: macaques

humans

exogenous

endogenous

Carrasco & Barbot 2015

optimal resolution?

eg, Gurnsey et al. 1996; Kehrer 1989, 1997; Morikawa 2000; Potechin & Gurnsey 2003

visual system's effective resolutio

texture segmentation

exogenous attention improves or impairs performance by increasing resolution

Yeshurun & Carrasco, Nature 1998

exogenous attention: resolution tradeoff

EXO: selective adaptation to spatial frequencies

exogenous attention enhances resolution by increasing the sensitivity of small, high-SF filters

Carrasco, Loula & Ho, 2006

flexible resolution?

SEURAT

exogenous attention

Yeshurun & Carrasco, 1998

endogenous attention

small scale

large scale

Yeshurun, Montagna & Carrasco, 2008

attention and spatial resolution

	EXOGENOUS	ENDOGENOUS
Performance at central locations	impairs	improves
Performance at peripheral locations	improves	improves
Spatial resolution	increases small filters' sensitivity	either increases or decreases?
		FLEXIBILITY
	Berformance	
	Eccentricity	Eccentricity

endogenous attention and texture segmentation

vertical contrast modulator in carrier noise (6 cpd)

prediction: adaptation

adaptation shifts peak and modulates CPD

prediction: adaptation x attention

prediction: adaptation x attention

adaptation interacts with attention

prediction: adaptation x attention

attention interacts with adaptation

prediction: adaptation x attention

small filters mediate the endo attention effect

Barbot & Carrasco (2017)

ENDO attention adjusts resolution to improve performance

- selective adaptation shifts the performance peak and modulates CPD, consistent with changes in the population's resolution
- adapting to high-SF, but not to low-SF, diminishes the CPD and silences attentional benefit at foveal and parafoveal locations
- attention modulates high-SF filters' sensitivity at central locations

Barbot & Carrasco (2017)

EXO ≠ ENDO attention

EXO attention increases resolution by increasing contribution of high-SF filters

Carrasco, Loula & Ho, 2006

ENDO attention decreases resolution by decreasing contribution of high-SF filters

endogenous attention adjusts resolution to improve performance

- selective adaptation shifts the performance peak and modulates CPD, consistent with changes in the population's resolution
- adapting to high-SF silences attentional benefit at foveal and parafoveal locations

Barbot & Carrasco (2017)

exogenous ≠ endogenous attention

Exogenous attention increases resolution by increasing contribution of high-SF filters

Carrasco, Loula & Ho, 2006

Endogenous attention decreases resolution by decreasing contribution of high-SF filters

Barbot & Carrasco, 2017

attention and spatial resolution

	EXOGENOUS	ENDOGENOUS
Performance at central locations	impairs	improves
Performance at peripheral locations	improves	improves
Spatial resolution	<i>increases increases or decreases</i> sensitivity of small filters	
	ł	ł
	AUTOMATICITY	FLEXIBILITY
	valid —— neutral ——	
	Performance	
	Eccentricity	Eccentricity
	Carrasco, Loula & Ho, 20	006 Barbot & Carrasco, 20

covert attention helps overcome limitations of peripheral processing and restore visual performance

- exogenous attention <u>automatically</u> increases resolution (eg search, acuity), even when detrimental
- diverting exogenous attention decreases resolution and can improve performance!
- endogenous attention
 <u>flexibly</u> adjusts resolution per
 task demand to benefit
 performance
- exogenous and endogenous attention modulate sensitivity of the high-SF selective filters at a given eccentricity

RF position and size changes can qualitatively account for behavioral effects in performance

- concentrating processing resources at attended location (shift)
 - population receptive fields (pRFs) shift towards attended area through-out the visual field and the visual system [Klein, Harvey & Dumoulin 2014]
- reducing the area of spatial integration (shrinkage)
 - decreased spatial overlap in BOLD responses for adjacent locations, narrowing of the population's integration area [Fischer & Whitney 2009]
 - withdrawing attention from periphery results in larger pRFs and blurrier perceptual representation
 [de Haas et al. 2014]
- attention enhances the visual system's effective spatial resolution

Anton-Erxleben & Carrasco, NRN 2013