
Perception and Attention 
G89.2223 

David J. Heeger 

V1 and Direction Selectivity Assignment 

Use Matlab and the motion tutorial to do the following calculations and to answer the 
questions. Write up a report that explains your solutions, including graphs, and the 
relevant snips of Matlab code. For each question, please write a brief explanation of 
what you did, including any equations that you used to do the calculations, and write a 
brief interpretations of your results. Please submit a single pdf file (not MS Word) that 
contains everything. 

1) Implement a recursive temporal filter. In class, we’ve focused only on using 
convolution for shift-invariant linear filters. But there’s another way to do it with feedback 
in which the weights of the convolution kernel are implicit. These are called infinite 
impulse response (IIR) filters. Take a look back at the Signals, Linear Systems, and 
Convolution handout, near the end (p. 13-15), for an example. We’ll be using a cascade 
of exponential low-pass filters. An exponential low-pass filter is computed using this 
equation: 
  τ dy1/dt = -y1 + x 
where x(t) is the input and y1(t) is the output. The value of τ is the time constant of the 
exponential. To implement this, you need to first specify a time step, deltaT, for 
discretely sampling time. Use real units, in this case ms. Use deltaT=1 ms and 
tau=25 ms and compute the impulse response. Your code should look something like 
this: 

deltaT = 1; % ms
duration = 1000; % ms
t = [0:deltaT:duration-deltaT]
x = zeros(size(t));
x(100)=1;
y1=0;
y1Save = zeros(size(t));
tau = 25; % ms
for tt = 1:length(t)

deltaY1 = (deltaT/tau) * (-y1 + x(tt));
y1 = y1 + deltaY1;
y1Save(tt) = y1;

end

Note that y1 has no memory. It updates itself based on the current values of y1 and x. 
But then you can’t plot the resulting time course of y1 without saving it, and that’s the 
point of the y1Save variable. 

a) Compute and plot the impulse response for two different values of τ. The result 
should be an exponential function e-(t/τ) so plot this exponential as well on the same 
graphs. 



b) Compute and plot the step response, also for two different values of τ. The result 
should ramp up exponentially: 1 - e-(t/τ). So plot this as well on the same graphs. 

c) Compute and plot the responses to sinusoidal inputs of various temporal frequencies. 
The frequency response for this IIR filter is derived in the handout (p. 14-15). Use those 
formulas to compute what the amplitude and phase of the responses ought to be for 
each of the temporal frequencies. 

2) Implement a cascade of exponential low-pass filters such that: 
  τ dyn/dt = -yn + yn-1 
where y0 = x. Then compute the differences: f1=y3-y5 and f2=y5-y7. Plot the impulse 
responses of f1 and f2 . They should look familiar, similar to the temporal filters in the 
Adelson and Bergen (1985) paper. You should have a code segment that looks like this: 

for tt = 1:length(t)
deltaY1 = (deltaT / tau) * (-y1 + x(tt)); 
y1 = y1 + deltaY1;
deltaY2 = (deltaT / tau) * (-y2 + y1); y2 = y2 + deltaY2;
y2 = y2 + deltaY2;
% Continue with y3, y4, y5, y6, and y7
f1 = y3-y5;
f2 = y5-y7;

end

3) Implement a set of space-time filters and motion energy filters. The input will be a 3D 
stimulus array (x,y,t). As was done above with time, you need to specify the spatial 
sampling in real units. Use Use deltaX=1/120 deg of visual angle because that’s 
about equal to the cone spacing in the fovea (30 sec of arc). And make the input 
stimulus array cover -2 to 2 deg spatially and 0 to 1000 ms. Extend the code from #2 so 
that f1 and f2 are images, i.e., simulated neural images of responses. During each time 
step, update both f1 and f2 and then do series of spatial convolutions. Use 4 Gabor 
filters, two vertical and two horizontal, with odd and even phases. A Gabor filter is a 
sinusoid multiplied by a Gaussian window. Use 4 cyc/deg for the preferred spatial 
frequency and use σ=0.1 deg for the spread of the Gaussian window. You’ll end up with 
8 output arrays, each of which will be equal in size to the input array (2 temporal filters x 
2 orientations x 2 phases). 

