
ll
Primer

Artificial Neural Networks
for Neuroscientists: A Primer
Guangyu Robert Yang1,* and Xiao-Jing Wang2,*
1Center for Theoretical Neuroscience, Columbia University, New York, NY, USA
2Center for Neural Science, New York University, New York, NY, USA
*Correspondence: robert.yang@columbia.edu (G.R.Y.), xjwang@nyu.edu (X.-J.W.)
https://doi.org/10.1016/j.neuron.2020.09.005

SUMMARY

Artificial neural networks (ANNs) are essential tools in machine learning that have drawn increasing attention
in neuroscience. Besides offering powerful techniques for data analysis, ANNs provide a new approach for
neuroscientists to build models for complex behaviors, heterogeneous neural activity, and circuit connectiv-
ity, as well as to explore optimization in neural systems, in ways that traditional models are not designed for.
In this pedagogical Primer, we introduce ANNs and demonstrate how they have been fruitfully deployed to
study neuroscientific questions. We first discuss basic concepts and methods of ANNs. Then, with a focus
on bringing this mathematical framework closer to neurobiology, we detail how to customize the analysis,
structure, and learning of ANNs to better address a wide range of challenges in brain research. To help
readers garner hands-on experience, this Primer is accompanied with tutorial-style code in PyTorch and
Jupyter Notebook, covering major topics.
1. ARTIFICIAL NEURAL NETWORKS IN NEUROSCIENCE

Learning with artificial neural networks (ANNs), or deep learning,

has emerged as a dominant framework in machine learning

nowadays (LeCun et al., 2015), leading to breakthroughs across

a wide range of applications, including computer vision (Krizhev-

sky et al., 2012), natural language processing (Devlin et al.,

2018), and strategic games (Silver et al., 2017). Some key ideas

in this field can be traced to brain research: supervised learning

rules have their roots in the theory of training perceptrons, which,

in turn, was inspired by the brain (Rosenblatt, 1962); the hierar-

chical architecture (Fukushima and Miyake, 1982) and convolu-

tional principle (LeCun and Bengio, 1995) were closely linked to

our knowledge about the primate visual system (Hubel and Wie-

sel, 1962; Felleman and Van Essen, 1991). Today, there is a

continued exchange of ideas from neuroscience to the field of

artificial intelligence (Hassabis et al., 2017).

At the same time, machine learning offers new and powerful

tools for systems neuroscience. One utility of the deep learning

framework is to analyze neuroscientific data (Figure 1). Indeed,

the advances in computer vision, especially convolutional neu-

ral networks, have revolutionized image and video data pro-

cessing. For instance, uncontrolled behaviors over time, such

as micro-movements of animals in a laboratory experiment,

can now be tracked and quantified efficiently with the help of

deep neural networks (Mathis et al., 2018). Innovative neuro-

technologies are producing a deluge of big data from brain

connectomics, transcriptome, and neurophysiology, the ana-

lyses of which can benefit from machine learning. Examples

include image segmentation to achieve detailed, micrometer

scale, reconstruction of connectivity in a neural microcircuit

(Januszewski et al., 2018; Helmstaedter et al., 2013), and esti-
1048 Neuron 107, September 23, 2020 ª 2020 Elsevier Inc.
mation of neural firing rate from spiking data (Pandarinath

et al., 2018).

This Primer will not be focused on data analysis; instead, our

primary aim is to present basic concepts and methods for the

development of ANN models of biological neural circuits in the

field of computational neuroscience. It is noteworthy that

ANNs should not be confused with neural network models in

general. Mathematical models are all ‘‘artificial’’ because they

are not biological. We denote by ANNs specifically models that

are in part inspired by neuroscience yet for which biologically

justification is not the primary concern, in contrast to other types

of models that strive to be built on quantitative data from the two

pillars of neuroscience: neuroanatomy and neurophysiology.

The use of ANNs in neuroscience (Zipser and Andersen, 1988)

and cognitive science (Cohen et al., 1990) dates back to the early

days of ANNs (Rumelhart et al., 1986). In recent years, ANNs are

becoming increasingly commonmodel systems in neuroscience

(Yamins and DiCarlo, 2016; Kriegeskorte, 2015; Sussillo, 2014;

Barak, 2017). There are three reasons for which ANNs or deep

learning models have already been, and will likely continue to

be, particularly useful for neuroscientists.

First, fresh modeling approaches are needed to meet new

challenges in brain research. Over the past decades, computa-

tional neuroscience has made great strides and become an inte-

grated part of systems neuroscience (Abbott, 2008). Many in-

sights have been gained through integration of experiments

and theory, including the idea of excitation and inhibition balance

(van Vreeswijk and Sompolinsky, 1996; Shu et al., 2003) and

normalization (Carandini and Heeger, 2011). Progress was also

made in developing models of basic cognitive functions, such

as simple decision making (Gold and Shadlen, 2007; Wang,

2008). However, real-life problems can be incredibly complex;

mailto:robert.yang@columbia.edu
mailto:xjwang@nyu.edu
https://doi.org/10.1016/j.neuron.2020.09.005
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuron.2020.09.005&domain=pdf

ChoiceStimulus

roivaheb xelpmoc gniledoMsloot sisylana ataD

Modeling complex activity An optimization perspective

Model space

Optimization

Objective
Architecture

Figure 1. Reasons for Using ANNs for
Neuroscience Research
(Top left) Neural/Behavioral data analysis. ANNs
can serve as image processing tools for efficient
pose estimation (color dots). Figure inspired by
Nath et al. (2019).
(Top right) Modeling complex behaviors. ANNs can
perform object discrimination tasks involving chal-
lenging naturalistic visual objects. Figure adapted
from Kar et al. (2019).
(Bottom left) Illustrating that ANNs can be used to
model complex neural activity/connectivity pat-
terns (blue lines).
(Bottomright)Understandingneural circuits froman
optimization perspective. In this view, functional
neural networks (star symbol) are results of the
optimization (arrows) of an objective function in an
abstract spaceof amodel constrainedby theneural
network architecture (colored space).

ll
Primer
the underlying brain systems are often difficult to capture with

‘‘hand-constructed’’ computational models. For example, object

classification in the brain is carried out through many layers of

complex linear-nonlinear processing. Building functional models

of the visual systems that achieve behavioral performance close

to that of humans remained a formidable challenge not only for

neuroscientists but also for computer vision researchers. By

directly training neural network models on complex tasks and

behaviors, deep learning provides a way to efficiently generate

candidate models for brain functions that otherwise could be

near impossible to model (Figure 1). By learning to perform a va-

riety of complex behaviors of animals, ANNs could serve as po-

tential model systems for biological neural networks, comple-

menting nonhuman animal models for understanding the

human brain.

A second reason for advocating deep networks in systems

neuroscience is the acknowledgment that relatively simple

models often do not account for a wide diversity of activity pat-

terns in heterogeneous neural populations (Figure 1). One can

rightly argue that this is a virtue rather than a defect because

simplicity and generality are hallmarks of good theories. How-

ever, complex neural signals also tell us that existing models

may be insufficient to elucidate mysteries of the brain. This is

perhaps especially true in the case of the prefrontal cortex. Neu-

rons in prefrontal cortex often show complex mixed selectivity to

various task variables (Rigotti et al., 2010, 2013). Such complex

patterns are often not straightforward to interpret and under-

stand using hand-built models that by design strive for simplicity.

ANNs are promising to capture the complex nature of neural

activity.

Third, besides providingmechanistic models of biological sys-

tems,machine learning can be used to probe the ‘‘why’’ question

in neuroscience (Barlow, 1961). Brains are biological machines

evolved under pressure to compute robustly and efficiently.

Even when we understand how a system works, we may still

askwhy it works that way. Similar to biological systems evolving

to survive, ANNs are trained to optimize objective functions given
various architectural constraints (the number of neurons, econ-

omy of circuit wiring, etc.) (Figure 1). By identifying the particular

objective and set of constraints that lead to brain-resembling

ANNs, we could potentially gain insights into the evolutionary

pressure faced by biological systems (Richards et al., 2019).

In this pedagogical Primer, we will discuss how ANNs can

benefit neuroscientists in the three ways described above. In

section 2, we will first introduce the key ingredients common in

any study of ANNs. In section 3, we will describe two major ap-

plications of ANNs as neuroscientific models: convolutional net-

works as models for sensory, especially visual, systems and

recurrent neural networks as models for cognitive and motor

systems. In sections 4 and 5, we will overview how to customize

the analysis and architectural design of ANNs to better address a

wide range of neuroscience questions. To help the readers gain

hands-on experience, we accompany this Primer with tutorial-

style code in PyTorch and Jupyter Notebook (https://github.

com/gyyang/nn-brain), covering all major topics.

2. BASIC INGREDIENTS AND VARIATIONS IN ANNs

In this section, we will introduce basic concepts in ANNs and

their common variations. Readers can skip this section if they

are familiar with ANNs and deep learning. For a more thorough

introduction, readers can refer to Goodfellow et al. (2016).

2.1. Basic Ingredient: Learning Problem, Architecture,
and Algorithm
A typical study using deep networks consists of three basic in-

gredients: learning problem, network architecture, and training

algorithm. Weights of connections between units or neurons in

a neural network are constrained by the network architecture,

but their specific values are randomly assigned at initialization.

These weights constitute a large number of parameters, collec-

tively denoted by q, which also includes other model parameters

(see below), to be trained using an algorithm. The training algo-

rithm specifies how connection weights change to better solve
Neuron 107, September 23, 2020 1049

https://github.com/gyyang/nn-brain
https://github.com/gyyang/nn-brain

BA

DC

Width

H
eight

Channels

Shared weights

Kernel size (Height, Width)

Figure 2. Schematics of Common Neural Network Architectures
(A) A multi-layer perceptron (MLP).
(B) A recurrent neural network (middle) receives a stream of inputs (left). After training, an output unit (right) should produce a desired output. Figure inspired by
Mante et al. (2013).
(C) A recurrent neural network is unrolled in time as a feedforward system with each layer corresponding to the network state at one time step. ct and rt describe
the network state and output activity at time t, respectively. ct is a function of rt�1 and the input xt.
(D) A convolutional neural network for processing images. Each layer contains a number of channels (four in layer 1, six in layer 2). A channel (represented by a
square) consists of spatially organized neurons, each receiving connections from neuronswith similar spatial preferences. The spatial extent of these connections
is described by the kernel size. Figure inspired by LeCun et al. (1998).

ll
Primer
a learning problem, such as to fit a dataset or perform a task. We

will go over a simple example in which a multi-layer perceptron

(MLP) is trained to perform a simple digit classification task using

supervised learning.

Learning Problem

In supervised learning, a system learns to fit a dataset contain-

ing a set of inputs x ið Þ� �
; i = 1;/;N. Each input x ið Þ is paired with

a target output y
ið Þ
target. Symbols in bold represent vectors (col-

umn vectors by default). The goal is to learn parameters q of

a neural network function F $; qð Þ that predicts the target out-

puts given inputs, y ið Þ = F x ið Þ; q
� �

zy
ið Þ
target. In the simple digit-

classification task MNIST (LeCun et al., 1998), each input is

an image containing a single digit, while the target output is a

probability distribution over all classes (0, 1, ., 9) given by a

ten-dimensional vector or simply an integer corresponding to

the class of that object.

