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SUMMARY

In economic decisions, we make a good-based
choice first, then we transform the outcome into an
action to obtain the good. To elucidate the network
mechanisms for such transformation, we con-
structed a neural circuit model consisting of modules
representing choice, integration of choice with target
locations, and the final action plan. We examined
three scenarios regarding how the final action plan
could emerge in the neural circuit and compared their
implications with experimental data. Our model with
heterogeneous connectivity predicts the coexis-
tence of three types of neurons with distinct func-
tions, confirmed by analyzing the neural activity in
the lateral prefrontal cortex (LPFC) of behaving mon-
keys. We obtained a much more distinct classifica-
tion of functional neuron types in the ventral than
the dorsal region of LPFC, suggesting that the action
plan is initially generated in ventral LPFC. Our model
offers a biologically plausible neural circuit architec-
ture that implements good-to-action transformation
during economic choice.

INTRODUCTION

In our daily lives, we often face choices between multiple avail-

able goods. We decide according to our subjective preference,

then perform the necessary action to retrieve the choice outcome

(Padoa-Schioppa and Cai, 2011; Cai and Padoa-Schioppa,

2014, 2019). Neurons in the orbitofrontal cortex (OFC, Brodmann

area 13) encode both pre- (offer value) and post-decision vari-

ables (chosen value and chosen juice), suggesting together

with lesion studies that OFC may be the brain locus for imple-
520 Neuron 103, 520–532, August 7, 2019 ª 2019 Elsevier Inc.
menting economic choice (Padoa-Schioppa and Assad, 2006;

Cai and Padoa-Schioppa, 2014). Importantly, encoding of values

in this area is independent of visuospatial contingencies andmo-

tor responses (Padoa-Schioppa and Assad, 2006; Cai and

Padoa-Schioppa, 2014; Grattan and Glimcher, 2014). Cai and

Padoa-Schioppa (2014) demonstrated that such abstract choice

outcomes encoded in theOFCmaybe transformed into an action

plan (good-to-action transformation) through the lateral prefron-

tal cortex (LPFC), amajor output target of the OFC (Saleem et al.,

2014). In their study, a delay was introduced between presenta-

tion of the offers and the saccade targets, and the spatial location

of theoffers is dissociated from the saccades necessary to obtain

them. A substantial fraction of OFC neurons encoded the choice

outcome, but the encoding was transient and faded away during

the memory period before the saccade targets were revealed to

the animal. Thus, OFC neurons did not appear to maintain the

memory of choice outcome. On the other hand, the choicemem-

ory trace was observed in the LPFC, where neuronal activity un-

dergoes a transition from encoding choice outcome in goods

space to representing the action plan for obtaining the chosen

offer (good-to-action transformation).

In this computational work, we developed and investigated a

neural circuit model for good-to-action transformation that is

not only capable of realizing such transformation in a value-

based decision-making task but also recapitulates the neuronal

dynamics observed in LPFC, which putatively carries out the

transformation. We started out with a minimal circuit model

based on task demand (Figure 1), with two different scenarios

to accomplish the transformation. Scenario I assumes that ulti-

mate action selection takes place in a motor command circuit,

whereas Scenario II posits that action selection is reached

through consensus building in a circuit where good-based

choice signal is integrated with response target input. These

two different scenarios predict the presence of distinct functional

neuron types. Scenario I predicted the presence of visual target

encoding (TG) neurons and motor-like chosen target (CT) neu-

rons, while Scenario II predicts the existence of transition (TS)
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Figure 1. Task Design and Basic Structure

of Neural Circuit Model

(A) The neural circuit model was constructed

based on the behavioral task in Cai and Padoa-

Schioppa (2014). At the beginning of the trial, the

monkey fixated on a center point on the monitor.

After 1.5 s, two offers appeared to the left and right

of the fixation point. The offers were represented

by sets of color squares, with the color indicating

the juice type and the number of squares indi-

cating the juice amount. The offers remained on

the monitor for 1 s, and then they disappeared.

The monkey continued fixating for another 1 s,

after which two saccade targets appeared. The

locations of the saccade targets were randomly

selected on a circle centered on the fixation point

out of 8 possible locations, with the two saccade

targets on opposite sides of the fixation point. The

saccade targets were of different colors corre-

sponding to the colors of the two juices. The

monkey maintained fixation for an additional,

randomly variable delay (0.6–1.2 s) before the

center fixation point was extinguished, which

served as the ‘‘go’’ signal.

(B) Schematic of the circuit model. The working

memory (WM) neuronal population in LPFC re-

ceives chosen juice input. The integration (IN) neuronal population integrate visual input from sensory areas and chosen juice input from WM. Finally, IN pop-

ulation project to readout (RO) population where the chosen target output is sent to the downstreammotor area(s). A filled circle and a ring represent a population

of homogeneous neurons and a ring network, respectively. Different types of arrows stand for different types of synaptic interaction, as specified below the circuit

schematic.

(C) The chosen juice input is presented during offer-on period as currents of different amplitudes.

(D) The visual input is presented as aGaussian-profiled current, which peaks at the direction of the target cue. Note that the two target cues are always opposite to

each other, that is, 180� apart.
(E) Activity profile of the WM module when A is the chosen juice, which exhibits the typical winner-take-all attractor dynamics. The shaded time intervals

correspond to offer-on and target-on periods shown in (A).
neurons, which first encode target location and then transition to

encode chosen target location. However, we found in the LPFC

all three types of neurons, which cannot be produced by Sce-

nario I or II alone. By enriching the circuit model with heterogene-

ity in network connectivity, the enhanced model Scenario III

yielded all three functional neuron types. Moreover, the fraction

of each neuron type produced by the model could match that

in the LPFC. Our model provided a novel, biologically plausible

neural circuit that implements good-to-action transformation

during economic choice. Furthermore, our computational work

provided complimentary evidence that further supports the hy-

pothesis in experimental studies that LPFC, LPFCv in particular,

is a potential neural substrate for transforming choice outcome

into an action plan during economic decision-making.

RESULTS

A Neural Circuit Model of Good-to-Action
Transformation
To investigate the neural mechanism underlying good-to-action

transformation, we developed a neural circuit model based on

the behavioral and neurophysiological data in an economic

choice task that was designed to study such transformation. Fig-

ure 1A shows the design and timeline of the original task (Cai and

Padoa-Schioppa, 2014). At the beginning of the trial, the monkey

fixated on a center point on the monitor. After 1.5 s, two offers
appeared to the left and right of the fixation point. The offers

were represented by sets of colored squares, with the color indi-

cating the juice type and the number of squares indicating juice

amount. The offers remained on the monitor for 1 s, then they

disappeared. The monkey continued fixating on the center point

for another 1 s. At the end of this delay, two saccade targets

appeared (target-on). The locations of the saccade targets

were randomly selected on a circle centered on the fixation point

(eight possible locations), with the two saccade targets on oppo-

site side of the fixation point. The color of the saccade targets

matched those of the squares representing each offer. The mon-

key maintained fixation for a randomly variable period of 0.6–

1.2 s before the center fixation point was extinguished (‘‘go’’

signal), at which point the monkey indicated its choice with a

saccade. The dissociation between the presentation of the offers

and their associated saccade targets provided a window for

observing generation of an action plan from the choice outcome

(Cai and Padoa-Schioppa, 2014).

Our model is a minimal circuit model for implementing the

transformation based on the experimental discoveries. Since in

the monkey experiment, the final action is a saccade to the cho-

sen target located on a circle with a fixed eccentricity, the basic

model circuit has a ‘‘ring’’ structure, where neurons are selective

for a directional angle ranging from 0+ to 360+. Our model has

three modules. The first module is a workingmemory (WM)mod-

ule that maintains the chosen juice signal; the second module
Neuron 103, 520–532, August 7, 2019 521
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BA C Figure 2. Model Scenarios and Circuit Dy-

namics

(A) Model scenarios and circuit dynamics for

Scenarios I and II. In Scenario I ða= 0Þ the inter-

action within rings follows a Gaussian spatial pro-

file, while the interaction between rings has no

spatial dependence. In Scenario II ða = 1Þ, the

interaction within and between rings follows the

same Gaussian profile. The total synaptic weight

within the dual-ring network is conserved in both

scenarios.

(B) Scenario I: spatiotemporal activity pattern of

IN and RO population of the circuit model from

target onset when the chosen target is A, pre-

sented at 90�.
(C) Same as (B) but for Scenario II. Note that there

is a 180� transition of the activity bump in IN-B ring

during 200–400 ms after target onset.

(D) Activity profile of IN-B ring of Scenario II in

different time windows. Early-, mid-, and late-

time windows are defined at 0–200 ms, 200–

400 ms, and 400–600 ms, respectively, after target

onset. The activity bump initially appears at

270�, but then another bump at chosen target

location 90� grows over time and the initial bump is

suppressed.