Note that you should scale the Gabor filters so that the sum of the squares of the filter 
weights equals 1. Something like this: 

evenFilt = exp(-(x.^2)./(2*sigma^2)) .* cos(2*pi*sf*x);
oddFilt = exp(-(x.^2)./(2*sigma^2)) .* sin(2*pi*sf*x);
integral = sum(evenFilt.^2 + oddFilt.^2);
evenFilt = evenFilt / integral;
oddFilt = oddFilt / integral;

Doing so will make it easier when you get to parts 3d and 4. 

Note also that you might choose to use a larger sample spacings such as deltaT=10 
ms and deltaX=0.05 deg for debugging. 



Hint: Remember that in matlab, you can treat arrays the same way that you treat 
numbers. See above code segment for #2. For #3, this code will be almost exactly the 
same except that each of the variables (y1, y2, ..., f1, f2) will each be an image. The 
only difference will be that you'll have to extract a single frame from x: 

deltaY1 = (deltaT / tau) * (-y1 + x(:,:,tt)); 

a) Display x-t slices of the impulse responses of the 4 filters that prefer vertical. Your 
results should look something like this: 

�  
b) Compute the appropriate sums and differences (according to Adelson and Bergen) to 
get space-time oriented filters:  

leftEven = oddFast + evenSlow;
leftOdd = -oddSlow + evenFast;
etc.

and display x-t slices of the impulse responses of the 2 leftward- and the 2 rightward-
selective filters. Your results should look something like this: 



�  
c) Compute motion energy:  

leftEnergy = leftEven.^2 + leftOdd.^2;
rightEnergy = rightEven.^2 + rightOdd.^2;
etc.

and display x-t slices of the impulse responses of the energy responses. Your results 
should look something like this:

!   



d) Create 4 drifting sinusoid stimuli (each a 3D array): 4 cyc/deg and 8 Hz, drifting in 4 
directions (up, down, right, left). Run these stimuli through your code to compute the 
motion energy output arrays. Plot the responses (over time) corresponding to neurons 
at the center spatial location. Make 4 graphs corresponding to leftward, rightward, 
upward, and downward-selective. In each graph, include 3 curves corresponding to the 
even and odd linear filter responses and the energy response (e.g., leftEven, leftOdd, 
leftEnergy). Repeat for each of the 4 stimuli so that end up with a 4x4 set of graphs 
corresponding to the 4 stimulus motion directions and the 4 direction preferences. Your 
results should look something like this: 

!  

4) Implement normalization. Extend the code from #3 to normalize the energy 
responses: 

sumEnergy = leftEnergy + rightEnergy + upEnergy + downEnergy;
leftEnergyNorm = leftEnergy ./ (sumEnergy + sigma^2);

where of course this sigma is different from the one that controls the width of the Gabor 
filters. 

a) Simulate a contrast-response measurement. Compute the normalized energies for 
rightward drifting gratings of various contrasts (from 1% contrast to 100% contrast in log 
steps). Ignore the first few hundred msec of the responses for which you should 
observe some transient funkiness (as in the figure above). Compute the mean over time 

0 100 200 300 400 500
-4

0

4

8

12

R
es

po
ns

e

Selective for rightward motion

0 100 200 300 400 500
Time (msec)

-4

0

4

8

12

R
es

po
ns

e

Selective for leftward motion



for the remaining duration of the response time courses. Plot this mean response 
amplitude versus log contrast for each of the 4 simulated neurons (upward, downward, 
rightward, and leftward-selective) corresponding to the center spatial location. Select 
the value of sigma so that a stimulus of 10% contrast evokes about half the maximal 
response. See Fig. 3 of Carandini and Heeger (Nat Rev Neurosci, 2012) for examples 
of what your results should look like. 

b) Simulate a cross-orientation experiment. Repeat part a with rightward drifting gratings 
of various contrasts from 1% to 50%, either presented on their own, or superimposed 
with an 50% contrast upward drifting grating. Make 4 graphs (upward, downward, 
rightward, leftward-selective) each with 2 curves (rightward grating alone, rightward 
grating superimposed with upward grating). See Fig. 3 of Carandini and Heeger (Nat 
Rev Neurosci, 2012) for examples of what your results should look like.