More precisely, the system is trained to optimize the value of

an objective function or, commonly, minimize the value of a

loss function L= 1
N

P
iL y ið Þ; y ið Þ

target

� �
, where L y ið Þ; y ið Þ

target

� �
quan-

tifies the difference between the target output y
ið Þ
target and the

actual output y ið Þ.
Network Architecture

ANNs are incredibly versatile, including a wide range of architec-

tures. Of all architectures, the most fundamental one is an MLP

(Rosenblatt, 1958, 1962) (Figure 2A). AnMLP consists of multiple

layers of neurons, where neurons in the l-th layer only receive in-

puts from the ðl � 1Þ-th layer and only project to the

ðl + 1Þ-th layer.
1050 Neuron 107, September 23, 2020
r 1ð Þ = x; (Equation 1)

r lð Þ = f W lð Þr l�1ð Þ +b lð Þ
� �

; 1< l <N; (Equation 2)

y =W Nð Þr N�1ð Þ +b Nð Þ: (Equation 3)

Here, x is an external input, r lð Þ denotes the neural activity of

neurons in the l-th layer, and W lð Þ is the connection matrix from

the ðl � 1Þ-th to the l-th layer. fð $Þ is a (usually nonlinear) activa-

tion function of the model neurons. The output of the network is

read out through connectionsW Nð Þ. Parameters b lð Þ and b Nð Þ are
biases for model neurons and output units, respectively. If

the network is trained to classify, then the output is often

normalized such that
P

jyj = 1, where yj represents the predicted

probability of class j.

When there are enough neurons per layer, MLPs can, in the-

ory, approximate arbitrary functions (Hornik et al., 1989). How-

ever, in practice, the network size is limited, and good solutions

may not be found through training even when they exist. MLPs

are often used in combination with, or as parts of, more modern

neural network architectures.

Training Algorithm

The signature method of training in deep learning is stochastic

gradient descent (SGD) (Robbins and Monro, 1951; Rumelhart

et al., 1986). Trainable parameters, collectively denoted as q,

are updated in the opposite direction of the gradient of the

loss, vL=vq. Intuitively, the j-th parameter qj should be reduced

ll
Primer
by training if the cost function L increases with it and increased

otherwise. For each step of training, because it is usually too

expensive to evaluate the loss using the entire training set, the

loss is computed using a small number M of randomly selected

training examples (a minibatch), indexed by B= fk1;/;kMg,

Lbatch =
1

M

X
k˛B

L y kð Þ; y kð Þ
target

� �
; (Equation 4)

hence the name ‘‘stochastic.’’ For simplicity, we assume a mini-

batch size of 1 and omit batch in the following equations (Lbatch
will be referred to as L, etc.). The gradient, vL=vq, is the direction

of parameter change that would lead to themaximum increase in

the loss function when the change is small enough. To decrease

the loss, trainable parameters are updated in the opposite direc-

tion of the gradient, with amagnitude proportional to the learning

rate h,

Dq= � h
vL

vq
: (Equation 5)

Parameters such as W and b are usually trainable. Other pa-

rameters are set by the modelers and called hyperparameters,

for example, the learning rate h. A crucial requirement for

computing gradients is differentiability—namely, derivatives of

functions in the model are well defined.

For a feedforward network without any intermediate (hidden)

layer (Rosenblatt, 1962), processing a single example x (mini-

batch size 1),

y =Wx +b; or equivalently; yi =
X
j

Wijxj +bi; (Equation 6)

computing the gradient is straightforward,

vL

vWij

=
X
k

vL

vyk

vyk
vWij

=
vL

vyi
xj; (Equation 7)

with vyk=vWij equal to xj when k = i, otherwise 0. In vector

notation,

vL

vW
=
vL

vy
xu: (Equation 8)

Here, we follow the convention that vL=vW and vL=vy have the

same form as W and y, respectively. Assuming that

L=
1

2
ky � ytarget k 2 =

1

2

X
j

yj � ytarget;j
� �2

; (Equation 9)

we have,

vL

vW
= y � ytarget

� �
xu; (Equation 10)

DWij f � vL

vWij

=
�
ytarget;i � yi

�
xj: (Equation 11)

This modification only depends on local information about the

input and output units of each connection. Hence, if ytarget;i > yi,
Wij should change to increase the net input and DWij has the

same sign as xj. The opposite is true if ytarget;i < yi.

For a multi-layer network, the differentiation is done using the

back-propagation algorithm (Rumelhart et al., 1986; LeCun,

1988). To compute the loss L, the network is run in a forward

pass (Equations 1, 2, and 3). Next, to efficiently compute the

exact gradient vL=vq, information about the loss needs to be

passed backward, in the opposite direction of the forward

pass, hence the name backpropagation.

To illustrate the concept, consider an N-layer linear feedfor-

ward network (Equations 1, 2, and 3, but with f xð Þ= x). To

compute vL=vW lð Þ, we need to compute vL=vr lð Þ. From

r l + 1ð Þ =W l +1ð Þr lð Þ +b l +1ð Þ, we have

vL

vr
ðlÞ
i

=
X
j

vL

vr
ðl +1Þ
j

vr
ðl + 1Þ
j

vr
ðlÞ
i

=
X
j

vL

vr
ðl + 1Þ
j

W
ðl + 1Þ
ji =

X
j

�
Wðl + 1Þ	u

ij

vL

vr
ðl +1Þ
j

:

(Equation 12)

In vector notation,

vL

vr lð Þ = W l + 1ð Þ
h iu vL

vr l + 1ð Þ = W l + 1ð Þ
h iu

W l +2ð Þ
h iu vL

vr l + 2ð Þ =/:

(Equation 13)

Therefore, starting with vL=vy, vL=vr lð Þ can be recursively

computed from vL=vr l +1ð Þ, for l =N� 1;/;1. This computation

flows in the opposite direction of the forward pass and is called

the backward pass. In general, backpropagation applies to neu-

ral networks with arbitrary differential components.

Computing the exact gradient through backpropagation is

considered unrealistic biologically because updating connec-

tions at each layer requires precise, non-local information of

connection weights at downstream layers (in the form of connec-

tion matrix transposed, Equation 13).
2.2. Variations of Learning Problems/Objective
Functions
In this and the following sections (2.3 and 2.4), we introduce

common variations of learning problems, network architectures,

and training algorithms.

Traditionally, learning problems are divided into three kinds:

supervised, reinforcement, and unsupervised learning problems.

The difference across these three kinds of learning problems lies

in the goal or objective. In supervised learning, each input is

associated with a target. The system learns to produce outputs

that match the targets. In reinforcement learning, instead of

explicit (high-dimensional) targets, the system receives a series

of scalar rewards. It learns to produce outputs (actions) that

maximize total rewards. Unsupervised learning refers to a

diverse set of problems in which the system is not provided

with explicit targets or rewards. Due to space limitations, we

will mainly focus on networks trained with supervised learning

in this Primer.

Supervised Learning

As mentioned before, for supervised learning tasks, input and

target output pairs are provided x ið Þ; y ið Þ
target

� �n o
. The goal is to
Neuron 107, September 23, 2020 1051

ll
Primer
minimize the difference between target outputs and actual out-

puts predicted by the network. In many common supervised

learning problems, the target outputs are behavioral outputs.

For example, in a typical object classification task, each input

is an image containing a single object, while the target output

is an integer corresponding to the class of that object (e.g.,

dog, cat, etc.). In other cases, the target output can directly be

neural recording data (McIntosh et al., 2016; Rajan et al., 2016;

Andalman et al., 2019).

The classical perceptual decision-making task with random-

dot motion (Britten et al., 1992; Roitman and Shadlen, 2002)

can be formulated as a supervised learning problem because

there is a correct answer. In this task, animals watch randomly

moving dots and report the dots’ overall motion direction by

choosing one of two alternatives, A or B. This task can be simpli-

fied as a network receiving a stream of noisy inputs x
ðiÞ
t at every

time point t of the i-th trial, which can represent the net evidence

in support of A and against B. At the end of each trial t = T, the

system should learn to report the sign of the average input

y
ðiÞ
target = signðCxðiÞt DtÞ, + 1 for choice A and �1 for choice B.

Reinforcement Learning

For reinforcement learning (Sutton and Barto, 2018), a model (an

agent) interacts with an environment, such as a (virtual) maze. At

time step t, the agent receives an observation ot from the envi-

ronment, produces an action at that updates the environment

state to st +1, and receives a scalar reward rt (negative value

for punishment). For example, a model navigating a virtual

maze can receive pixel-based visual inputs as observations ot,

produce actions at that move itself in the maze, and receive re-

wards when it exits the maze. The objective is to produce appro-

priate actions at given past and present observations that maxi-

mize cumulative rewards
P

trt. In many classical reinforcement

learning problems, the observation ot equals the environment

state st, which contains complete information about the envi-

ronment.

Reinforcement learning (without neural networks) has been

widely used by neuroscientists and cognitive scientists to study

value-based learning and decision-making tasks (Schultz et al.,

1997; Daw et al., 2011; Niv, 2009). For example, in the multi-

armed bandit task, the agent chooses between multiple options

repeatedly, where each option produces rewards with a certain

probability. Reinforcement learning theory can model how the

agent’s behavior adapts over time and help neuroscientists

study the neural mechanism of value-based behavior.

Deep reinforcement learning trains deep neural networks us-

ing reinforcement learning (Mnih et al., 2015), enabling applica-

tions to many more complex problems. Deep reinforcement

learning can, in principle, be used to studymost tasks performed

by lab animals (Botvinick et al., 2020) because animals are usu-

ally motivated to perform the task via rewards. Although many

such tasks can also be formulated as supervised learning prob-

lems when there exists a correct choice (e.g., perceptual deci-

sion making), many other tasks can only be described as rein-

forcement learning tasks because answers are subjective

(Haroush and Williams, 2015; Kiani and Shadlen, 2009). For

example, a perceptual decision-making task in which there is a

correct answer (A, not B) can be extended to assess animals’
1052 Neuron 107, September 23, 2020
confidence about their choice (Kiani and Shadlen, 2009; Song

et al., 2017). In addition to the two alternatives that result in a

large reward for the correct choice and no reward otherwise,

monkeys are presented a sure-bet option that guarantees a

small reward. Since a small reward is better than no reward, sub-

jects are more likely to choose the sure-bet option when they are

less confident about making a perceptual judgement. Reinforce-

ment learning is necessary here because there is no ground-truth

choice output: the optimal choice depends on the animals’ own

confidence level at their perceptual decision.

Unsupervised Learning

For unsupervised learning, only inputs x ið Þ� �
are provided; the

objective function is defined solely with the inputs and the

network parameters L x; qð Þ (no targets or rewards). For example,

finding the first component in principal-component analysis

(PCA) can be formulated as unsupervised learning in a simple

neural network. A single neuron y reading out from a group of

input neurons x, y =wuxð Þ, can learn to extract the first principle

component by maximizing its variance VarðyÞ while keeping its

connection weights normalized (jjwjj= 1) (Oja, 1982).

Unsupervised learning is particularly relevant for modeling

development of sensory cortices. Although widely used in ma-

chine learning, the kind of labeled data needed for supervised

learning, such as image-object class pairs, is rare for most ani-

mals. Unsupervised learning has been used to explain neural re-

sponses of early visual areas (Barlow, 1961; Olshausen and

Field, 1996) and, more recently, of higher visual areas (Zhuang

et al., 2019).