(E) Effect of between-IN ring excitatory interaction on transition time. We consider three conditions: strong inhibition (J� = � 0:6 nA, J+ = 1:9 nA), reference

(J� = � 0:35 nA, J+ = 1:9 nA), and strong overall excitation (J� = � 0:35 nA, J+ = 2:02 nA). When inhibition is strong, no transition occurs. When excitation is

sufficiently strong, transition takes place at large a. The stronger the excitation and the larger the value of a, the earlier the transition occurs, giving rise to a larger

inversed transition time.

See also Figures S1 and S2.
consists of two integration (IN) rings that integrate the chosen-

juice input and the visual input of saccade target locations;

and the third module is a readout (RO) ring for the final action

plan (Figure 1B). The WM module is modeled by a two-pool at-

tractor network, whereas the IN and RO rings are modeled by

ring networks. As in previous works (Ben-Yishai et al., 1995;

Zhang, 1996; Camperi andWang, 1998; Compte et al., 2000; En-

gel and Wang, 2011), in each ring, neurons are labeled by their

preferred directions. The excitatory connection between a pair

of neurons depends on the difference in their preferred direc-

tions, whereas lateral inhibition is uniform. The detailed network

architecture and parameters are described in STAR Methods.

Inmodel simulation, the chosen juice inputs are presented dur-

ing offer-on as currents of different amplitudes (Figure 1C)

because the chosen juice neurons in OFC exhibit binary activity

patterns (Padoa-Schioppa and Assad, 2006; Cai and Padoa-

Schioppa, 2014). The visual input for each of the two targets is

represented by aGaussian profile current that peaks at the direc-

tion of the target cue (Figure 1D). The two peaks have the same

amplitude and are 180� apart. Here, inputs associated with cho-

sen juice A (B) project to IN-A (IN-B) ring during target-on lasting

for 1 s, which is long enough to reveal the economic choice signal

that had occurred within 0.6 s (minimum target-on duration in the

experiment) after target onset. An example activity profile of the

WMmodule in response to the chosen juice input is shown in Fig-

ure 1E, which exhibits the typical winner-take-all (WTA) attractor

dynamics (Wang, 2002;Wong andWang, 2006). First, we consid-

ered a homogeneous synaptic connectivity model in which the

level of excitatory interaction between the IN rings gave rise to

different subsets of functional neuron types. To define two con-
522 Neuron 103, 520–532, August 7, 2019
trasting scenarios, we introduced the scaling parameter a such

that the ratio of within- to between-ring excitatory contribution

is 1� a=2 to a=2, which implies that the total synaptic weight

within the dual-ring network is constant. First, we tested two

distinct scenarios: (I) no excitatory interaction between the two

IN rings (a = 0); (II) equal strength for between- and within-ring

excitatory interactions (a = 1). Examples of the two scenarios

are displayed in Figures 2B and 2C, when juice A is chosen and

target A is presented at 90+ and B at 270+. In Scenario I, two IN

rings operate independently of one another. An activity bump ap-

pears at 90+ in ring A and at 270+ in ring B.With the stronger juice

signal in A, WTA competition takes place in the downstream RO

ring,which results in the emergence of chosen target signal (loca-

tion of target A) that directs saccade. In Scenario II, the net inter-

action between two neural units with similar preferred direction in

different rings is excitatory. Under such a scenario, the two IN

rings cooperate. In detail, the stronger activity bump in ring A ex-

cites its counterpart in ring B, which, in turn, suppresses the orig-

inal activity bump in B. Such process ismanifested as a transition

of activity bump (Figure 2C). As a result, the chosen target signal

emerges in both IN rings after such transition, thus providing a

parsimonious circuit for good-to-action transformation. We

tested the robustness of the model performance further against

noise by doubling the background noise level sn in the two sce-

narios. As shown in Figure S1, the between-ring coupling in Sce-

nario II gives smaller absolute errors in direction decoding in the

RO ring upon higher noise level and, thus, has the advantage of

enhancing network robustness against noise. Figure 2D shows

the snapshots of the activity profile of the IN-B ring under Sce-

nario II in three different time windows: the early window before



the transition (if any), the mid window during the transition, and

the late window after the transition. The activity bump of the

IN-B ring under Scenario II initially peaks at target B location until

the bump at the opposite direction grows strong enough with the

support of the excitation from ring A to suppress the initial bump,

leading to a transition of the peak and the ultimate emergence of

the chosen target signal.

To examine how the relative strength of within- and between-

ring excitatory interactions may affect transition, we varied a

from zero (within-ring excitation only) to one (equal excitatory

coupling). We used the inverse of transition time 1=Ttran to char-

acterize the transition (see STAR Methods). If the transition does

not happen during target-on, 1=Ttran is set to 0. We considered

three conditions: reference (J = 0.35 nA, J+ = 1.9 nA), stronger

inhibition (J = 0.6 nA, J+ = 1.9 nA), or stronger excitation

(J = 0.35 nA, J+ = 2.02 nA) relative to reference. When inhibition

is strong, no transition occurs during target-on (Figure 2E, blue

triangle and Figure S2, left column). When excitation is suffi-

ciently strong, transition takes place at aR 0.8 (orange ‘‘+’’).

As excitation grows, transition occurs with lower threshold for

a (green ‘‘x,’’ aR 0.7). In general, the stronger the excitation be-

tween the IN ring networks (that is, the larger the value of a), the

earlier the transition occurs (Figure S2), giving rise to a larger

1=Ttran. Therefore, both restricted global inhibition and suffi-

ciently strong excitation set the stage for the cooperation be-

tween the IN rings for the action signal to emerge.

Model Predictions on Functional Neuron Types
In the previous section, we demonstrated how chosen-target-

signal emerges under a particular set of inputs (juice A is chosen

and target A is located at 90+). The time evolution of network ac-

tivities suggests that there are different types of neurons in our

model that may serve different functions during the good-to-ac-

tion transformation. To characterize neurons of potential func-

tional types, we further simulated the model with either juice A

or B chosen and target A located at any of the eight possible lo-

cations. Such simulations enable us to construct tuning curves

for each neuron based on the location and identity of the chosen

target. As a result, Scenario I predicts the existence of visual

target encoding (TG) neurons and motor-like chosen target

(CT) neurons while Scenario II predicts the existence of transition

(TS) neurons, which first encode target locations then transition

to encode the chosen target location.

To characterize the property of the above three functional

neuron types, we analyzed how neurons’ spatial tuning curves

develop as the transformation unfolds. In accordance with Cai

and Padoa-Schioppa (2014), the chosen target signal increases

sharply from 200 to 400 ms after target onset and maintains for a

few hundred milliseconds. In this regard, we considered two

chosen juices (A and B), as well as two time windows (early

and late). The early and late time windows are defined as

0–200 ms and 400–600 ms after target onset, respectively. For

each neuron, we constructed four tuning curves, corresponding

to the following four conditions: juice A chosen, early time win-

dow; juice B chosen, early time window; juice A chosen, late

time window; and juice B chosen, late time window. The spatial

tuning curve was constructed based on the location of target A,

which is the abscissa of the tuning curve (see STARMethods). To
further characterize neurons of different functional significance,

we derived four peak values from the four tuning curves and

constructed four independent peak differences for each neuron

(see STAR Methods). Each neuron can thus be represented

in the 4-dimensional space of peak differences. According to

the model, specific sets of values of the peak differences for

the three functional types of neurons are listed in Figure 3A. Fig-

ures 3B–3D demonstrate the spatial tuning curves as well as the

temporal evolution of the peak of the tuning curves. TG neurons

respond maximally to its preferred direction regardless of which

juice was chosen and the time window considered. The peaks of

the two tuning curves remain invariant over time, and the two

tuning curves completely overlap. CT neurons have different tun-

ing curves for different chosen juice, with their peaks 180+ apart,

but the tuning does not change over time. The peak locations for

the two tuning curves are constant and 180+ apart. Finally, TS

neurons behave like TG neurons in the early window, and CT

neurons in the late time window. There is a 180+ peak location

shift for one of the two tuning curves in the late time window, de-

pending on which IN ring the neuron belongs to. The prediction

of the existence of distinct classes of neurons by the two model

scenarios provided us a reference to examine which scenario

provides a better account for the underlying mechanism of

good-to-action transformation in the LPFC.

At the population level, each of the TG and CT neuron groups

occupies one location in the 4-dimensional space, whereas the

TS neurons occupy two locations depending on whether they

belong to ring IN-A or B. Figure 3E shows the locations of all 3N

(N neurons in each ring) simulated neurons in the three rings of

Scenario I according to the peak differences defined above.

