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Characterizing the complete input-output properties of a system by exhaustive measurement is
usually impossible. When a system qualifies as a linear system, it is possible to use the responses
to a small set of inputs to predict the response to any possible input. This can save the scientist
enormous amounts of work, and makes it possible to characterize the system completely.

These notes explain the following ideas related to linear systems theory:

• The challenge of characterizing a complex systems

• Simple linear systems

• Homogeneity

• Superposition

• Shift-invariance

• Decomposing a signal into a set of shifted and scaled impulses

• The impulse response function

• Use of sinusoids in analyzing shift-invariant linear systems

• Decomposing stimuli into sinusoids via Fourier Series

• Characterizing a shift-invariant system using sinusoids

Linear systems theory can be applied to many systems. For example, it can be used to study the
responses of a hi-fi system to sounds, or the response of the eye to color images. Here we
describe the theory in general and in simple terms. The examples we give are applied to the
responses of the retina to images. To simplify matters we imagine that the retina is a thin slit, and
is looking at a single horizontal line of a monitor. This way the stimuli are one-dimensional (they
live on a line). In real life they are two-dimensional, and that’s a bit harder to visualize.

Systems, Inputs, and Responses

Step one is to understand how to represent possible inputs to systems. In our case, imagine a



graph of the visual stimulus. Each point in space (abscissa) corresponds a light intensity
(ordinate). If there is a single pixel on, and the rest are off, the signal is called  an impulse. It
looks like a single upwards blip on the graph. More complex images look like more complex
graphs on this kind of plot. This sort of graph offers a general way to describe all of the possible
stimuli.

One possible way to characterize the response of the eye to images might be to build a look-up
table: a table that shows the exact neural response for every possible visual stimulus. Obviously,
it would take an infinite amount of time to construct such a table, because the number of possible
images is unlimited.

Instead, we must find some way of making a finite number of measurements that allow us to
infer how the system will respond to other stimuli that we have not yet measured. We can only
do this for certain kinds of systems with certain properties. If we have a good theory about the
kind of system we are studying, we can save a lot of time and energy by using the appropriate
theory about the system’s responsiveness. Linear systems theory is a good time-saving theory for
linear systems which obey certain rules. Not all systems are linear, but many important ones are.

Linear Systems

To see whether a system is linear, we need to test whether it obeys certain rules that all linear
systems obey. The two basic tests of linearity are homogeneity and superposition. Systems that
satisfy both homogeneity and superposition are linear.
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Homogeneity: As we increase the strength of a simple input to a linear system, say we double it,
then we predict that the output function will also be doubled. For example, if the intensity of an
image is doubled, the eye should respond twice as much if it’s a linear system. This is called
homogeneity.
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Additivity: Suppose we present a complex stimulus S1 such as the face of a person, and we
measure the electrical responses of the nerve fibers coming from the retina. Next, we present a
second stimulus S2 that is a little different: a different person’s face. The second stimulus also
generates a set of responses which we measure and write down. Then, we present the sum of the
two stimuli S1 + S2: we present both faces together and see what happens. If the system is linear,
then the measured response of each nerve fiber will be just the sum of its responses to each of the
two stimuli presented separately.

Shift-invariance: Suppose that we stimulate the left part of your eye with an impulse (a pixel
turned on) and we measure the electrical response. Then we stimulate it again with a similar
impulse on the right side, and again we measure the response. If the retina is symmetrical (which
is true, with the exception of the blind spot), then we should expect that the response to the
second impulse will be the same as the response to the first impulse. The only difference
between them will be that the second impulse has occurred in a different location, that is, it is
stimulating different cells that are shifted in retinal space. When the responses to the identical
stimulus presented in different locations are the same, except for the corresponding shift in
space, then we have a special kind of linear system called a shift-invariant linear system. Just as
not all systems are linear, not all linear systems are shift-invariant.

Why impulses are special: Homogeneity, superposition, and shift invariance may, at first,
sound a bit abstract but they are very useful. They suggest that the system’s response to an
impulse can be the key measurement to make. The trick is to conceive of the complex stimuli we
encounter (such as a person’s face) as the combination of pixels. We can approximate any
complex stimulus as if it were simply the sum of a number of impulses that are scaled copies of
one another and shifted in space. Indeed, we can show any image we want on a computer



monitor, which lights up different pixels. If we want a better approximation, we need a better
computer, one that can show more pixels.

For shift-invariant linear systems, we can measure the system’s response to an impulse and we
will know how to predict the response to any stimulus (combinations of impulses) through the
principle of superposition. To characterize shift-invariant linear systems, then, we need to
measure only one thing: the way the system responds to an impulse of a particular intensity. This
response is called the impulse response function of the system.