Compared to reinforcement and unsupervised learning, su-

pervised learning can be particularly effective because the

network receives more informative feedback in the form of

high-dimensional target outputs. Therefore, it is common to

formulate a reinforcement/unsupervised learning problem (or

parts of it) as a supervised one. For example, consider an unsu-

pervised learning problem of compressing high-dimensional in-

puts x into lower-dimensional representation z while retaining

as much information as possible about the inputs (not neces-

sarily in the information-theoretic sense). One approach to this

problem is to train autoencoder networks (Rumelhart et al.,

1986; Kingma and Welling, 2013) using supervised learning. An

autoencoder consists of an encoder that maps input x into a

low-dimensional latent representation z= fencode xð Þ and a

decoder that maps the latent back to a high-dimensional repre-

sentation y = fdecode zð Þ. To make sure z contains information

about x, autoencoders use the original input as the supervised

learning target, ytarget = x.
2.3. Variations of Network Architectures
Recurrent Neural Network

Besides MLP, another fundamental ANN architecture is recur-

rent neural networks (RNNs) that process information in time

(Figure 2B). In a ‘‘vanilla’’ or Elman RNN (Elman, 1990), activity

of model neurons at time t, rt, is driven by recurrent connectivity

W r and by inputs xt through connectivity Wx. The output of the

network is read out through connections Wy.

ct =W rrt�1 +Wxxt +br ; (Equation 14)

ll
Primer
rt = f ctð Þ; (Equation 15)

yt =Wyrt +by : (Equation 16)

Here, ct represents the cell state, analogous to membrane po-

tential or input current, while rt represents the neuronal activity.

An RNN can be unrolled in time (Figure 2C) and viewed as a

particular form of an MLP,

rt = f W rrt�1 +Wxxt +brð Þ; for t = 1;/;T : (Equation 17)

Here, neurons in the t-th layer rt receive inputs from the ðt �
1Þ-th layer rt�1 and additional inputs from outside of the recur-

rent network xt. Unlike regular MLPs, the connections from

each layer to the next are shared across time.

Backpropagation also applies to an RNN.While backpropaga-

tion in an MLP propagates gradient information from the final

layer back (Equation 13), computing the gradient for an RNN in-

volves propagating information backward in time (backpropaga-

tion-through-time, or BPTT) (Werbos, 1990). Assuming that the

loss is computed from outputs at the last time point T and a linear

activation function, the key step of BPTT is computed similarly to

Equation 13 as

vL

vrt
=Wu

r

vL

vrt + 1

= Wu
r

� 	2 vL

vrt + 2

=/: (Equation 18)

With an increasing number of time steps in an RNN, weight

modifications involve products of many matrices (Equation 18).

An analogous problem is present for very deep feedforward net-

works (for example, networks with more than ten layers). The

norm of this matrix product, k Wu
r

� 	T k , can grow exponentially

with T if W r is large (more precisely, the largest eigenvalue of

W r > 1) or vanish to zero ifW r is small, making it historically diffi-

cult to train recurrent networks (Bengio et al., 1994; Pascanu

et al., 2013). Such exploding and vanishing gradient problems

can be substantially alleviated with a combination of modern

techniques, including network architectures (Hochreiter and

Schmidhuber, 1997; He et al., 2016) and initial network connec-

tivity (Le et al., 2015; He et al., 2015) that tend to preserve the

norm of the backpropagated gradient.

Convolutional Neural Networks

A particularly important type of network architecture is convolu-

tional neural network (Figure 2D). The use of convolution means

that a group of neurons will each process its respective inputs

using the same function—in other words, the same set of

connection weights. In a typical convolutional neural network

processing visual inputs (Fukushima et al., 1983; LeCun et al.,

1990; Krizhevsky et al., 2012; He et al., 2016), neurons are orga-

nized into Nchannel ‘‘channels’’ or ‘‘feature maps.’’ Each channel

contains Nheight3Nwidth neurons with different spatial selectivity.

Each neuron in a convolutional layer is indexed by a tuple i =

ðiC; iH; iWÞ, representing the channel index ðiCÞ and the spatial

preference indices ðiH; iWÞ. The i-th neuron in layer l is typically

driven by neurons in the previous layer (bias term and activation

function omitted),
r
ðlÞ
iC iHiW

=
X
jCjHjW

W
ðlÞ
iCiHiW ;jC jHjW

r
ðl�1Þ
jC jHjW

: (Equation 19)

Importantly, in convolutional networks, the connection

weights do not depend on the absolute spatial location of the

i-th neuron; instead, they depend solely on the spatial displace-

ment ðiH �jH; iW �jWÞ between the pre- and postsynaptic

neurons.

W
ðlÞ
iCiHiW ;jC jHjW

= W
ðlÞ
iC ;jC

ðiH � jH; iW � jWÞ: (Equation 20)

Therefore, all neurons within a single channel process different

parts of the input space using the same shared set of connection

weights, allowing these neurons to have the same stimulus

selectivity with receptive fields at different spatial locations.

Moreover, neurons only receive inputs from other neurons with

similar spatial preferences, i.e., when jiH � jHj and jiW � jW j
values are small (Figure 2D).

This reusing of weights not only dramatically reduces the num-

ber of trainable parameters but also imposes invariance on pro-

cessing. For visual processing, convolutional networks typically

impose spatial invariance such that objects are processed with

the same set of weights regardless of their spatial positions.

In a typical convolutional network, across layers, the number

of neurons per channel ðNheight 3NwidthÞ decreases (with coarser

spatial resolution) while more features are extracted (with an

increasing number of channels). A classifier is commonly at the

end of the system to learn a particular task, such as categoriza-

tion of visual objects.

Activation Function

Most neurons in ANNs, like their biological counterparts, perform

nonlinear computations based on their inputs. These neurons

are usually point neurons with a single nonlinear activation func-

tion fð $Þ that links the sum of inputs to the output activity. The

nonlinearity is essential for the power of ANNs (Hornik et al.,

1989). A common choice of activation function is the Rectified

Linear Unit (ReLU) function, fðxÞ=maxðx;0Þ (Glorot et al.,

2011). The derivative of ReLU at x = 0 is mathematically unde-

fined but conventionally set to 0 in practice. ReLU and its vari-

ants (Clevert et al., 2015) are routinely used in feedforward net-

works, while the hyperbolic tangent (tanh) function is often

used in recurrent networks (Hochreiter and Schmidhuber,

1997). ReLU and similar activation functions are asymmetric

and non-saturating at high value. Although biological neurons

eventually saturate at high rate, they often operate in non-satu-

rating regimes. Therefore, traditional neural circuit models with

rate units have also frequently used non-saturating activation

functions (Abbott and Chance, 2005; Rubin et al., 2015).

Normalization

Normalization methods are important components of many

ANNs, in particular, very deep neural networks (Ioffe and Szeg-

edy, 2015; Ba et al., 2016b; Wu and He, 2018). Similar to normal-

ization in biological neural circuits (Carandini and Heeger, 2011),

normalization methods in ANNs keep inputs and/or outputs of

neurons in desirable ranges. For example, for inputs x (e.g., stim-

ulus) to a layer, layer normalization (Ba et al., 2016b) amounts to
Neuron 107, September 23, 2020 1053

ll
Primer
a form of ‘‘Z scoring’’ across units, so that the actual input bxi to
the i-th neuron is

bxi = g$
xi � m

s
+ b; (Equation 21)

m = CxjD; (Equation 22)

s =

ffi
Cðxj � mÞ2D+ e

q
: (Equation 23)

where CxjD refers to the average over all units in the same layer; m

and s are the mean and variance of x. After normalization,

different external inputs lead to the same mean and variance

for bx, set by the trainable parameters g and b. The values of g

and b do not depend on the external inputs. The small constant

ε ensures that s is not vanishingly small.
2.4. Variations of Training Algorithms
Variants of SGD-Based Methods

Supervised, reinforcement, and unsupervised learning tasks can

all be trained with SGD-based methods. Partly due to the sto-

chastic nature of the estimated gradient, directly applying SGD

(Equation 5) often leads to poor training performance. Gradually

decaying learning rate value h during training can often improve

performance, because a smaller learning rate during late training

encourages finer-tuning of parameters (Bottou et al., 2018).

Various optimization methods based on SGD are used to

improve learning (Kingma and Ba, 2014; Sutskever et al.,

2013). One simple and effective technique is momentum (Sutsk-

ever et al., 2013; Polyak, 1964), which on step j updates param-

eters with Dq jð Þ based on temporally smoothed gradients v jð Þ,

v jð Þ =mv j�1ð Þ +
vL jð Þ

vq
; 0<m< 1 (Equation 24)

Dq jð Þ = � hv jð Þ: (Equation 25)

Alternatively, in adaptive learning rate methods (Duchi et al.,

2011; Kingma and Ba, 2014), the learning rate of individual

parameter is adjusted based on the statistics (e.g., mean and

variance) of its gradient over training steps. For example, in the

Adam method (Kingma and Ba, 2014), the value of a parameter

update is magnified if its gradient has been consistent across

steps (low variance). Adaptive learning rate methods can be

viewed as approximately taking into account curvature of the

loss function (Duchi et al., 2011).

Regularization

Regularization techniques are important during training in order

to improve generalization performance by deep networks. Add-

ing a L2 regularization term, Lreg = l
P

ijW
2
ij , to the loss function

(Tikhonov, 1943) (equivalent to weight decay; Krogh and Hertz,

1992) discourages the network from using large connection

weights, which can improve generalization by implicitly limiting

model complexity. Dropout (Srivastava et al., 2014) silences a

randomly selected portion of neurons at each step of training.

It reduces the network’s reliance on particular neurons or a pre-
1054 Neuron 107, September 23, 2020
cise combination of neurons. Dropout can be thought of as

loosely approximating spiking noise.

The choice of hyperparameters (learning rate, batch size,

network initialization, etc.) is often guided by a combination of

theory, empirical evidence, and hardware constraints. For

neuroscientific applications, it is important that the scientific

conclusions do not rely heavily on the hyperparameter

choices. And if they do, the dependency should be clearly

documented.

3. EXAMPLES OF BUILDING ANNs TO ADDRESS
NEUROSCIENCE QUESTIONS

In this section, we overview two common usages of ANNs in ad-

dressing neuroscience questions.

3.1. Convolutional Networks for Visual Systems
Deep convolutional neural networks are currently the standard

tools in computer vision research and applications (Krizhevsky

et al., 2012; Simonyan and Zisserman, 2014; He et al., 2016,

2017). These networks routinely consist of tens, sometimes hun-

dreds, of layers of convolutional processing. Effective training of

deep feedforward neural networks used to be difficult. This train-

ability problem has been drastically improved by a combination

of innovations in various areas. Modern deep networks would be

too large and therefore too slow to run, not to mention train, if not

for the rapid development of hardware such as general purpose

GPUs (graphics processing units) and TPUs (tensor processing

units) (Jouppi et al., 2017). Deep convolutional networks are usu-

ally trained with large naturalistic datasets containing millions of

high-resolution-labeled images (e.g., Imagenet; Deng et al.,

2009), using training methods with adaptive learning rates

(Kingma and Ba, 2014; Tieleman and Hinton, 2012). Besides

the default use of convolution, a wide range of network architec-

ture innovations improves performance, including the adoption

of ReLU activation function (Glorot et al., 2011), normalization

methods (Ioffe and Szegedy, 2015), and the use of residual con-

nections that can provide an architectural shortcut from a

network layer’s inputs directly to its outputs (He et al., 2016).