Data points in the 4-dimensional space are projected onto two

2-dimensional sub-spaces for visualization. Clearly, there are

two groups of neurons in the sub-space DLate versus DEarly and

twooverlappinggroups in the sub-spaceDB versusDA. Therefore,

wecan identify twodistinctgroupsofneurons in the4-dimensional

space of peak differences and the counts are 2N for TG neurons

and N for CT neurons (Figure 3F). Similar to Figure 3D, Figure 3G

shows all the neurons under Scenario II. There are three distinct

groups of neurons in the 4-dimensional space. One group corre-

sponds to CT neurons, and the other two groups that overlap in

the subspace of DLate versus DEarly are TS neurons. We labeled

the group of neurons with ðDA;DBÞ located at (180+, 0+) as TS1,

and the other group at (0+,180+) as TS2. TS1 (TS2) neurons belong

to ring IN-B (IN-A) representing targetB (target A) location, and the

peaks of their spatial tuning curveswent through a transitionwhen

A (B) were chosen. Figure 3H illustratesN neurons for each group,

mapped onto each of the three rings with CT neurons on the RO

ring and TS neurons on the two IN rings.

Functional Classification of Neurons in LPFC
It is intriguing that our model predicts that good-to-action trans-

formation can be implemented by the interaction among func-

tional groups of neurons under different model scenarios. Was

LPFC operating under either scenario or a mixture of both? To

answer this question, we performed similar analysis focusing

on the time evolution of tuning curves of 1,078 neurons recorded

from LPFC. We constructed the spatial tuning curves of each

neuron conditioned upon the chosen juice in different time
Neuron 103, 520–532, August 7, 2019 523
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Figure 3. Model Predictions of Functional

Neuron Types

(A) Peak differences for the three functional types

of neurons according to the model. The four

independent peak differences are defined to

characterize the spatial tuning of every neuron

during good-to-action transformation (see STAR

Methods). Note that the peak location of spatial

tuning curves is identified with respect to target A

location. TG neurons encode the location of the

associated target throughout a trial, independent

of whether A or B is chosen; therefore, all peak

differences are 0�. CT neurons carry the chosen

target signal throughout, that is, DA = DB = 0
�
,

whereas the peak differences between the two

tuning curves at different time intervals are 180�.
TS neurons behave like TG in the early stage and

like CT in the late stage. If a TS neuron is in ring A,

its peak location for chosen juice A is constant over

time, giving rise to DA = 0+ (D, orange), while its

peak location for chosen juice B experiences a

180� change (D, blue). Vice versa for a TS neuron in

ring B. Therefore, a TS neuron will take up one of

the two locations in the 4-dimensional space of

peak difference.

(B–D) Left: spatial tuning curves contingent upon

the identity of chosen juice for units in the model

categorized as TG, CT, and TS neurons. Right:

time evolution of the peak location of the spatial

tuning curves of the three neuron types.

(E) Representation of neurons in space of peak

difference according to Scenario I. The 4-dimen-

sional space was decomposed into two 2-dimen-

sional subspaces. Note that the representations of

TG and CT neurons overlap in the subspace DA

versus DB.

(F) Number of different neuron types according to

Scenario I.

(G) Representation of neurons according to Sce-

nario II, as in (E). Note that the representations of

TS1 and TS2 neurons overlap in the subspace

DEarly versus DLate.

(H) Number of different neuron types according to

Scenario II.
windows after target onset. Tuning curves were constructed

from 0 to 700 ms after target onset using a sliding time window

(200 ms) in steps of 50 ms. Tuning curves of example TG, CT,

and TS-like neurons in early (0–200 ms), mid (200–400 ms),

and late (400–600 ms) windows, and the time evolution of their

peaks are shown in Figure 4. The classification of all example

neurons was later verified to be consistent with the outcome

of population-level classification. The time evolution of tuning

peaks displays similar characteristics to that of simulated neu-

rons in Figure 3. Some neurons appear to have two peaks that

are opposite to one another, and, in most cases, one peak has

substantially higher amplitude. For consistency across neurons,

we identified the peak with higher amplitude as the neurons’

preferred spatial direction according to the approach outlined

in STAR Methods. Computational study and analysis on bimo-

dally tuned neurons are presented in the next subsection. Since

spatial tuning is a characteristic feature for neurons in the ring
524 Neuron 103, 520–532, August 7, 2019
model, we applied a four-way ANOVA to identify spatially selec-

tive neurons in LPFC (see STAR Methods). Overall, 665 neurons

were found to be spatially selective, and each of them can be

represented in the 4-dimensional space of peak difference. Fig-

ure 5A shows the distribution of neurons mapped onto 2-dimen-

sional sub-spaces. We applied DBSCAN, an unsupervised

density-based clustering algorithm, to search for clusters in the

4-dimensional space (see STAR Methods). The analysis yielded

four valid clusters, each of which is labeled by a different color

(Figure 5A). The histograms of peak differences also demon-

strate significant bimodal distribution for each of the four dimen-

sions (Figure 5B). Further, we computed the mean and standard

error for data along each dimension, represented by ‘‘x’’s and

ellipses in Figure 5C. The theoretically predicted locations of

neurons are marked with ‘‘+’’s for comparison. Strikingly, the

centers of the four clusters computed from experimental data

match almost perfectly with the four locations predicted by the
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Figure 4. Examples of the Three Neuron Types from LPFC

(A–C) Spatial tuning curves and time evolution of their peak locations of two putative (A) TG neurons, (B) CT neurons, (C) TS neurons. The tuning curves were

constructed by cubic spline interpolation.
model. Importantly, all three types of neurons are well repre-

sented. Fraction for each category is displayed in Figure 5D,

and the number of neurons classified as TG, CT, and TS are 65

(9.8%), 120 (18.0%), and 166 (25.3%), respectively.We repeated

the analysis with stricter classification criteria (Figures S3A–S3C)

or for all 1,078 LPFC neurons (Figures S3D and S3E). In either

case, we obtained qualitatively similar results. As a control, the

same analysis was applied to 1,078 pairs of randomly generated

tuning curves with firing rate values drawn from a uniform distri-

bution. Neither clear pattern nor significant bimodal distribution

of peak differences is observed (Figures S3F and S3G).

Cai and Padoa-Schioppa (2014) reported that during good-

to-action transformation, a spatial- and action-related signal

emerges earlier in LPFCv than that in LPFCd, suggesting
different functional roles of these two LPFC sub-regions. There-

fore, we separated neurons recorded from LPFCv and LPFCd.

For LPFCv, the clustering and the bimodal distribution along

each dimension are very distinct (Figures 6A and 6B), but such

a pattern was much less prominent for LPFCd (Figures 6C

and 6D). To further characterize potential functional difference

between LPFCv and LPFCd, we compared the fraction of

different types of neurons identified through the clustering anal-

ysis based on 395 and 270 spatially selective neurons in LPFCv

and LPFCd, respectively. Proportions of TG, TS, and CT neurons

are all higher in LPFCv (TG 8.0%, TS 19.1%, and CT 12.7%) than

that in LPFCd (TG 3.8%, TS 11.3%, and CT 9.4%), with the

first two showing significant difference in proportion (p < 0.05,

two-sample t test) (Figure 6E). Difference in proportion of all
Neuron 103, 520–532, August 7, 2019 525
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Figure 5. LPFC Neuron Type Classification

(A) Representation of spatially selective neurons in the space of peak differences. The clusters were detected with DBSCAN. Different clusters were represented

by different colors with gray as unclassified. The first example neuron of each functional type in Figure 4 is marked with a black circle.

(B) Histograms for each dimension. The p values indicate the significance of the dip test.

(C) Representation of neuron clusters in peak-difference space. Each ellipse represents one SEM of one cluster. Black pluses indicate theoretically predicted

locations of peak differences for different neuron types, while gray crosses denote the center (mean) for each cluster, which are also the centers of the ellipses.

(D) Fraction of different neuron types among all the recorded LPFC neurons.

See also Figure S3.
neuron types became significant when we performed clustering

analysis with stricter criteria (Figure S4, p < 0.05 for all neuron

types). These results corroborate the findings by Cai and Pa-

doa-Schioppa (2014), which suggested that LPFCv likely plays

a more important role in good-to-action transformation.

Heterogeneity in Network Interactions Reproduces

Heterogeneous Neuron Classes

As our model simulation demonstrated, in Scenario I (Figure 2B),

each of the two IN rings encodes only target location throughout

the trial. In Scenario II (Figure 2C), when juice A was chosen,

the IN-A ring encodes the location of target A, which is also the

chosen target, throughout the trial while IN-B ring initially en-

codes target B location then switches to encode the chosen

target location. The finding that neuron types predicted by

Scenarios I and II coexist in the data suggests that the LPFC

circuit underlying good-to-action transformation may operate

under a hybrid mode of Scenarios I and II, which we named

Scenario III.