The problem of characterizing a complex system has become simpler now. For shift-invariant
linear systems, there is only a single impulse response function to measure. Once we’ve
measured this function, we can predict how the system will respond to any other possible
stimulus.
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The way we use the impulse response function is illustrated in the above Figure. We conceive of
the input stimulus, in this case a sinusoid, as if it were the sum of a set of impulses. We know the
responses we would get if each impulse was presented separately (i.e., scaled and shifted copies
of the impulse response). We simply add together all of the (scaled and shifted) impulse
responses to predict how the system will respond to the complete stimulus. 

Sinusoidal stimuli

Sinusoidal stimuli have a special relationship to shift-invariant linear systems. A sinusoid is a
regular, repeating curve, that oscillates around a mean level. The sinusoid has a zero-value at



time zero. The cosinusoid is a shifted version of the sinusoid; it has a value of one at time zero.

The sine wave repeats itself regularly. The distance from one peak of the wave to the next peak
is called the wavelength or period of the sinusoid and it is generally indicated by the greek letter
lambda. The inverse of wavelength is frequency: the number of peaks in the stimulus that arrive
per second at the ear. The longer the wavelength, the lower the frequency. Apart from frequency,
sinusoids also have various amplitudes, which represent how high they get at the peak of the
wave and how low they get at the trough. Thus, we can describe a sine wave completely by its
frequency and by its amplitude.

When we write the mathematical expression of a sine-wave, the two mathematical variables that
correspond to the frequency and the amplitude are A and f:

A sin(2 pi f t)

The height of the peaks increase as the value of the amplitude, A, increases. The spacing between
the peaks becomes smaller as the frequency, f, increases.

The response of shift-invariant systems to sine waves: Just as we can express any stimulus as
the sum of a series of shifted and scaled impulses, so too we can express any periodic stimulus (a
stimulus that repeats itself over time) as the sum of a series of (shifted and scaled) sinusoids at
different frequencies. This is called the Fourier Series expansion of the stimulus. The equation
describing this expansion works as follows. Suppose that s(t) is a periodic stimulus. Then we can
always express s(t) as a sum of sinusoids:

s(t) = A0 + A1 sin(2 pi f1 t + p1) + A2 sin(2 pi f2 t + p2) + A3 sin(2 pi f3 t + p3) + ...

(Do not memorize this equation!)

The frequencies of the sinusoids are very simple: f1 = 1 (one single cycle over the stimulus
duration), f2 = 2 (two cycles over the stimulus duration), f3 = 3, etc.

You can go either way: if you know the coefficients (the A’s and p’s), you can reconstruct the
original stimulus s(t); if you know the stimulus, you can compute the coefficients by a method
called the Fourier Transform (a way of decomposing complex stimuli into its component
sinusoids).



This decomposition is important because if we know the response of the system to sinusoids at
many different frequencies, then we can use the same kind of trick we used with impulses to
predict the response via the impulse response function. First, we measure the system’s response
to sinusoids of all different frequencies. Next, we take our input stimulus (a complex sound) and
use the Fourier Transform to compute the values of the coefficients in the Fourier Series
expansion. At this point the stimulus has been broken down as the sum of its component
sinusoids. Finally, we can predict the system’s response to the (complex) stimulus simply by
adding the responses for all the component sinusoids.

Why bother with sinusoids when we were doing just fine with impulses? The reason is that
sinusoids have a very special relationship to shift-invariant linear systems. When we use a
sinusoidal stimulus as input to a shift-invariant linear system, the system’s responses is always a
(shifted and scaled) copy of the input, at the same frequency as the input. That is, when the input
is sin(2 pi f t) the output is always of the form A sin(2 pi f t + p). Here, p determines the amount
of shift and A determines the amount of scaling. Thus, measuring the response to a sinusoid for a
shift-invariant linear system entails measuring only two numbers: the shift and the scale. This
makes the job of measuring the response to sinusoids at many different frequencies quite
practical.



Often, then, when scientists characterize the response of a shift-invariant linear system they will
not tell you the impulse response. Rather, they will give you plots that tell you about the values
of the shift and scale for each of the possible input frequencies. This representation of how the
shift-invariant linear system behaves is equivalent to providing you with the impulse response
function. We can use these numbers to compute the response to any stimulus. This is the main
point of all this stuff: a simple, fast, economical way to measure the responsiveness of complex
systems. If you know the coefficients of response for sine waves at all possible frequencies, then
you can determine how the system will respond to any possible periodic stimulus.
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