Deep convolutional networks have been proposed as compu-

tational models of the visual systems, particularly of the ventral

visual stream or the ‘‘what pathway’’ for visual object information

processing (Figure 3) (Yamins and DiCarlo, 2016). These models

are typically trained using supervised learning on the same im-

age classification tasks as the ones used in computer vision

research and, in many cases, are the exact same convolutional

networks developed in computer vision. In comparison, classical

models of the visual systems typically rely on hand-designed

features (synaptic weights) (Jones and Palmer, 1987; Freeman

and Simoncelli, 2011; Riesenhuber and Poggio, 1999), such as

Gabor filters, or are trained with unsupervised learning based

on the efficient coding principles (Barlow, 1961; Olshausen and

Field, 1996). Although classical models have had success at ex-

plaining various features of lower-level visual areas, deep convo-

lutional networks surpass them substantially in explaining neural

activity in higher-level visual areas in both monkeys (Yamins

et al., 2014, Cadieu et al., 2014; Yamins and DiCarlo, 2016)

and humans (Khaligh-Razavi and Kriegeskorte, 2014). Besides

LN

LN

...

LN

LN

...

LN

LN

LN

LN

LN

LN

Stimulus
gnidoceDgnidocnE

roivaheBsnorueN

RGC LGN

V2

V4

V1

DOG ?? ?

PIT CIT AIT

...
1

2

k

Operations in linear-nonlinear layer

Filter
Threshold Pool Normalize

...

Spatial convolution
over image input

100-ms
visual

presentation

Pixels

LN

PITV2

V4
V1

CIT
AIT

T(•)

Figure 3. Comparing the Visual System and Deep Convolutional Neural Networks
The same image is passed through monkey’s visual cortex (top) and a deep convolutional neural network (bottom), allowing for side-by-side comparisons
between biological and ANNs. Neural responses from IT is best predicted by responses from the final layer of the convolutional network, while neural responses
from V4 is better predicted by an intermediate network layer (green dashed arrows). Figure adapted from Yamins and DiCarlo (2016).

ll
Primer
being trained to classify objects, convolutional networks can

also be trained to directly reproduce patterns of neural activity

recorded in various visual areas (McIntosh et al., 2016; Prenger

et al., 2004).

In a classical work of comparing convolutional networks with

higher visual areas (Yamins et al., 2014), Yamins and colleagues

trained thousands of convolutional networks with different archi-

tectures on a visual categorization task. To study how similar the

artificial and biological visual systems are, they quantified how

well the network’s responses to naturalistic images can be

used to linearly predict responses from the inferior temporal

(IT) cortex of monkeys viewing the same images. They found

that this neural predictivity is highly correlated with accuracy

on the categorization task, suggesting that better IT-predicting

models can be built by developing better-performing models

on challenging natural image classification tasks. They further

found that unlike IT, neural responses from the relatively lower vi-

sual area, V4, is best predicted by intermediate layers of the net-

works (Figure 3).

As computational models of visual systems, convolutional

networks can model complex, high-dimensional inputs to

downstream areas, useful for large-scale models using pixel-

based visual inputs (Eliasmith et al., 2012). This process has

been made particularly straightforward with the easy access

of many pre-trained networks in standard deep learning frame-

works like Pytorch (Paszke et al., 2019) and Tensorflow (Abadi

et al., 2016).
3.2. RNNs for Cognitive and Motor Systems
RNNs are common machine learning tools to process se-

quences, such as speech and text. In neuroscience, they have

been used to model various aspects of the cognitive, motor,

and navigation systems (Mante et al., 2013; Barak et al., 2013;

Sussillo et al., 2015; Yang et al., 2019; Wang et al., 2018; Cueva

and Wei, 2018). Unlike convolutional networks used to model vi-

sual systems that are trained on large-scale image classification

tasks, recurrent networks are usually trained on specific cogni-

tive or motor tasks that neuroscientists are studying. By

comparing RNNs trained on the same tasks that animals or hu-

mans performed, side-by-side comparisons can be made be-

tween RNNs and brains. The comparisons can be made at

many levels, including single-neuron activity and selectivity,

population decoding, state-space dynamics, and network re-

sponses to perturbations. We will expand more on how to

analyze RNNs in the next section.

An influential work that uses RNNs tomodel cognition involves

a monkey experiment for context-dependent perceptual deci-

sion making (Mante et al., 2013). In this task, a fraction (called

motion coherence) of randommoving dotsmoves in the same di-

rection (left or right); independently, a fraction (color coherence)

of dots are red, and the rest are green. In a single trial, subjects

were cued by a context signal to perform either a motion task

(judging the net motion direction is right or left) or a color task

(deciding whether there are more red dots than green ones).

Monkeys performed the task by temporally integrating evidence
Neuron 107, September 23, 2020 1055

ll
Primer
for behavioral relevant information (e.g., color) while ignoring the

irrelevant feature (motion direction in the color task). Neurons in

the prefrontal cortex recorded from behaving animals displayed

complex activity patterns, where the irrelevant features are still

strongly represented even though they weakly influence behav-

ioral choices. These counter-intuitive activity patterns were

nevertheless captured by an RNN (Mante et al., 2013). Exam-

ining the RNN dynamics revealed a novel mechanism by

which the irrelevant features are represented but selectively

filtered out and not integrated over time during evidence accu-

mulation.

To better compare neural dynamics between RNNs and bio-

logical systems, RNNs used in neuroscience often treat time

differently from their counterparts in machine learning. RNNs in

machine learning are nearly always discrete time systems (but

see Chen et al., 2018), where state at time step t is obtained

through a mapping from the state at time step t � 1 (Equations

14 and 15). The use of a discrete time system means that stimuli

that are separated by several seconds in real life can be provided

to the network in consecutive time points. To allow for more bio-

logically realistic neural dynamics, RNNs used in neuroscience

are often based on continuous time dynamical systems (Wilson

and Cowan, 1972; Sompolinsky et al., 1988), such as

t
dr

dt
= � r tð Þ+ f W rr tð Þ+Wxx tð Þ+brð Þ: (Equation 26)

Here, t is the single-unit timescale. This continuous-time sys-

tem can then be discretized using the Euler method with a time

step of Dtð<tÞ,

r t +Dtð Þzr tð Þ+Dt

t
�r tð Þ+ f W rr tð Þ+Wxx tð Þ+brð Þ½ �:

(Equation 27)

Besides gradient descent through backpropagation, a

different line of algorithms has been used to train RNN models

in neuroscience (Sussillo and Abbott, 2009; Laje and Buono-

mano, 2013; Andalman et al., 2019). These algorithms are based

on the idea of harnessing chaotic systems with weak perturba-

tions (Jaeger and Haas, 2004). In particular, the FORCE algo-

rithm (Sussillo and Abbott, 2009) allows for rapid learning by

modifying the output connections of an RNN to match the target

using a recursive least-square algorithm. The network output

yðtÞ (assumed to be one-dimensional here) is fed back to the

RNN through wfb,

t
dr

dt
= � r tð Þ+ f W rr tð Þ+Wxx tð Þ+wfby tð Þ+brð Þ; (Equation 28)

yðtÞ = wu
y rðtÞ: (Equation 29)

Therefore, modifying the output connections amounts to a

low-rank modification wfbw
u
y

� �
of the recurrent connection

matrix,

t
dr

dt
= � r tð Þ+ f W r +wfbw

u
y

h i
r tð Þ+Wxx tð Þ+br

� �
:

(Equation 30)
1056 Neuron 107, September 23, 2020
4. ANALYZING AND UNDERSTANDING ANNs

Common ANNs used in machine learning or neuroscience are

not easily interpretable. For many neuroscience problems, they

may serve better as model systems that await further analyses.

Successful training of an ANN on a task does not mean knowing

how the system works. Therefore, unlike most machine learning

applications, a trained ANN is not the end goal but merely the

prerequisite for analyzing that network to gain understanding.

Most systems neuroscience techniques to investigate biolog-

ical neural circuits can be directly applied to understand artificial

networks. To facilitate side-by-side comparison between artifi-

cial and biological neural networks, activity of an ANN can be

visualized and analyzed with the same dimensionality reduction

tools (e.g., PCA) used for biological recordings (Mante et al.,

2013; Kobak et al., 2016; Williams et al., 2018). To understand

causal relationship from neurons to behavior, an arbitrary set

of neurons can be lesioned (Yang et al., 2019) or inactivated

for a short duration, akin to optogenetic manipulation in physio-

logical experiments. Similarly, connections between two

selected groups of neurons can be lesioned to understand the

causal contribution of cross-population interactions (Andalman

et al., 2019).

In this section, we focus onmethods that are particularly useful

for analyzing ANNs. These methods include optimization-based

tuning analysis (Erhan et al., 2009), fixed-point-based dynamical

system analysis (Sussillo and Barak, 2013), quantitative compar-

isons between a model and experimental data (Yamins et al.,

2014), and insights from the perspective of biological evolution

(Lindsey et al., 2019; Richards et al., 2019).

Similarity Comparison
Analysis methods such as visualization, lesioning, tuning, and

fixed-point analysis can offer detailed intuition into the neural

mechanisms of individual networks. However, with the relative

ease of training ANNs, it is possible to train a large number of

neural networks for the same task or dataset (Maheswaranathan

et al., 2019; Yamins et al., 2014). With such volume of data, it is

necessary to take advantage of high-throughput quantitative

methods that compare different models at scale. Similarity com-

parison methods compute a scalar similarity score between the

neural activity of two networks performing the same task (Kriege-

skorte et al., 2008; Kornblith et al., 2019). These methods are

agnostic about the network form and size and can be applied

to artificial and biological networks alike.

Consider two networks (or two populations of neurons), sized

N1 and N2, respectively. Their neural activity in response to the

same D task conditions can be summarized by a D-by-N1 matrix

R1 and a D-by-N2 matrix R2 (Figure 4A). Representational simi-

larity analysis (RSA) (Kriegeskorte et al., 2008) first computes

the dissimilarity or distances of neural responses between

different task conditions within each network, yielding a D-by-

D dissimilarity matrix for each network (Figure 4B). Next, the cor-

relation between dissimilarity matrices of the two networks is

computed. A higher correlation corresponds to more similar rep-

resentations.

Another related line ofmethods uses linear regression (as used

in Yamins et al., 2014) to predict R2 through a linear

Image 1reyaLegamI
6 Channels

Layer 2
16 Channels

Layer 3
120 Units

Layer 4
84 Units

Output
10 Classes

A

C Layer 1 Layer 2 Layer 3 Layer 4 Output

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

Layer 1

0

100

D
is

si
m

ila
rit

y

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

Layer 4

0

100

D
is

si
m

ila
rit

y

B

Figure 4. Convolutional Neural Network Responses and Tuning
(A) The neural response to an image in a convolutional neural network trained to classify handwritten digits. The network consists of two layers of convolutional
processing, followed by two fully connected layers.
(B) Dissimilarity matrices (each D-by-D) assessing the similar or dissimilar neural responses to different input images. Dissimilarity matrices are computed for
neurons in layers 1 and 4 of the network.D= 50. Images are organized by class (0, 1, etc.), five images per class. Neural responses to images in the same class are
more similar, i.e., neural representation more category based, in layer 4 (right) than layer 1 (left).
(C) Preferred image stimuli found through gradient-based optimization for sample neurons from each layer. Layers 1 and 2 are convolutional, therefore their
neurons have localized preferred stimuli. In contrast, neurons from layers 3 and 4 have non-local preferred stimuli.

ll
Primer
transformation of R1, R2zWR1. The similarity corresponds to

the correlation between R2 and its predicted value WR1.