Based on the rationale that, physiologically, the connectivity

between neurons is likely to be heterogeneous (Renart et al.,

2003), Scenario III was set by introducing heterogeneity in both

within- and between-ring connectivity, characterized by b (see

STAR Methods). Note that the Gaussian-profiled relationship
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persists, but is noisier. An example connectivity profile of one

neuron to all neurons in the same (top) and opposite ring (bottom)

is illustrated in Figure 7A. The solid line represents the mean

Gaussian-profiled connection strength, and the shaded area

marks one standard deviation from the mean. As a result of

such heterogeneous connectivity, some neurons receive stron-

ger within-ring excitation that supports target encoding, whereas

some receive stronger between-ring excitation that facilitates

transition and thus eventually encode the location of the chosen

target. When juice A was chosen, as shown in Figure 7B, while

the inputs are exactly the same as that in Scenario I, in Scenario

III two activity bumps coexist in ring IN-B after transition, one en-

coding target B location ð270+Þ throughout and the other encod-

ing the chosen target location ð90+Þ. Snapshots of the activity

profile of IN-B ring network at different times after target onset

are presented in Figure S5. Another example simulation is dis-

played in Figure 7C, in which juice B was chosen. In this case,

two activity bumps coexist in the IN-A ring.

To compare the tuning features of the recorded neurons and

those in the circuit model, we performed simulation with various

target input directions and different chosen juices. Some

example spatial tuning curves of simulated neurons that are clas-

sified as TG, CT, and TS neurons and the time evolution of their
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Figure 6. LPFC Neuron Type Classification

Spatially selective neurons in Figure 5C were plotted separately for LPFCv and LPFCd.

(A) Representation of LPFCv neurons in the space of peak difference.

(B) Histograms of LPFCv neuron count for each dimension of peak difference.

(C) Same as (A) but for LPFCd.

(D) Same as (B) but for LPFCd.

(E) Fraction of different neuron types among all recorded neurons in LPFCv and LPFCd. Asterisks indicate significant difference in fraction (p < 0.05, two-sample

t test).

See also Figure S4.
peak locations in different time windows are demonstrated in

Figures 7D–7F. Then, we performed the same clustering analysis

(DBSCAN) based on the activity of the simulated neurons and

identified four valid clusters (Figures 7G and S6). Interestingly,

the centers of the four clusters from simulation match well with

the locations predicted by the theoretical accounts (marked by

‘‘+’’s) of the three functional neuron types produced in Scenarios

I and II. The counts of the three types of neurons are displayed in

Figure 7H. All neurons in the RO ring are CT neurons. As for the

512 neurons in the IN rings, 139 are TG, 336 are TS, 19 are CT,

and 18 are unclassified. The proportion of TG, TS, and CT neu-
rons matches that identified in the LPFC (Figure 5D) when the

level of heterogeneity b is set at the appropriate value (2.5 nA).

Some neurons in the LPFC exhibit substantial bimodal tuning

(Figure 4), whereas the tuning of most model neurons is only

slightly bimodal (Figure 7). Given that the visual input over

preferred direction of model neurons in the IN rings is unimodal

(Figure 4), the bimodal tuning in neurons in the IN rings arises

from the excitatory interaction between the IN rings, while neu-

rons in the RO ring simply sum input from the two IN rings. How-

ever, the excitatory interaction between the IN rings in the model

is not sufficient to account for the bimodal tuning of LPFC
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Figure 7. Effects of Heterogeneity in

Network Interactions on the Properties of

the Circuit Model in Scenario III

(A) An example of interaction profiles within (top)

and between (bottom) IN rings for one neuron in the

ring. Themean interaction strength has a Gaussian

profile and the shaded boundaries correspond to

one standard deviation.

(B) Activity of model neurons when target A which

appeared at 90� was chosen.

(C) Activity of model neurons when target B which

appeared at 270� was chosen.

(D–F) Spatial tuning curves and time evolution of

their peak locations of a TG neuron (D), CT neuron

(E), and TS neuron (F). The tuning curves were

constructed by cubic spline interpolation.

(G) Representation of neuron clusters in peak-dif-

ference space. Each ellipse represents one SEM of

one cluster. Black pluses indicate theoretically

predicted locations of peak differences for

different neuron types, while gray crosses denote

the mean for each cluster or the center of the el-

lipse.

(H) Fraction of different neuron types.

See also Figures S5–S7.
neurons. The LPFC neurons are known to be spatially selective

and flexibly encode task-relevant information. This implies that

a neuron responds whenever a target cue appears at its

preferred direction, and such a response is further modulated

by target color after the establishment of color-juice contin-

gencies. We tested whether such a setting could account for

the bimodal tuning observed in LPFC neurons. To this end, we

used the bimodally tuned input as shown in Figure S7A. Figures

S7B and S7C display the neural activity in the three ring networks

when target A or B is chosen, respectively. Stronger traces of

two coexisting bumps are noted compared with Figures 7B

and 7C. At the single-cell level, the bimodal tuning is also more

obvious (an example TS neuron is shown in Figure S7D). Impor-

tantly, the cluster analysis yielded four clusters at approximately

the same locations in the space of peak differences and similar

fractions of the three groups of neurons (Figures S7E and S7F).

To characterize the degree of bimodal tuning, the maximum
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amplitude of the tuning curve and that at

the diametrical location were plotted for

the LPFC neurons (Figure S7G) and the

model neurons (Figure S7H) in the early

and late time windows. Each data point

represents one neuron’s bimodal tuning

property contingent upon one chosen

juice; therefore, each neuron contributes

two points for each scatterplot. The closer

to the diagonal, the more bimodal the tun-

ing is. In both LPFC and model neurons,

the degree of bimodal tuning spans a

wide range, with stronger bimodality in

the early than late window. These obser-

vations are possibly the consequences

of heterogeneity and convergence of dy-
namics in the IN rings. To conclude, our attractor network model

with Gaussian-profile interacting duo-rings shown in Figure 1A

reproduces the major observations and neuron type statistics

with both unimodal and bimodal visual input.

Effects of Synaptic Interactions on Quantitative

Predictions of Neuron Classes

One important discovery from experimenting with the synaptic

interactions of the circuit model is that synaptic interactions

can give rise to different mechanisms fulfilling good-to-action

transformation. In Scenario I, IN ring networks encode target lo-

cations, and the chosen target signal emerges in the RO ring

network through WTA competition. In Scenario II, neurons in

the IN ring networks first encode target locations then all transi-

tion to encode the chosen target location due to cooperation be-

tween the rings, provided that the synaptic coupling between the

IN rings is sufficiently strong. As shown in the earlier analysis

(Figure 2), without heterogeneity (i.e., synaptic coupling between
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B Figure 8. Effects of Synaptic Interactions on

Quantitative Predictions of Neuron Types

(A) Fraction of TG and TS neurons in the two IN

rings as a function of between-ring excitatory

interaction strength a for homogeneous network

(b = 0, gray) and heterogeneous network (b =

2:5 nA, colored). Heterogeneity in network in-

teractions gives rise to the coexistence of TG and

TS neurons in the two rings. Larger a favors the

existence of TS neurons.

(B) Fraction of TG and TS neurons as a function of

standard deviation of excitatory interaction

strength b at a = 0.9. Higher level of heterogeneity,

as indicated by higher b value, favors the existence

of TG neurons at large a.

(C) Fraction of TG neurons as a function of a and b.

The white line indicates the fraction of TG neurons

equal to 0.28, the fraction observed in experiment.

(D) Fraction of TG and TS neurons as the intrinsic

neuronal heterogeneity k varies. Here, neuronal

heterogeneity is implemented by drawing two

Gaussian-distributed parameters for each neuron.

a and b were set to be 0.9 and 2 nA, respectively.

Higher level of neuronal heterogeneity, as indi-

cated by higher k value, favors the existence of TG

neurons.

See also Figure S8.
any neuron pairs is only dependent on their preferred direction

difference and whether they belong to the same ring), neuronal

activity in the IN rings is homogeneous, which gives rise to either

TG (Scenario I) or TS (Scenario II) neurons, exclusively (see gray

symbols in Figure 8A). On the other hand, in Scenario III with het-

erogeneity in synaptic connectivity, some neurons in the IN ring

networks function as TG neurons while others function as TS

neurons.

An intriguing question is under what condition(s) our model

reproduces functional neuron groups that match quantitatively

those discovered in the data. To approach this question, we

focused on examining how strength a and heterogeneity b of

synaptic coupling govern the dynamics of the circuit model,

which leads to different fractions of TG and TS neurons in the

two IN rings. We discovered that at a significant level of

heterogeneity (b = 2.5 nA), TG and TS neurons coexist (Fig-

ure 8A). As we increase the between-ring synaptic coupling

strength a, the fraction of TG neurons decreases while that of

TS neurons increases. Note that to maintain network stability

given the current set of other model parameters, a needs to

be higher than 0.5; therefore, some data points are omitted

for small a. At the same time, b must remain below 2.75 nA

because strong heterogeneity gives rise to network instability.