Complex Tuning Analysis
Studying tuning properties of single neurons has been one of

the most important analysis techniques in neuroscience (Kuf-

fler, 1953). Classically, tuning properties are studied in sensory

areas by showing stimuli parameterized in a low-dimensional

space (e.g., oriented bars or gratings in vision; Hubel and Wie-

sel, 1959). This method is most effective when the neurons

studied have relatively simple response properties. A new

class of methods treats the mapping of tuning as a high-

dimensional optimization problem and directly searches for

the stimulus that most strongly activates a neuron. Gradient-

free methods such as genetic algorithms have been used to
study complex tuning of biological neurons (Yamane et al.,

2008). In deep neural networks, gradient-based methods can

be used (Erhan et al., 2009; Zeiler and Fergus, 2014). For a

neuron with activity r xð Þ given input x, a gradient-ascent opti-

mization starts with a random x0 and proceeds by updating the

input x as

x/x +Dx; Dx = h
vr

vx
: (Equation 31)

This method can be used for searching the preferred input to

any neuron or any population of neurons in a deep network (Er-

han et al., 2009; Bashivan et al., 2019; see Figure 4C for an

example). It is particularly useful for studying neurons in higher

layers that have more complex tuning properties.
Neuron 107, September 23, 2020 1057

Go
RT Go
Dly Go

Anti
RT Anti
Dly Anti

DM 1
DM 2

Ctx DM 1
Ctx DM 2

MultSen DM
Dly DM 1
Dly DM 2

Ctx Dly DM 2
MultSen Dly DM

DMS
DNMS

DMC
DNMC

0

N
or

m
al

iz
ed

 ta
sk

 v
ar

ia
nc

e

1

1 2 3 4 5 6
Clusters

Units

7 9 10 11 128

Ctx Dly DM 1

Figure 5. Analyzing Tuning Properties of a Neural Network Trained
to Perform 20 Cognitive Tasks
In a network trained on multiple cognitive tasks, the tuning property of model
units to individual task can be quantified. x axis, recurrent units; y axis, different
tasks. Color measures the degree (between 0 and 1) to which each unit is
engaged in a task. Twelve clusters are identified using a hierarchical clustering
method (bottom, colored bars). For instance, cluster 3 is highly selective for
pro- versus anti-response tasks (Anti) involving inhibitory control; clusters 10
and 11 are involved in delayedmatch to sample (DMS) and delayed non-match
to sample (DNMS), respectively; cluster 12 is tuned to DMC. Figure adapted
from Yang et al. (2019).

ll
Primer
The space of xmay be too high dimensional (e.g., pixel space)

for conducting an effective search, especially for gradient-free

methods. In that case, we may utilize a lower-dimensional space

that is still highly expressive. A generativemodel learns a function

that maps a lower-dimensional latent space to a high-dimen-

sional space such as pixel space (Kingma and Welling, 2013;

Goodfellow et al., 2014). Then, the search can be conducted

instead in the lower-dimensional latent space (Ponceet al., 2019).

ANNs can be used to build models for complex behavior that

would not be easily done otherwise, opening up new possibilities

such as studying encoding of a more abstract form of informa-

tion. For example, Yang et al. (2019) studied neural tuning of

task structure, rather than stimuli, in rule-guided problem solv-

ing. An ANN was trained to perform many different cognitive

tasks commonly used in animal experiments, including percep-

tual decision making, working memory, inhibitory control, and

categorization. Complex network organization is formed by

training, in which recurrent neurons display selectivity for a sub-

set of tasks (Figure 5).

Dynamical Systems Analysis
Tuning properties provide a mostly static view of neural repre-

sentation and computation. To understand how neural networks

compute and process information in time, it is useful to study the

dynamics of RNNs (Mante et al., 2013; Sussillo and Barak, 2013;

Goudar and Buonomano, 2018; Chaisangmongkon et al., 2017).

One useful method to understand dynamics is to study fixed

points and network dynamics around them (Strogatz, 2001). In

a generic dynamical system,

dr

dt
=F rð Þ (Equation 32)
1058 Neuron 107, September 23, 2020
a fixed point rss is a steady state where the state does not

change in time, F rssð Þ= 0. The network dynamics at a state

r = rss +Dr around a fixed point rss is approximately linear,

dr

dt
=F rð Þ=F rss +Drð ÞzF rssð Þ+ J rssð ÞDr;dDr

dt
= J rssð ÞDr:
(Equation 33)

where J is the Jacobian of F, Jij = vFi=vrj, evaluated at rss. This is

a linear system that can be understood more easily, for example,

by studying the eigenvectors and eigenvalues of J rssð Þ. In ANNs,

these fixed points can be found by gradient-based optimization

(Sussillo and Barak, 2013),

argminr jjF rð Þjj2: (Equation 34)

Fixed points are particularly useful for understanding how net-

works store memories, accumulate information (Mante et al.,

2013), and transition between discrete states (Chaisangmong-

kon et al., 2017). This point can be illustrated in a network trained

to perform a parametric working memory task (Romo et al.,

1999). In this task, a sample vibrotactile stimulus at frequency

f1 is shown, followed by a delay period of a few seconds; then

a test stimulus at frequency f2 is presented, and subjects must

decide whether f2 is higher or lower than f1 (Figure 6A). During

the delay, neurons in the prefrontal cortex of behaving monkeys

showed persistent activity at a rate that monotonically varies

with f1. This parametric working memory encoding emerges

from training in an RNN (Figure 6B): in the state space of this

network, neural trajectories during the delay period converge

to different fixed points depending on the stored value. These

fixed points form an approximate line attractor (Seung, 1996)

during the delay period (Figure 6C).

There is a dearth of examples in computational neuroscience

that accounts for not just a single aspect of neural representation

or dynamics but a sequence of computation to achieve a com-

plex task. ANNs offer a new tool to confront this difficulty. Chai-

sangmongkon et al. (2017) used this approach to build a model

for delayed match-to-category (DMC) tasks. A DMC task (Fig-

ures 6D and 6E) starts with a stimulus sample, say a visual mov-

ing pattern, of which a feature (motion direction as an analog

quantify from 0� to 360�) is classified into two categories (A in

red, B in blue). After a mnemonic delay period, a test stimulus

is shown, and the task is to decide whether the test has the

same category membership as the sample (Freedman and As-

sad, 2006). After training to perform this task, a recurrent neural

network shows diverse neural activity patterns similar to parietal

neurons in monkeys doing the same task (Figure 6F). The trajec-

tory of recurrent neural population in the state space reveals

how computation is carried out through epochs of the task

(Figure 6G).
Understanding Neural Circuits from Objectives,
Architecture, and Training
All above methods seek a mechanistic understanding of ANNs

after training. A more integrative view links the three basic ingre-

dients in deep learning: learning problem (tasks/objectives),

A

D

F

E

G

B C

Figure 6. Understanding Network Computation through State Space and Dynamical System Analysis
(A–C) In a simple parametric working memory task (Romo et al., 1999), the network needs to memorize the (frequency) value of a stimulus through a delay period
(A). The network can achieve such parametric working memory by developing a line attractor (B and C).
(B) Trial-averaged neural activity during the delay period in the PCA space for different stimulus values. Triangles indicate the start of the delay period.
(C) Fixed points found through optimization (orange cross). The direction of a line attractor can be estimated by finding the eigenvector with a corresponding
eigenvalue close to 0. The orange line shows the line attractor estimated around one of the fixed points.
(D–G) Training both recurrent neural networks andmonkeys on a delayedmatch-to-category task (Freedman and Assad, 2006). The task is to decide whether the
test and sample stimuli (visual moving pattern) belong to the same category (D). The two categories are defined based on themotion direction of the stimulus (red,
category 1; blue, category 2) (E). In an ANN trained to perform this categorization task, the recurrent units of the model display a wide heterogeneity of onset time
for category selectivity, similarly to single neurons recorded from monkey posterior parietal cortex (lateral intraparietal area, LIP) during the task (F). Neural
dynamics of a recurrent neural network underlying the performance of the DMC task (G). The final decision, match (AA or BB) or non-match (AB or BA) corre-
sponds to distinct attractor states located at separate positions in the state space. Similar trajectories of population activity have been found in experimental data.
Figure adapted from Chaisangmongkon et al. (2017).

ll
Primer
network architecture, and training algorithm to the solution after

training (Richards et al., 2019). This approach is similar to an

evolutionary or developmental perspective in biology, which

links environments to functions in biological organisms. It can

help explain the computational benefit or necessity of observed

structures or functions. For example, compared to purely feed-

forward networks, recurrently connected deep networks are bet-

ter at predicting responses of higher visual area neurons to

behaviorally challenging images of cluttered scenes (Kar et al.,

2019). This suggests a contribution of recurrent connections to

classifying difficult images in the brain.
While re-running the biological processes of development and

evolution may be difficult, re-training networks with different ob-

jectives, architectures, and algorithms is fairly straightforward

thanks to recent advances in machine learning. Whenever

training of an ANN leads to a conclusion, it is good practice to

vary hyperparameters describing the basic ingredients (to a

reasonable degree) to explore the necessary and sufficient con-

ditions for the conclusion (Orhan andMa, 2019; Yang et al., 2019;

Lindsey et al., 2019).

The link from the three ingredients to the network solution is

typically not rigorous. However, in certain simplified cases, the
Neuron 107, September 23, 2020 1059

Figure 7. Training a Network with Dale’s Law
Connectivity matrix for a recurrent network trained on a perceptual decision-
making task. The network respects Dale’s law with separate groups of excit-
atory (blue) and inhibitory (red) neurons. Only connections between neurons
with high stimulus selectivity are shown. Neurons are sorted based on their
stimulus selectivity to choices 1 and 2. Recurrent excitatory connections be-
tween neurons selective to the same choice are indicated by two black
squares. Figure inspired by Song et al. (2016).

ll
Primer
link can be firmly established by solving the training process

analytically (Saxe et al., 2013, 2019b).
5. BIOLOGICALLY REALISTIC NETWORK
ARCHITECTURES AND LEARNING

Although neuroscientists and cognitive scientists have hadmuch

success with standard neural network architectures (vanilla

RNNs) and training algorithms (e.g., SGD) used in machine

learning, for many neuroscience questions, it is critical to build

network architectures and utilize learning algorithms that are bio-

logically plausible. In this section, we outline methods to build

networks with more biologically realistic structures, canonical

computations, and plasticity rules.
5.1. Structured Connections
Modern neurophysiological experiments routinely record from

multiple brain areas and/or multiple cell types during the same

animal behavior. Computational efforts modeling these findings

can be greatly facilitated by incorporating into neural networks

fundamental biological structures, such as currently known

cell-type-specific connectivity and long-range connections

across model areas/layers.

In common recurrent networks, the default connectivity is all to

all. In contrast, both local and long-range connectivity in biological

neural systems are usually sparse. Oneway to have a sparse con-

nectivity matrix W is by element-wise multiplying a trainable ma-

trix W
�

with a non-trainable sparse mask M, namely W =W
�
1M.

To encourage sparsity without strictly imposing it, a L1 regulariza-
1060 Neuron 107, September 23, 2020
tion term b
P

ij

��Wij

�� can be added to the loss function. The scalar

coefficient b controls the strength of the sparsity constraint.

To model cell-type-specific findings, it is important to build

neural networks with multiple cell types. A vanilla recurrent

network (Equations 14, 15, and 16) (or any other network) can

be easily modified to obey Dale’s law by separating excitatory

and inhibitory neurons (Song et al., 2016),

drE

dt
= � rE + fE WEEr

E �WEIr
I +WExx +bE

� �
; (Equation 35)

drI

dt
= � rI + fI

�
W IEr

E �W IIr
I + W Ixx + bI

�
; (Equation 36)

where an absolute function j$j constrains signs of the connec-

tion weights, e.g., WEE =
���W� EE

���. After training an ANN to

perform the classical ‘‘random dot’’ task of motion direction

discrimination (Roitman and Shadlen, 2002), one can ‘‘open

the black box’’ (Sussillo and Barak, 2013) and examine the

resulting ‘‘wiring diagram’’ of recurrent network connectivity

pattern (Figure 7). With the incorporation of the Dale’s law,

the connectivity emerging from training is a heterogeneous

version of a biologically based structured network model of

decision making (Wang, 2002), demonstrating that machine

learning brought closer to brain’s hardware can indeed be

used to shed insights into biological neural networks.

The extensive long-range connectivity across brain areas

(Felleman and Van Essen, 1991; Markov et al., 2014; Oh et al.,

2014) can be included in ANNs. In classical convolutional neural

networks (LeCun et al., 1990; Krizhevsky et al., 2012), each layer

only receives feedforward inputs from the immediate preceding

layer. However, in some recent networks, each layer also re-

ceives feedforward inputs from much earlier layers (Huang

et al., 2017; He et al., 2016). In convolutional recurrent networks,

neurons in each layer further receive feedback inputs from later

layers and local recurrent connections (Nayebi et al., 2018; Kietz-

mann et al., 2019).

5.2. Canonical Computation
Neuroscientists have identified several canonical computa-

tions that are carried out across a wide range of brain areas,

including attention, normalization, and gating. Here, we

discuss how such canonical computations can be introduced

into neural networks. They function as modular architectural

components that can be plugged into many networks. Inter-

estingly, canonical computations mentioned above all have

their parallels in machine-learning-based neural networks.

We will highlight the differences and similarities between

purely machine learning implementations and more biological

ones.

Normalization

Divisive normalization is widely observed in biological neural

systems (Carandini and Heeger, 2011). In divisive normaliza-

tion, activation of a neuron ri is no longer determined by its im-

mediate input Ii, ri = fðIiÞ. Instead, it is normalized by the sum of

inputs
P

j Ij to a broader pool of neurons called the normaliza-

tion pool,

ll
Primer
ri = f

g

IiP
j Ij + s

!
: (Equation 37)

The specific choice of a normalization pool depends on the

system studied. Biologically, although synaptic inputs are addi-

tive in the drive to neurons, feedback inhibition can effectively

produce normalization (Ardid et al., 2007). This form of divisive

normalization is differentiable. So, it can be directly incorporated

into ANNs.

Normalization is also a critical part of many neural networks in

machine learning. Similar to divisive normalization, machine-

learning-based normalization methods (Ioffe and Szegedy,

2015; Ba et al., 2016b; Ulyanov et al., 2016; Wu and He, 2018)

aim at putting neuronal responses into a range appropriate for

downstream areas to process. Unlike divisive normalization,

the mean inputs to a pool of neurons is usually subtracted

from, instead of dividing, the immediate input (Equation 21).

These methods also compute the standard deviation of

inputs to the normalization pool, a step that may not be biologi-

cally plausible. Different machine-learning-based normalization

methods are distinguished based on their choice of a normaliza-

tion pool.

Attention

Attention has been extensively studied in neuroscience (Desi-

mone and Duncan, 1995; Carrasco, 2011). Computational

models are able to capture various aspects of bottom-up

(Koch and Ullman, 1987) and top-down attention (Reynolds

and Heeger, 2009). In computational models, top-down atten-

tion usually takes the form of a multiplicative gain field to the ac-

tivity of a specific group of neurons. In the case of spatial atten-

tion, consider a group of neurons, each with a preferred spatial

location xi and pre-attention activity r
�ðxiÞ for a certain stimulus.

The attended spatial location xq results in attentional weights

aiðxqÞ, which is higher if xq is similar to xi. The attentional weights

can then be used to modulate the neural response of neuron i,

riðxqÞ=aiðxqÞr
�ðxiÞ. Similarly, feature attention strengthens the

activity of neurons that are selective to the attended features

(e.g., specific color). Such top-down spatial and feature attention

can be included in convolutional neural networks (Lindsay and

Miller, 2018; Yang et al., 2018).

Meanwhile, attention has become widely used in machine

learning (Bahdanau et al., 2016; Xu et al., 2015; Lindsay, 2020),

constituting a standard component in recent natural language

processing models (Vaswani et al., 2017). Although the machine

learning attention mechanisms appear rather different from

attention models in neuroscience, as we will show below, the

two mechanisms are very closely related.

In deep learning, attention can be viewed as a differentiable

dictionary retrieval process. A regular dictionary stores a number

of key-value pairs (e.g., word-explanation pairs) k ið Þ; v ið Þ
� �n o

,

similar to looking up an explanation v ið Þ� �
of a word k ið Þ

� �
. For

a given query q, using a dictionary involves searching for the

key k jð Þ that matches q, k jð Þ =q, and retrieving the corresponding

value, y = v jð Þ. This process can be thought of as modulating
each value v ið Þ based on an attentional weight ai that measures

the similarity between the key k ið Þ and the query q. In the simple

binary case,

ai =

�
1; if k ið Þ =q
0; otherwise

(Equation 38)

which modulated the output as

y =
X
i

aiv
ið Þ: (Equation 39)

In the above case of spatial attention, the i-th key-value pair is

ðxi;r
�ðxiÞÞ, while the query is the attended spatial location xq. Each

neuron’s response is modulated based on how similar its

preferred spatial location (its value) xi is to the attended location

(the query) xq.

The use of machine learning attention makes the query-key

comparison and the value-retrieval process differentiable. A

query is compared with every key vector k ið Þ to obtain an atten-

tional weight (normalized similarity score) ai,

ci = score q; k ið Þ
� �

; (Equation 40)

a1;/;aN = normalizeðc1;/; cNÞ; (Equation 41)

Here, the similarity scoring function can be a simple inner

product, score q;k ið Þ
� �

=quk ið Þ (Bahdanau et al., 2016), and

the normalization function can be the softmax function,

ai =
eciP
je

cj
; such that

X
i

ai = 1: (Equation 42)

The use of a normalization function is critical, as it effectively

forces the network to focus on a few key vectors (a few attended

locations in the case of spatial attention).

Gating

An important computation for biological neural systems is

gating (Abbott, 2006; Wang and Yang, 2018). Gating refers to

the idea of controlling information flow without necessarily dis-

torting its content. Gating in biological systems can be imple-

mented with various mechanisms. Attention modulation multi-

plies inputs to neurons by a gain factor, providing a graded

mechanism of gating at the level of sensory systems (Salinas

and Thier, 2000; Olsen et al., 2012). Another form of gating

may involve several types of inhibitory neurons (Wang et al.,

2004; Yang et al., 2016). At the behavioral level, gating often

appears to be all or none, as exemplified by effects such as in-

attentional blindness.

In deep learning, multiplicative gating is essential for popular

recurrent network architectures such as LSTM (long short-

term-memory) networks (Equation 43) (Hochreiter and Schmid-

huber, 1997; Gers et al., 2000) and GRU (gated recurrent unit)

networks (Cho et al., 2014; Chung et al., 2014). Gated networks

are generally easier to train and more powerful than vanilla
Neuron 107, September 23, 2020 1061

A

B

C

D

Figure 8. Visualizing LSTM Activity in a Simple Memory Task
(A–C) A simple memory task.
(A) The network receives a stream of input stimulus, the value of which is
randomly and independently sampled at each time point.
(B) When the ‘‘memorize input’’ (red) is active, the network needs to remember
the current value of the stimulus (A) and output that value when the ‘‘report
input’’ (blue) is next active.
(C) After training, a single-unit LSTM can perform the task almost perfectly for
modest memory duration.
(D) When the memorize input is active, this network opens the input gate (al-
lowing inputs) and closes the forget gate (forgetting previous memory). It
opens the output gate when the report input is active.

ll
Primer
RNNs. Gating variables dynamically control information flow

within these networks through multiplicative interactions. In a

LSTM network, there are three types of gating variables. Input

and output gates, gi
t and go

t , control the inputs to and outputs

of the cell state ct, while forget gate gf
t controls whether cell state

ct keeps its memory ct�1.

gf
t = sg W fxt +Ufrt�1 +bfð Þ; (Equation 43)

gi
t = sg W ixt +Uirt�1 +bið Þ;

go
t = sg Woxt +Uort�1 +boð Þ;

ct =gf
t1ct�1 +gi

t1sc Wcxt +Ucrt�1 +bcð Þ;

rt =go
t 1sr ctð Þ:

Here, the symbol 1 denotes the element-wise (Hadamard)

product of two vectors of the same length (z= x1y means zi =

xiyi). Gating variables are bounded between 0 and 1 by the sig-

moid function sg, which can be viewed as a smooth differentiable
1062 Neuron 107, September 23, 2020
approximate of a binary step function. A gate is opened or closed

when its corresponding gate value is near 1 or 0, respectively. All

the weights (W andUmatrices) are trained. By introducing these

gates, a LSTM can, in principle, keep amemory in its cell state ct
indefinitely by having the forget gate gf

t = 1 and input gate gi
t = 0

(Figure 8). In addition, the network can choose when to read out

from the memory by setting its output gate go
t = 0 or 1. Despite

their great utility to machine learning, LSTMs (and GRUs) cannot

be easily related to biological neural circuits. Modifications to

LSTMs have been suggested so the gating process could be

better explained by neurobiology (Costa et al., 2017).

Although both attention and gating utilize multiplicative inter-

actions, a critical difference is that in attention, the neural mod-

ulation is normalized (Equation 42), whereas in gating it is not.

Therefore, neural attention often has one focus, while neural

gating can open or close gates to all neurons uniformly. An

important insight from machine learning is that gating should

be plastic, which should inspire neuroscientists to investigate

learning to gate in the brain.

Predictive Coding

Another canonical computation proposed for the brain is to

compute predictions (Rao and Ballard, 1999; Bastos et al.,

2012; Heilbron and Chait, 2018). In predictive coding, a neural

system constantly tries to make inference about the external

world. Brain areas will selectively propagate information that

is unpredicted or surprising while suppressing responses to ex-

pected stimuli. To implement predictive coding in ANNs, feed-

back connections from higher layers can be trained with a

separate loss that compares the output of feedback connec-

tions with the neural activity in lower layers (Lotter et al.,

2016; Sacramento et al., 2018). In this way, feedback connec-

tions will learn to predict the activity of lower areas. The feed-

back inputs will then be used to inhibit neural activity in lower

layers.
5.3. Learning and Plasticity
Biological neural systems are products of evolution, develop-

ment, and learning. In contrast, traditional ANNs are trained

with SGD-based rules mostly from scratch. The backpropaga-

tion algorithm of computing gradient descent is well known to

be biologically implausible (Zipser and Andersen, 1988). Incor-

porating more realistic learning processes can help us build bet-

ter models of brains.