We discovered that within the working range of a and b, irre-

spective of the heterogeneity level, increasing a leads to higher

fraction of TS neurons. On the other hand, at a fixed value of a,

increasing b tends to increase the fraction of TG neurons

(Figure 8B). For detailed quantification, we focused on investi-

gating how the fraction of TG depends on a and b (Figure 8C).

In the experimental data, the fraction of TG among the
subpopulation of TG and TS neurons is 0.28. To obtain the

same fraction in the model, the coupling strength a and

the heterogeneity b must covary along the white line in Fig-

ure 8C. The behavior of the model changes gradually along

the line, modulated by a and b. As both a and b increase, stron-

ger traces of transient responses are observed in both individ-

ual TS neurons and the activity bump in the IN ring, without

affecting the fraction. Moreover, with larger b, neural responses

become more heterogeneous, resulting in clusters that are less

distinct.

Furthermore, we investigated the effects of intrinsic neuronal

heterogeneity k (see STAR Methods) on the circuit dynamics

and TG/TS ratio. As demonstrated in Figure 8D, intrinsic

neuronal heterogeneity supports the emergence of TG neurons

in a similar way to network connection heterogeneity does. The

network with heterogeneity in both synaptic connections and

intrinsic neuronal properties recapitulates the clustering of func-

tional neuron groups (Figure S8) as observed in the model with

network heterogeneity alone.

DISCUSSION

Biophysical Plausibility of the Circuit Model
We proposed a circuit model for good-to-action transformation

in an economic choice task. The model comprises three

modules, namelyWM, IN, and ROmodules. The information rep-

resented in our modular circuit model presents mixed coding

properties similar to those observed in the data. Before target

presentation, the memorized choice outcome is maintained by

the WM module; in the meantime, the choice outcome signal
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can also be detected in the INmodule, which receives direct pro-

jection from theWMmodule. Such observation is consistent with

mixed coding of saccade target location and chosen juice iden-

tity in the LPFC under the same task (Cai and Padoa-Schioppa,

2014). The INmodule consists of two ring networks that integrate

chosen juice and target location inputs. Several other studies

also suggested that LPFC, and LPFCv in particular, carries

both spatial information (‘‘where’’) (Rainer et al., 1998; Kennerley

and Wallis, 2009; Hoshi and Tanji, 2004) and object information

(‘‘what’’) (Rainer et al., 1998). In cases when transition occurs,

the IN module also represents the chosen target location, high-

lighting the fact that the IN module can carry information of

multiple task-related features, especially in the presence of

heterogeneity in inter-neuronal connectivity. Such time evolution

of information was also observed in the frontal eye field (FEF)

(Sato and Schall, 2003), a brain region closely associated

with LPFC.

Mechanistically, good-to-action transformation shares simi-

larity with visual search. Both are visuomotor processes

involving visual attention in identifying and saccading to a visual

target. In visual search, attention is guided by rules, and top-

down-attention signal is likely originated from prefrontal areas

such as areas 45A, 12, and 46v (Bichot et al., 2015). In good-

to-action transformation, attention is guided by choice outcome

signal originated in the OFC (Padoa-Schioppa and Assad, 2006;

Cai and Padoa-Schioppa, 2014). Hamker (2005) proposed a

model of visual search involving FEF, ventrolateral prefrontal

(PF) cortex, and the ventral visual pathway. In his model, during

the delay period, memory for visual cues are stored in PF, which

is feature selective but not spatially selective. Once the search

array is on, bottom-up visual input reaches V4, and, at the

same time, PF sends out top-down-attention signal to V4 via

IT. These two streams of signals are integrated in V4, which in

turn sends spatial information to FEF while collapsing the feature

space. However, the property of the PF module in that model is

inconsistent with the observations of the LPFC neurons inte-

grating both stimulus and spatial information (Rainer et al.,

1998; Cai and Padoa-Schioppa, 2014; Tsutsui et al., 2016). In

the meantime, in a visual search task with FEF recordings

(Sato and Schall, 2003), the authors discovered that out of the

65 FEF neurons that discriminated the target from distractors

in pro-saccade trials, 21 of them did not respond to the target

in anti-saccade trials but responded to the endpoint of saccade,

which behave similarly to the CT neurons in our model. Among

the 44 neurons responding to the target in anti-saccade trials,

38 of them also showed transition to responding to the endpoint

of saccade, which resembles the feature of TS neurons. The re-

maining 6 neurons did not undergo transition, which seem to

persistently represent target locations as TG neurons do. Thus,

it seems that the same functional neuron types exist in both

FEF and LPFC, suggesting that a similar circuit mechanism

may be implemented in the FEF during visual search.

Computations with Interactive Ring Networks
Ring network models have been widely adopted in computa-

tional work on visuospatial WM (Compte et al., 2000; Engel

and Wang, 2011), winner-take-all spatial competition (Compte

and Wang, 2006; Furman and Wang, 2008), and representation
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of directional features (Zhang, 1996; Engel and Wang, 2011;

Ardid and Wang, 2013; Engel et al., 2015). In general, the inter-

play between local excitation and global inhibition within a ring

governs the dynamics of the network. Recently, the interaction

between two ring networks has been proposed to be able to ac-

count for the observations in multisensory information segrega-

tion and integration (Zhang et al., 2016a, 2016b). In our model,

the two strongly interacting IN ring networks enable cooperation

between neurons with the same preferred direction but receiving

different sources of input (Scenario II). Such coupling not only al-

lows a more parsimonious circuit for implementing the task but

also enhances robustness of the output against noise. If the be-

tween-ring interaction is weak or non-existent, the two IN ring

networks operate independently, with their dynamics governed

by within-ring interaction (Scenario I). In that case, the target

signal is preserved without being overwritten. In Scenario III,

with heterogeneity in the network connections, the resulting

dynamical activity is a mixture of Scenarios I and II.

Furthermore, without heterogeneity in network connectivity,

an increase in between-ring connection strength a can lead to

an abrupt change of the operating mechanism in the IN module.

As shown in Figure 2E, neurons in the IN ring networks switch

from encoding target location (Scenario I) to representing cho-

sen target location in the end (Scenario II) when a is sufficiently

large. However, such change is gradual with heterogeneity in

network connectivity, rendering the coexistence of TG and TS

neurons. In reality, network connections are heterogeneous

and subject to modifications during learning and adaptation.

To account for the fraction of each neuron type in the LPFC

data, a significant level of heterogeneity in connectivity was

essential. Furthermore, neurons are biophysically diverse and

such intrinsic neuronal diversity can further promote the emer-

gence of TG neurons.

Neural Substrates of Good-to-Action Transformation
The lack of spatial selectivity in the OFC neurons suggests that

OFC computes value and resolves decisions in an abstract way

(Padoa-Schioppa and Assad, 2006; Cai and Padoa-Schioppa,

2014). The discovery that few OFC neurons encode the

choice-outcome (chosen juice) signal during memory period in

an economic choice task further implicates that good-to-action

transformation likely occurs outside of the OFC. The LPFCv, the

ventral subregion of LPFC, is a major anatomical target of the

OFC (Saleem et al., 2014); therefore, the LPFCv likely receives

abstract choice-outcome signals from the OFC (Cai and

Padoa-Schioppa, 2014). LPFCv projects to LPFCd (Markov

et al., 2014; Takahara et al., 2012), which is densely connected

with the motor areas (Takahara et al., 2012). On the other hand,

LPFCv projects strongly to 8m and 8l, both of which are regions

in the FEF associated with oculomotor responses (Markov et al.,

2014). Although spatial- and action-related signals emerge

earlier in LPFCv than in LPFCd, conjunctive coding of choice

outcome and action plan, considered a signature of transforma-

tion, were observed in both regions (Cai and Padoa-Schioppa,

2014). Thus, it was unclear how these two LPFC subregions

might play different roles in good-to-action transformation.

Importantly, conjunctive coding of choice outcome and action

plan only indicates the presence of input and output signals



related to the transformation but does not provide insights

regarding the mechanisms of its implementation.

Guided by our modeling result that good-to-action transfor-

mation was carried out by the interactive double-ring networks

that harbor visual target-encoding and transition neurons, we

analyzed macaque LPFC data from an economic choice task.