Selective Training and Continual Learning

In typical ANNs, all connections are trained. However, in biolog-

ical neural systems, synapses are not equally modifiable. Many

synapses can be stable for years (Grutzendler et al., 2002;

Yang et al., 2009). To implement selective training of connec-

tions, the effective connection matrix W can be expressed as a

sumof a sparse trainable synaptic weight matrix and a non-train-

able one,W =W train +W fix (Rajan et al., 2016; Masse et al., 2018).

Or more generally, selective training can be imposed softly by

adding to the loss a regularization term Lreg that makes it more

difficult to change the weights of certain connections,

Lreg = b
X
ij

MijðWij �Wfix;ijÞ2: (Equation 44)

ll
Primer
Here, Mij determine how strongly the connection Wij should

stick close to the value Wfix;ij.

Selective training of connections through this form of soft con-

straints has been used by continual learning techniques to com-

bat catastrophic forgetting. The phenomenon of catastrophic

forgetting is commonly observed when ANNs are learning new

tasks; they tend to rapidly forget previous learned tasks that

are not revisited (McCloskey and Cohen, 1989). One major class

of continual learning methods deals with this issue by selectively

training synaptic connections that are deemed unimportant for

previously learned tasks or knowledge while protecting the

important ones (Kirkpatrick et al., 2017; Zenke et al., 2017).

Hebbian Plasticity

The predominant idea for biological learning is Hebbian plasticity

(Hebb, 2005) and its variants (Song et al., 2000; Bi and Poo,

2001). Hebbian plasticity is an unsupervised learning method

that drives learning of connection weights without target outputs

or rewards. It is essential for classical models of associative

memory, such as Hopfield networks (Hopfield, 1982), and has

a deep link to modern neural network architectures with explicit

long-term memory modules (Graves et al., 2014).

Supervised learning techniques, especially those based on

SGD, can be combined with Hebbian plasticity to develop

ANNs that are both more powerful for certain tasks and more

biologically realistic. There are twomethods to combine Hebbian

plasticity with SGD. In the first kind, the effective connection ma-

trix W =W
�
+A is the sum of two connection matrices, W

�
trained

by SGD, and A driven by Hebbian plasticity (Ba et al., 2016a; Mi-

coni et al., 2018),

A t + 1ð Þ= lA tð Þ+ hrru: (Equation 45)

Or in component form,

Aijðt + 1Þ = lAijðtÞ+ hrirj: (Equation 46)

In addition to training a separate matrix, SGD can be used to

learn the plasticity rules itself (Bengio et al., 1992; Metz et al.,

2018). Here, the plasticity rule is a trainable function of pre-

and postsynaptic activity,

Aij t + 1ð Þ= lAij tð Þ+ f ri; rj; qð Þ: (Equation 47)

Because the system is differentiable, parameters q, which

collectively describe the plasticity rules, can be updated with

SGD-basedmethods. In its simplest form, f ri; rj; q
� �

= hrirj, where

q= hf g. Here, the system can learn to become Hebbian (h> 0) or

anti-Hebbian (h< 0). Learning of a plasticity rule is a form of

meta-learning, using an algorithm (here, SGD) to optimize an in-

ner learning rule (here, Hebbian plasticity).

Such Hebbian plasticity networks can be extended to include

more complex synapses with multiple hidden variables in a

‘‘cascade model’’ of synaptic plasticity (Fusi et al., 2005). In

theory, properly designed complex synapses can substantially

boost a neural network’s memory capacity (Benna and Fusi,

2016). Models of such complex synapses are differentiable

and therefore can be incorporated into ANNs (Kaplanis

et al., 2018).
Short-Term Plasticity

In addition to Hebbian plasticity that acts on the timescales from

hours to years, biological synapses are subject to short-term

plasticity mechanisms operating on the timescale of hundreds

of milliseconds to seconds (Zucker and Regehr, 2002) that can

rapidly modify their effective weights. Classical short-term plas-

ticity rules (Mongillo et al., 2008; Markram et al., 1998) are formu-

lated with spiking neurons, but they can be adapted to rate

forms. In these rules, each connection weight w=w
�
ux is a prod-

uct of an original weight w
�
, a facilitating factor u, and a

depressing factor x. The facilitating and depressing factors are

both influenced by the presynaptic activity rðtÞ,
dx

dt
=
1� xðtÞ

tx
� uðtÞxðtÞrðtÞ; (Equation 48)

du

dt
=
U� uðtÞ

tu
+Uð1� uðtÞÞrðtÞ: (Equation 49)

High presynaptic activity rðtÞ increases the facilitating factor

uðtÞ and decreases the depressing factor xðtÞ. Again, the equa-

tions governing short-term plasticity are fully differentiable, so

they can be incorporated into ANNs in the same way as Hebbian

plasticity rules (Masse et al., 2019).

Masse et al. (2019) offers an illustration of how ANNs can be

used to test new hypotheses in neuroscience. It was designed

to investigate the neural mechanisms of working memory, the

brain’s ability to maintain and manipulate information internally

in the absence of external stimulation. Working memory has

been extensively studied in animal experiments using delayed

response tasks, in which a stimulus and its corresponding motor

response are separated by a temporal gap when the stimulus

must be retained internally. Stimulus-selective self-sustained

persistent activity during a mnemonic delay is amply docu-

mented and considered as the neural substrate of workingmem-

ory representation (Goldman-Rakic, 1995; Wang, 2001). Howev-

er, recent studies suggested that certain short-term memory

traces may be realized by hidden variables instead of spiking ac-

tivity, such as synaptic efficacy that by virtue of short-term plas-

ticity represents past events (Stokes, 2015;Mongillo et al., 2008).

When an ANN endowed with short-term synaptic plasticity is

trained to perform a delayed response task, it does not make

an a priori assumption about whether working memory is repre-

sented by hidden synaptic efficacy or neural activity. It was

found that activity-silent state can accomplish such a task only

when the delay is sufficiently short, whereas persistent activity

naturally emerges from training with delay periods longer than

the biophysical time constants of short-term synaptic plasticity.

More importantly, training always gives rise to persistent activity,

even with a short mnemonic delay period, when information

must be manipulated internally, such as mentally rotating a

directional stimulus by 90�. This work illustrates how ANNs can

contribute to resolving important debates in neuroscience.

Biologically Realistic Gradient Descent

Backpropagation is commonly viewed as biologically unrealistic

because the plasticity rule is not local (see Equation 13). Efforts

have been devoted to approximating gradient descent with
Neuron 107, September 23, 2020 1063

ll
Primer
algorithms more compatible with the brain’s hardware (Lillicrap

et al., 2016; Guerguiev et al., 2017; Roelfsema and Holtmaat,

2018; Lillicrap et al., 2020).

In feedforward networks, the backpropagation algorithm can

be implemented with synaptic connections feeding back from

the final layer (Xie and Seung, 2003). This implementation as-

sumes that the feedback connections precisely mirror the feed-

forward connections. This requirement can be relaxed. If a

network uses fixed and random feedback connections, the feed-

forward connections would start to approximately mirror the

feedback connections during training (a phenomenon called

‘‘feedback alignment’’), allowing for training loss to be decreased

(Lillicrap et al., 2016). Another challenge of approximating back-

propagation with feedback connections is that the feedback in-

puts carrying loss information need to be processed differently

from feedforward inputs carrying stimulus information. This issue

can be addressed by introducing multi-compartmental neurons

into ANNs (Guerguiev et al., 2017). In such networks, feedfor-

ward and feedback inputs are processed separately because

they are received by the model neurons’ soma and dendrites,

respectively.

These methods of implementing the backpropagation algo-

rithm through synapses propagating information backward are

so far only used for feedforward networks. For recurrent net-

works, the backpropagation algorithm propagates information

backward in time. Therefore, it is not clear how to interpret the

backpropagation in terms of synaptic connections. Instead, ap-

proximations can be made such that the network computes

approximated gradient information as it runs forward in time (Wil-

liams and Zipser, 1989; Murray, 2019).

For many neuroscientific applications, it is probably not

necessary to justify backpropagation by neurobiology. ANNs

often start as ‘‘blank slate’’; thus, training by backpropagation

is tasked to accomplish what for the brain amounts to a combi-

nation of genetic programming, development, and plasticity in

adulthood.

6. FUTURE DIRECTIONS AND CONCLUSION

Recent years have seen a growing impact of ANN models in

neuroscience. We have reviewed many of these efforts in the

section ‘‘Biologically Realistic Network Architectures and

Learning.’’ In this final section, we outline other existing chal-

lenges and ongoing work to make ANNs better models of

brains.

Spiking Neural Networks
Most biological neurons communicate with spikes. Harnessing

the power of machine learning algorithms for spiking networks

remains a daunting challenge. Gradient-descent-based training

techniques typically require the system to be differentiable, mak-

ing it challenging to train spiking networks because spike gener-

ation is non-differentiable. However, several recent methods

have been proposed to train spiking networks with gradient-

based techniques (Courbariaux et al., 2016; Bellec et al., 2018;

Zenke and Ganguli, 2018; Nicola and Clopath, 2017; Huh and

Sejnowski, 2018). These methods generally involve approxi-

mating spike generation with a differentiable system during
1064 Neuron 107, September 23, 2020
backpropagation (Tavanaei et al., 2019). Techniques to effec-

tively train spiking networks could prove increasingly important

and practical, as neuromorphic hardware that operates naturally

with spikes becomes more powerful (Merolla et al., 2014; Pei

et al., 2019).

Standardized Protocols for Developing Brain-like
Recurrent Networks
In the study of mammalian visual systems, the use of large data-

sets such as ImageNet (Deng et al., 2009) was crucial for produc-

ing neural networks that resemble biological neural circuits in the

brain. The same has not been shown for most other systems.

Although many studies have shown success using neural net-

works to model cognitive and motor systems, each work usually

has its own set of network architectures, training protocols, and

other hyperparameters. Simply applying the most common ar-

chitectures and training algorithms does not consistently lead

to brain-like recurrent networks (Sussillo et al., 2015). Much

work remains to be done to search for datasets/tasks, network

architectures, and training regimes that can produce brain-

resembling artificial networks across a wide range of experi-

mental tasks.

Detailed Behavioral and Physiological Predictions
Although many studies have reported similarities between

brains and ANNs, more detailed comparisons have revealed

striking differences (Szegedy et al., 2013; Hénaff et al., 2019;

Sussillo et al., 2015). Deep convolutional networks can achieve

similar or better performance on large image classification

tasks compared to humans; however, the mistakes they

make can be very different from the ones made by humans

(Szegedy et al., 2013; Rajalingham et al., 2018). It will be impor-

tant for future ANN models of brains to aim at simultaneously

explaining a wider range of physiological and behavioral phe-

nomena.

Interpreting Learned Networks and Learning Processes
With the ease of training neural networks comes the difficulty of

analyzing them. Granted, neuroscientists are not foreign to anal-

ysis of complex networks, and ANNs are still technologically

easier to analyze compared to biological neural networks. How-

ever, compared to network models with built-in regularities and

small numbers of free parameters, deep neural networks are

notoriously complex to analyze and understand and will likely

become even more so as we build more and more sophisticated

neural networks. This difficulty is rooted in the use of optimiza-

tion algorithms to search for parameter values. Since the optimi-

zation process in deep learning has no unique optima, the results

of optimization necessarily lack the degree of regularities built in

hand-designed models. Although we can attempt to understand

ANNs from the perspective of its objectives, architectures, and

training algorithms (Richards et al., 2019), which are described

with a much smaller number of hyperparameters, the link from

these hyperparameters to network representation, mechanism,

and behavior is mostly informal and based on intuition.