First, we discovered that there are more spatially selective neu-

rons in LPFCv. More importantly, a significantly larger fraction of

TG and TS neurons are found in LPFCv than in LPFCd. Together

with the previous findings that all spatial and action-related sig-

nals appeared in LPFCv earlier than that in LPFCd (Hoshi and

Tanji, 2004; Kennerley and Wallis, 2009; Cai and Padoa-

Schioppa, 2014), our results advanced the hypothesis that

LPFCv is likely to be the first stage in the chain of good-to-action

transformation (Cai and Padoa-Schioppa, 2014). Namely, an ac-

tion plan is first formed in LPFCv that drives the allocation of

spatial attention (Asplund et al., 2010; Donahue and Lee,

2015). Such a top-down-attentional signal then informs the

oculomotor areas of the proper action for retrieving the cho-

sen good.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

All experimental data are from Cai and Padoa-Schioppa (2014), where experimental protocol and recording procedures were

described in details. Two rhesus monkeys (B, male, 9.0 kg; L, female, 6.5 kg) were used in the experiments. Briefly, animals sat in

an electrically insulated enclosure (Crist Instruments), their head was restrained, and the eye position was monitored with an infrared

video camera (Eyelink; SR Research). Tungsten electrodes (125 mm diameter, FHC) were advanced using custom-built motorized

microdrives, with a 2.5 micron resolution. Electrical signals were amplified and band-passed filtered (high pass: 300 Hz, low pass:

6 kHz; Lynx 8, Neuralynx). Action potentials were detected online (Power 1,401, Spike 2; Cambridge Electronic Design). All exper-

imental procedures strictly conformed to the NIHGuide for the Care and Use of Laboratory Animals andwith the regulations atWash-

ington University School of Medicine. At the beginning of the trial, themonkey fixated a center point on themonitor, within a tolerance

window of 2+. (In a small subset of sessions, the tolerance was 3+.) After 1.5 s, two offers appeared to the left and right of the fixation

point. The offers were represented by sets of colored squares, with the color indicating the juice type and the number of squares

indicating juice amount. The offers remained on the monitor for 1 s, and then they disappeared. The monkey continued fixating

the center point for another 1 s. (In a subset of sessions for monkey L, this additional delay lasted only 0.5 s.) At the end of this delay,

two saccade targets appeared. The location of the saccade targets was randomly selected on a circle (7+ radius) centered on the

fixation point (eight possible locations), with the two saccade targets on opposite side of the fixation point. The color of the saccade

targets matched those of the squares representing each offer. The monkey maintained fixation for a randomly variable period of 0.6-

1.2 s before the center fixation point was extinguished serving as the ’’go’’ signal, at which point the monkey indicated its choice with

a saccade. In total, 1082 cells were recorded: 561 cells from LPFCv (362 and 199 from monkey B and L, respectively), and 521 cells

from LPFCd (267 and 254 from monkey B and L, respectively). Four of the recorded neurons were omitted from analysis due to very

low firing rate. Based on the MRI and on the sequence of gray and white matter encountered during electrode penetrations, we

defined the regions ventral and dorsal to the fundus of the principal sulcus as LPFCv (9/46v) and LPFCd (9/46d), respectively.

METHOD DETAILS

Neural circuit model
The neural circuit model of the LPFC comprises three interconnected neuronal modules: working memory (WM), integration (IN) and

readout (RO) modules, as shown in Figure 1A. All three are recurrent networks with dynamics governed by local excitation and feed-

back inhibition (Compte et al., 2000;Wang, 2002;Wong andWang, 2006; Engel andWang, 2011). In simulations, a reduced firing-rate

model was used, which has been shown to reproduce neural activity of a full spiking neuronal network (Wong and Wang, 2006). The

dynamics of each neuronal unit is described by a single variable s representing the fraction of activated N-methyl-D-aspartate recep-

tor (NMDA) conductance, governed by

ds

dt
= �s=ts + ð1� sÞgr; (1)

with g = 0.641 and ts = 60 ms. The firing rate r is a function of the total synaptic current I (Abbott and Chance, 2005; Wong and

Wang, 2006):

r = fðIÞ= aI� b

1� exp½ � dðaI� bÞ�; (2)

with a = 270 Hz nA�1, b = 108 Hz and d = 0.154 s.
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The WM module was simulated by a two-variable attractor network model (Wong and Wang, 2006). Each variable represents a

neuronal population (juice A and juice B) that receives inputs ICJ from the corresponding chosen juice (CJ) module in OFC during

offer-on, and maintains the storage of the choice outcome during the delay period because the encoding of chosen juice was

observed in LPFC but not in OFC (Padoa-Schioppa and Assad, 2006; Cai and Padoa-Schioppa, 2014) (see DISCUSSION). The total

current input to unit i of the WM module is given by

IWM
i = J1s

WM
i + J2s

WM
j + ICJi + IWM

n;i ; (3)

where ði; jÞ= ðA;BÞ or ðB;AÞ, with J1 = 0.3725 nA and J2 = �0.1137 nA. ICJi is set to 0.03 nA if juice i is the chosen juice, and 0.015 nA

otherwise. IWM
n;i is the noisy current theWMpopulation i receives. When simulated, activities of the two populations diverge according

to the winner-take-all dynamics, which is achieved through global inhibition and structured recurrent excitation within the attractor

network (Wang, 2002; Wong and Wang, 2006).

As for the ring networks, the synaptic input to a neuronal unit i in the population X originating from the population Y reads:

IY/X
i =

1

NY

X
j˛Y

gY/X
ij sYj ; (4)

where gY/X
ij is the synaptic coupling between the neuron j in the population Y and the neuron i in the population X. The current is

normalized by the number of presynaptic neuronsNY . The two IN and one RO ring networks were each simulated by N = 256 discrete

units with equally spaced preferred directions from 0+ to 360+. The synaptic couplings gij between neurons with preferred directions

qi and qj are symmetric, and have a periodic Gaussian profile. Each IN ring network receives synaptic inputs within the ring as well as

inputs from the other IN ring. For the basic circuit without heterogeneity, within each IN ring network,

gIN�A/IN�A
ij = gIN�B/IN�B

ij =
1

2
J� +

�
1� a

2

�
J+ exp

�
� ðqi � qjÞ2

.
2s2

�
; (5)

whereas between the two IN ring networks,

gIN�A/IN�B
ij = gIN�B/IN�A

ji =
1

2
J� +

1

2
aJ+ exp

�
� ðqi � qjÞ2

.
2s2

�
: (6)

The first terms of the above two equations together give the global inhibition, characterized by J�. The second terms correspond to

the excitation within the dual interacting ring networks, with its maximum strength characterized by J+ . The introduction of a con-

serves the total excitatory synaptic couplings and a determines the strength of between-ring excitatory contribution. Excitatory

contribution in Scenario I (a = 0) comes from within rings, while the excitatory contribution from within rings in Scenario II (a = 1)

is halved, with the rest coming from another ring. In Scenario II, the peak in another ring is located 180+ away so the overall excitation

is weaker relative to Scenario I (the second term in Equation (6) is small when the difference of peak direction is big). a was varied to

reveal the influence of the between-ring interaction, whenever applicable. s, which characterizes thewidth of the interaction profile, is

set to be 43.2�.
Units in the RO ring network receive synaptic inputs within the ring as well as inputs from the two IN ring networks. Within the RO

ring network,

gRO/RO
ij = J� + J+ exp

�
� ðqi � qjÞ2

.
2s2

�
: (7)

As for the projections from the two IN rings, we consider an one-on-one interaction represented by the Kronecker delta

gIN�A/RO
ij = gIN�B/RO

ij = JIRdij; (8)

where dij = 1 if i = j and 0 otherwise. The RO ring network functions as the readout of the circuit. For simplicity, we use the Kronecker

delta, which can be viewed as a Gaussian profile with very small s. JIR is set to be 0.09 nA throughout. Different values of J� and J+

are used for different scenarios because, with different network connectivity structures, different levels of excitation and inhibition are

necessary to maintain the network in an active dynamical state. The values of ðJ�; J+ Þ are set to be (�0.35,2) nA for all three ring

networks in scenarios I and II, and when compared with the dynamics of Scenario II, we additionally explored the effects of stronger

inhibition (J� = � 0:6 nA, J+ = 2 nA) and stronger excitation (J� = -0.35 nA, J+ = 2.02 nA) in Figure 2E. The values of ðJ�; J+ Þ are set

to be (�0.8,2.32) nA when heterogeneity is introduced.

In addition, the two IN ring networks receive CJ-selective input from the WM module as well as spatial- and color-selective input

from the visual pathway IV�A. Therefore, the total synaptic current a neural population i in the IN-A ring receives is given by

IIN�A
i = JWIsWM

A + IV�A
i + IIN�A/IN�A

i + IIN�B/IN�A
i + IIN�A

n;i ; (9)

and similarly for IN-B. JWI is set to be 0.01 nA for homogeneous networks and 0.03 nA for heterogeneous networks. The total synaptic

current a neural population i in the RO ring receives reads:

IROi = IRO/RO
i + IIN�A/RO

i + IIN�B/RO
i + IROn;i : (10)
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Noisy current represents background synaptic inputs and obeys:

tndIn=dt = � ðIn � I0Þ+ ffiffiffiffiffi
tn

p
snhðtÞ; (11)

where hðtÞ is a Gaussian white noise, tn = 2ms, sn = 0.015 nA and IWM
0 = ITG0 = IRO0 = I0. I0 was set to be 0.3197 nA for homogeneous

networks and 0.3297 nA for heteroegenous networks.

The CJ input, potentially projecting from OFC, was modeled by a two-level constant current during offer-on period as shown in

Figure 1B: ICJ = 0:03 nA if the corresponding juice is chosen, and ICJ = 0:015 nA otherwise. The input for each target cue from the visual

area was presented as a Gaussian-profiled current which peaks at the direction of the target cue (qA for juice A and qB for juice B), and

such input is both spatial and color-selective:

IV�A
i = JVexp

�
� ðqi � qAÞ2

.
2s2

�
; (12)

and similarly for IV�B. JV was set to be 0.1 nA. Note that the two target cues are always opposite to each other, thus the peaks of the

input currents are 180+ apart, that is, jqA � qB j = 180+.

Parameters for neural units and networks used in simulations are shown in Tables S1 and S2.

Heterogeneity in network connectivity and biophysical properties of neurons
In Scenario III, synaptic heterogeneity is introduced in the connectivity of both within and between the two IN ring networks. This was

achieved by adding an extra term bR to the synaptic couplings in Equations (5) and (6), where b is the standard deviation of the

coupling and R � N ð0; 1Þ is a random number drawn from a normal distribution. bwas set at different values for different conditions

(see Table S2).

The most crucial neuronal parameters that capture the dynamics of a heterogeneous neuronal population are the baseline current

I0 and the standard deviation of the input noise sn (Yim et al., 2013). Therefore, neuronal intrinsic heterogeneity is implemented in the

network by drawing those two parameters from Gaussian distributions for each neuron in the two IN ring networks. Here the mean of

both parameters is set to be the same as that of the homogeneous neurons whereas the standard deviation of the two Gaussian dis-

tributions is varied in the same fashion, which scales linearly with k. More explicitly, the baseline current and the standard deviation of

the input noise are I0 + kR1 and sn + kR2, respectively, whereR1;R2 � N ð0;1Þ. The standard deviation of network connectivity b is set

to be 2 nA.

Bimodal visual input
The visual input is presented as a Gaussian-profiled current which has a major peak at the direction of its target cue and a smaller

peak at the direction of the other target cue, located at the opposite direction (Figure S7A). Such input for juice A is given by

~I
V�A

i = JV
h
exp

�
� ðqi � qAÞ2

.
2s2

�
+ 0:93 exp

�
� ðqi � qBÞ2

.
2s2

�i
: (13)

To characterize the bimodal tuning in LPFC neurons, we consider the amplitude of their tuning curve at the direction opposite to the

maximum versus the maximum. The closer to the diagonal, the more bimodal the tuning curve is. The parameters in Figure 7 are

adopted except the followings for better performance and visual effect: J� = �1.6 nA, J+ = 2.5 nA, JWI = 0.05 nA, JV = 0.243 nA,

I0 = 0.31 nA, a = 0.3 and b = 2.0 nA.

Simulation protocol
In accordance with the economic choice task in Cai and Padoa-Schioppa (2014), each simulation trial starts with a 1.5 s fixation

period (no visual andCJ inputs), followed by a 1 s presentation of the offer cueswhen theWMmodule receives the chosen juice input.

Following the offer period is a 1 s delay period when offer cues were turned off. After that, two visual targets were presented for 1 s

during which the two IN ring networks receive the spatially selective visual inputs. Simulations were performed using a customized

code written in Python implementing Heun integration with a time step of 0.5 ms.

QUANTIFICATION AND STATISTICAL ANALYSIS

Direction decoding for circular data
In this study, both the direction encoded by a ring network ofN neural units and the preferred direction of a neural unit (i.e., peak of its

tuning curve) are circular. To read out such encoded or preferred direction, we defined the following complex quantity z for the di-

rection-dependent data (Wimmer et al., 2014):

z = zei4 =

PK�1
j =0 xje

iqj

PK�1
j =0 xj

; (14)

where z is the modulus and 4 is the encoded or preferred direction, respectively. In case of a ring network, K =N and xj is the mean

firing rate of neural unit j during the time window considered, which has a preferred direction at qj = j=N3 360+. Whereas in case of a
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neural unit, K = 8, xj is the mean spike count during the time window considered in response to target A location qj = j3 45+. How-

ever, the ring networks in this task are likely to develop two activity bumps opposite to each other due to simultaneous presentation of

two visual targets.We aim to identify the peakwith higher amplitude as the index of each neuron’s tuning characteristics as the bigger

peak would more likely be the chosen target location in the downstream circuit. Similar to neurons in the model, some of the tuning

curves of the recorded LPFC neurons (Cai and Padoa-Schioppa, 2014) have double peaks opposite to each other. We accommo-

dated such condition by introducing to Equation (14) an additional parameter m

zðmÞ = zðmÞei4ðmÞ =

PK�1
j = 0 e

imqj

PK�1
j = 0 xj

where m= 1;2: (15)

The numerator is them-th trigonometric moment of the circular data (Berens, 2009). The quantity is proportional to the coefficient

of the discrete Fourier series of xj. This formula with m= 2 has been used as the orientation selectivity index (Ringach et al., 2002;

Scholl et al., 2013). We considerm up to two because the activity profiles in this study have either single or double peaks. To decode

the direction of maximal activity, we compare zð1Þ and zð2Þ, which are the ‘‘strength’’ of the corresponding moment. If zð1Þ is bigger,
we take 4ð1Þ as the decoded direction. If zð2Þ is bigger, we compare 4ð2Þ=2 and ð4ð2Þ=2Þ + 180+, and select the one closer to 4ð1Þ as
the decoded direction (Ringach et al., 2002).

To track the peak of a neuron’s tuning curve during good-to-action transformation, we constructed the tuning curve of each neuron

based on target A location, and computed its peak for each chosen juice after target onset in a sliding time window of 200 ms with

50 ms steps.

Transition time
To determine the transition time of the activity bump in a ring network, we compute the decoded direction as described in the section

above at every 1 ms time point during target-on using a sliding time window of 200 ms and look for the time of sharp transition when

the change of decoded direction from the previous sliding window is larger than 90�. Ttran is the center of the corresponding 200 ms

sliding window.

Representation and clustering of neurons in space of peak differences
The chosen target signal, revealed in the explained variance in ANOVA analysis, rose up steadily from 150 ms to 350 ms after target

onset (Cai and Padoa-Schioppa, 2014). To characterize the spatial tuning of neurons during good-to-action transformation, we

defined the early and late window as 0-200 ms and 400-600 ms after target onset, respectively. At the population level, the early win-

dow captures mostly the target signal whereas the late window contains largely the chosen target information (Cai and Padoa-

Schioppa, 2014). We grouped neural activity according to the time window (early or late) and chosen juice (A or B) thus derived

four tuning curves and subsequently four peak values for each neuron, namelyPA
Early,P

B
Early ,P

A
Late andPB

Late, based on target A location.

The peak value can range from 0� to 360�, while according to the model prediction, the peak differences are more stereotyped and

suitable for characterizing different types of neurons. Therefore, we defined four independent peak differences:
8>>><
>>>:

DEarly =PB
Early � PA

Early

DLate =PB
Late � PA

Late

DA =PA
Late � PA

Early

DB =PB
Late � PB

Early

(16)

where DEarly;DLate;DA;DB˛½ � 90+;270+�. Every neuron can be represented in the 4-dimensional space of peak differences.

We applied DBSCAN (Density-based spatial clustering of applications with noise), an unsupervised density-based data clustering

algorithm to identify clusters in the 4-dimensional space. In brief, a point p is a core point if at least nmin points arewithin distance e, the

maximum radius of the neighborhood from p. These data points are said to be directly reachable from p. If p is a core point, then it

forms a cluster together with all points that are reachable from it. For details, see https://en.wikipedia.org/wiki/DBSCAN and Ester

et al. (1996). There are two free parameters, e and nmin. We applied a self-defined criteria that a valid cluster must have at least 5% of

the total neuron number. There are 1078 valid LPFC neurons, 665 spatially selective LPFC neurons and 768 simulated neurons so the

minimum valid cluster size is set to be 54, 34 and 39, respectively. We selected e= 65+ and nmin = 20 for the spatially selective LPFC

data (Figure 5). Additionally, we applied stricter clustering criteria by setting e to a smaller value 55+ (Figures S3A–S3C and S4A-C),

that is, the same nmin data points have to be detected in a smaller volume for a cluster to be valid. For simulation, the parameter set

that best satisfied the above criteria for all simulations were found to be e= 50+ and nmin = 20.

Hartigan’s dip test
The null hypothesis of the test is that the distibution is unimodal (Hartigan and Hartigan, 1985). The uniform distribution is the asymp-

totically least favorable unimodal distribution. The corresponding significance test implemented by Nic Price (the MATLAB code is

available at http://www.nicprice.net/diptest/) was adopted to calculate the DIP statistic from the empirical probability density func-

tion (PDF), followed by a bootstrap sample of the dip statistic for a uniform PDF of the same size as empirical PDF. A distibution with

p-value less than 0.05 is considered significantly distinct from a unimodal distribution.
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Spatial selectivity
The spatial selection analysis was conducted using the same approach as in a previous study (Cai and Padoa-Schioppa, 2014). We

consider the 600ms after target onset, which is also theminimumduration before the ‘‘go’’ signal. To examine how spatial and action-

related factors contribute to the activity of neurons in LPFCv/d, we proceeded as follows. First, we identified for each cell the

preferred hemifield using a subset of trials (approximately 20%, with high chosen value). We then submitted each cell to a four-

way ANOVA with factors chosen juice, chosen value, orientation, and hemifield of A, including all the interactions. For this analysis,

the factor chosen value was reduced to a binary variable, high or low compared to the median. The factor orientation was a categor-

ical variable with four levels (since there were eight possible target locations and two targets always appeared in opposite locations,

there were four possible orientations). The factor hemifield of A was a binary variable depending on whether target A was in the cells

preferred or antipreferred hemifield. Neurons are considered to be spatially selective if p-value is smaller than 0.01 for at least one of

the following spatial factors or interactions: orientation, hemifield of A, orientation3 hemifield of A, hemifield of A3 chosen juice and

orientation3 hemifield of A3 chosen juice.

DATA AND CODE AVAILABILITY

Software for modeling and data analysis is written in Python andMATLAB. Requests for source code and data should be directed to

our Lead Contact.
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Figure S1. Absolute error in direction decoding in the RO ring at di↵erence noise level. Related

to Figure 2

S1 and S2 correspond to Scenarios I and II respectively. Low refers to reference noise level �n = 0.015

and high refers to higher noise level �n = 0.03. For each condition, 5 trials for every target direction

were performed so there were 80 trials in total (marked with gray crosses). The black diamond indicates

the mean for each condition. The network model in Scenario II is more robust to noise due to the

between-ring coupling.
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Figure S2. Spatiotemporal activity pattern of IN-B population of the circuit model when the

chosen target is A, presented at 90
�
. Related to Figure 2

From left to right, three conditions in Figure 2 E are considered: strong inhibition (J� = �0.6 nA,

J+ = 1.9 nA), reference (J� = �0.35 nA, J+ = 1.9 nA) and strong excitation (J� = �0.35 nA,

J+ = 2.02 nA). From top to bottom, the value of ↵ increases from 0 to 1 in step of 0.1.
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Figure S3. Representation of all recorded neurons in comparison with random tuning curves.

Related to Figure 5

(A-C) LPFC neuron type classification using stricter classification criteria. Same as Figure 5 but the

clustering analysis was performed with stricter criteria (✏ = 55�).
(D) Representation of all recorded neurons in the space of peak di↵erences.

(E) Histograms of neuron count for each dimension. The p-values indicate the significance of dip test.

(F) For comparison, 1078 pairs of randomly generated tuning curves with firing rate values drawn from

a uniform distribution were generated and represented in the 4-dimensional space of peak di↵erences.

(G) Histograms of the neuron count for each dimension of peak-di↵erence. The p-values represent the
significance of the dip test.
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Figure S4. Comparison of neuron type classification between LPFCv and LPFCd using stricter

classification criteria. Related to Figure 6

All spatially selective neurons in Figure S3A were plotted separately for LPFCv and LPFCd.

(A) Representation of LPFCv neurons in the space of peak di↵erences.

(B) Representation of LPFCd neurons in the space of peak di↵erences.

(C) Fraction of di↵erent types of neurons among spatially selective ones in LPFCv and LPFCd. Asterisks

indicate p < 0.05 (two-sample t-test).
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Figure S5. Snapshots of the activity profiles of IN-A and IN-B rings in a model simulation.

Related to Figure 7

Snapshots of IN rings’ activity in Figure 7 are taken at 10, 100, 200, 300, 400 and 500 ms after target

onset. Here A is the chosen target. At t =10 ms, the activity profiles of the two IN rings peak at their

respective target location. As time evolves, the activity bump in the IN-A ring grows to a steady value,

whereas the IN-B ring has two bumps: the original bump is maintained and another emerges at the

chosen target location.
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Figure S6. Classification of neurons from a model simulation with heterogeneous interactions.

Related to Figure 7

(A) Representation of simulated neurons in the space of peak-di↵erence. The clusters were identified

with DBSCAN. Di↵erent clusters were represented by di↵erent colors with gray as unclassified.

(B) Histograms of spatially selective neurons for each dimension of peak-di↵erence.
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Figure S7. Model neurons in response to bimodal visual input. Related to Figure 7

(A) The visual input is presented as a Gaussian-profiled current which has a major peak at the direction

of its target cue and a smaller peak at the direction of the other target cue, located at the opposite

direction (compared with Figure 1D).

(B) Activity of model neurons when target A which appeared at 90
�
was chosen.

(C) Activity of model neurons when target B which appeared at 270
�
was chosen.

(D) Spatial tuning curves and time evolution of their peak location of a TS neuron. The tuning curves

were constructed by cubic spline interpolation.

(E) Representation of neuron clusters in peak-di↵erence space. Each ellipse represents one SEM of one

cluster. Black pluses indicate theoretically predicted locations of peak di↵erences for di↵erent neuron

types, while gray crosses denote the mean for each cluster, or the center of the ellipse.

(F) Fraction of di↵erent neuron types.

(G-H) Amplitude of the tuning curve at the direction opposite to the maximum versus the maximum

for LPFC neurons (G) and model neurons (H). The black dashed line marks the diagonal.
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Figure S8. E↵ects of intrinsic neuronal heterogeneity on circuit properties. Related to Figure 8

Here neuronal heterogeneity is implemented by drawing two Gaussian-distributed parameters for each

neuron. The two parameters are the baseline current and the standard deviation of the input noise,

with the mean set to be the same as that of the homogeneous neurons. The standard deviation of the

distribution  is varied in the same fashion. Network heterogeneity strength � is set to be 2 nA.

(A) Representation of simulated neurons in the space of peak-di↵erence at  = 0.025. The clusters were
identified with DBSCAN. Di↵erent clusters were represented by di↵erent colors with gray as unclassified.

(B) Number of di↵erent types of neurons.

8



Table S1. Parameters for Neural Units and Networks Used in All Simulations. Related to

STAR Methods

Symbol Value Unit Description
� 0.641 - Scaling constant of gating variable of NMDA receptors
⌧s 60 ms Time constant of NMDA receptor-mediated synaptic current
a 270 Hz nA�1 Gain factor of total synaptic input in input-output function
b 108 Hz Threshold current in input-output function
d 0.154 s Noise factor in input-output function
J1 0.3725 nA E↵ective self-coupling constant in WM module, excitatory
J2 -0.1137 nA E↵ective mutual-coupling constant in WM module, inhibitory
ICJ 0.03 or 0.015 nA CJ input current into WM module
N 256 - Number of discrete units in ring networks
� 43.2 � Width of interaction profile in ring networks
J IR 0.09 nA E↵ective coupling constant from IN to RO
⌧n 2 ms Time constant for background synaptic input
�n 0.015 nA Scaling constant for standard deviation of background synaptic input
JV 0.1 nA Peak current from visual input

Table S2. Parameters for Neural Units and Networks Used in Di↵erent Scenarios. Related to

STAR Methods

Symbol Scenario I Scenario II Fig 7 Fig 8D Unit Description
J� -0.35 -0.35 -0.8 -0.8 nA (Mean) e↵ective coupling for inhibition
J+ 2 2 2.32 2.32 nA (Mean) e↵ective coupling for excitation
JWI 0.01 0.01 0.03 0.03 nA E↵ective coupling constant from WM to IN
I0 0.3197 0.3197 0.3297 0.3297 nA Mean background synaptic input
↵ 0 1 0.9 0.9 - Between-ring synaptic coupling strength
� 0 0 2.5 2 nA Standard deviation of network connectivity
 0 0 0 0.025 nA Intrinsic neuronal heterogeneity
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