Despite the difficulties mentioned above, several lines of

research hold promise. To facilitate understanding of learned

networks, one can construct variants of neural networks that

ll
Primer
are more interpretable. For example, low-rank recurrent neural

networks utilize recurrent connectivity matrices with low-dimen-

sional structures (Mastrogiuseppe and Ostojic, 2018), allowing

for a more straightforward mapping from network connectivity

to dynamics and computation.

The dynamics of learning in neural networks can be studied

analytically in deep linear networks (Saxe et al., 2013) and very

wide nonlinear networks, i.e., networks with a sufficiently large

number of neurons per layer (Jacot et al., 2018). In another line

of work, the Information Bottleneck theory proposes that

learning processes in neural networks are characterized by two

phases: the first extracts information for output tasks (predic-

tion), and the second discards (excessive) information about in-

puts (compression) (Shwartz-Ziv and Tishby, 2017; see also

Saxe et al., 2019a). Progress in these directions could shed light

on why neural networks can generalize to new data despite hav-

ing many parameters, which would traditionally indicate over-

fitting and poor generalization performance.

Conclusion
ANNs present a novel approach in computational neurosci-

ence. They have already been used, with a certain degree of

success, to model various aspects of sensory, cognitive, and

motor circuits. Efforts are underway to make ANNs more bio-

logically relevant and applicable to a wider range of neurosci-

entific questions. In a sense, instead of being viewed as

computational models, ANNs can be studied as model sys-

tems, like fruit flies, mice, and monkeys, but are easily carried

out to explore new task paradigms and computational ideas.

Of course, one can be skeptical about ANNs as model sys-

tems, on the ground that they are not biological organisms.

However, computational models span a wide range of biolog-

ical realism; there should be no doubt that brain research will

benefit from enhanced interactions with machine learning and

artificial intelligence. In order for ANNs to have a broad impact

in neuroscience, it will be important to devote our efforts in two

areas. First, we should continue to bring ANNs closer to neuro-

biology. Second, we should endeavor to ‘‘open the black box’’

thoroughly after learning to identify neural representation, tem-

poral dynamics, and network connectivity that emerge from

learning, leading to testable insights and predictions by neuro-

biological experiments. Recurrent neural dynamics emphasized

in this Primer represent a salient feature of the brain; further

development of strongly recurrent ANNs will contribute to ac-

celeration of progress in neuroscience.

ACKNOWLEDGMENTS

We thank Vishwa Goudar and Jacob Portes for helpful comments on a draft of
this paper. This work was supported by the Simons Foundation, NSF Neuro-
Nex Award DBI-1707398, and the Gatsby Charitable Foundation to G.R.Y.
and the ONR grant N00014 and Simons Collaboration in the Global Brain
(SCGB) (grant 543057SPI) to X.-J.W.

REFERENCES

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghe-
mawat, S., Irving, G., Isard, M., et al. (2016). Tensorflow: A system for large-
scale machine learning. In Proceedings of the 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI), pp. 265–283.
Abbott, L. (2006). Where are the switches on this thing? In 23 Problems in Sys-
tems Neuroscience, J.L. van Hemmen and T.J. Sejnowski, eds. (Oxford Uni-
versity Press), pp. 423–431.

Abbott, L.F. (2008). Theoretical neuroscience rising. Neuron 60, 489–495.

Abbott, L.F., and Chance, F.S. (2005). Drivers and modulators from push-pull
and balanced synaptic input. Prog. Brain Res. 149, 147–155.

Andalman, A.S., Burns, V.M., Lovett-Barron, M., Broxton, M., Poole, B., Yang,
S.J., Grosenick, L., Lerner, T.N., Chen, R., Benster, T., et al. (2019). Neuronal
dynamics regulating brain and behavioral state transitions. Cell 177, 970–
985.e20.

Ardid, S., Wang, X.-J., and Compte, A. (2007). An integrated microcircuit
model of attentional processing in the neocortex. J. Neurosci. 27, 8486–8495.

Ba, J., Hinton, G.E., Mnih, V., Leibo, J.Z., and Ionescu, C. (2016a). Using fast
weights to attend to the recent past. Adv. Neural Inf. Process. Syst. 29,
4331–4339.

Ba, J.L., Kiros, J.R., and Hinton, G.E. (2016b). Layer normalization. arXiv,
1607.06450 https://arxiv.org/abs/1607.06450.

Bahdanau, D., Cho, K., and Bengio, Y. (2016). Neural Machine Translation by
Jointly Learning to Align and Translate. arXiv. https://arxiv.org/abs/1409.0473.

Barak, O. (2017). Recurrent neural networks as versatile tools of neuroscience
research. Curr. Opin. Neurobiol. 46, 1–6.

Barak, O., Sussillo, D., Romo, R., Tsodyks, M., and Abbott, L.F. (2013). From
fixed points to chaos: threemodels of delayed discrimination. Prog. Neurobiol.
103, 214–222.

Barlow, H.B. (1961). Possible principles underlying the transformation of sen-
sory messages. Sensory Communication 1, 217–234.

Bashivan, P., Kar, K., and DiCarlo, J.J. (2019). Neural population control via
deep image synthesis. Science 364, eaav9436.

Bastos, A.M., Usrey, W.M., Adams, R.A., Mangun, G.R., Fries, P., and Friston,
K.J. (2012). Canonical microcircuits for predictive coding. Neuron 76,
695–711.

Bellec, G., Salaj, D., Subramoney, A., Legenstein, R., and Maass, W. (2018).
Long short-termmemory and learning-to-learn in networks of spiking neurons.
Adv. Neural Inf. Process. Syst. 31, 787–797.

Bengio, S., Bengio, Y., Cloutier, J., and Gecsei, J. (1992). On the optimization
of a synaptic learning rule. In Preprints Conf. Optimality in Artificial and Biolog-
ical Neural Networks (University of Texas).

Bengio, Y., Simard, P., and Frasconi, P. (1994). Learning long-term depen-
dencies with gradient descent is difficult. IEEE Trans. Neural Netw. 5, 157–166.

Benna, M.K., and Fusi, S. (2016). Computational principles of synaptic mem-
ory consolidation. Nat. Neurosci. 19, 1697–1706.

Bi, G., and Poo, M. (2001). Synaptic modification by correlated activity: Hebb’s
postulate revisited. Annu. Rev. Neurosci. 24, 139–166.

Bottou, L., Curtis, F.E., andNocedal, J. (2018). Optimizationmethods for large-
scale machine learning. SIAM Rev. 60, 223–311.

Botvinick, M., Wang, J.X., Dabney, W., Miller, K.J., and Kurth-Nelson, Z.
(2020). Deep reinforcement learning and its neuroscientific implications.
Neuron 107, 603–616.

Britten, K.H., Shadlen, M.N., Newsome, W.T., and Movshon, J.A. (1992). The
analysis of visual motion: a comparison of neuronal and psychophysical per-
formance. J. Neurosci. 12, 4745–4765.

Cadieu, C.F., Hong, H., Yamins, D.L., Pinto, N., Ardila, D., Solomon, E.A., Ma-
jaj, N.J., and DiCarlo, J.J. (2014). Deep neural networks rival the representation
of primate IT cortex for core visual object recognition. PLoS Comput. Biol. 10,
e1003963.

Carandini, M., and Heeger, D.J. (2011). Normalization as a canonical neural
computation. Nat. Rev. Neurosci. 13, 51–62.

Carrasco, M. (2011). Visual attention: the past 25 years. Vision Res. 51,
1484–1525.
Neuron 107, September 23, 2020 1065

http://refhub.elsevier.com/S0896-6273(20)30705-4/sref1
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref1
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref1
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref1
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref2
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref2
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref2
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref3
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref4
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref4
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref5
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref5
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref5
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref5
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref6
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref6
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref7
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref7
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref7
https://arxiv.org/abs/1607.06450
https://arxiv.org/abs/1409.0473
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref9
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref9
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref10
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref10
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref10
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref11
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref11
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref12
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref12
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref13
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref13
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref13
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref14
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref14
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref14
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref15
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref15
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref15
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref16
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref16
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref17
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref17
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref18
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref18
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref19
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref19
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref20
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref20
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref20
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref21
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref21
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref21
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref22
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref22
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref22
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref22
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref23
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref23
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref24
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref24

ll
Primer
Chaisangmongkon, W., Swaminathan, S.K., Freedman, D.J., and Wang, X.-J.
(2017). Computing by robust transience: how the fronto-parietal network per-
forms sequential, category-based decisions. Neuron 93, 1504–1517.e4.

Chen, T.Q., Rubanova, Y., Bettencourt, J., and Duvenaud, D.K. (2018). Neural
ordinary differential equations. Adv. Neural Inf. Process. Syst. 31, 6571–6583.

Cho, K., Van Merri€enboer, B., Gulcehre, C., Bahdanau, D., Bougares, F.,
Schwenk, H., and Bengio, Y. (2014). Learning phrase representations using
rnn encoder-decoder for statistical machine translation. arXiv, 1406.1078
https://arxiv.org/abs/1406.1078.

Chung, J., Gulcehre, C., Cho, K., and Bengio, Y. (2014). Empirical evaluation of
gated recurrent neural networks on sequence modeling. arXiv, 1412.3555
https://arxiv.org/abs/1412.3555.

Clevert, D.-A., Unterthiner, T., and Hochreiter, S. (2015). Fast and accurate
deep network learning by exponential linear units (elus). arXiv, 1511.07289
https://arxiv.org/abs/1511.07289.

Cohen, J.D., Dunbar, K., and McClelland, J.L. (1990). On the control of auto-
matic processes: a parallel distributed processing account of the Stroop ef-
fect. Psychol. Rev. 97, 332–361.

Costa, R., Assael, I.A., Shillingford, B., de Freitas, N., and Vogels, T. (2017).
Cortical microcircuits as gated-recurrent neural networks. Adv. Neural Inf. Pro-
cess. Syst. 30, 272–283.

Courbariaux, M., Hubara, I., Soudry, D., El-Yaniv, R., and Bengio, Y. (2016). Bi-
narized neural networks: Training deep neural networks with weights and ac-
tivations constrained to+ 1 or-1. arXiv, 1602.02830 https://arxiv.org/abs/
1602.02830.

Cueva, C.J., and Wei, X.-X. (2018). Emergence of grid-like representations by
training recurrent neural networks to perform spatial localization. arXiv,
1803.07770 https://arxiv.org/abs/1803.07770.

Daw, N.D., Gershman, S.J., Seymour, B., Dayan, P., and Dolan, R.J. (2011).
Model-based influences on humans’ choices and striatal prediction errors.
Neuron 69, 1204–1215.

Deng, J., Dong,W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009). Imagenet:
A large-scale hierarchical image database. 2009 IEEE Conference on Com-
puter Vision and Pattern Recognition (IEEE), pp. 248–255.

Desimone, R., and Duncan, J. (1995). Neural mechanisms of selective visual
attention. Annu. Rev. Neurosci. 18, 193–222.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018). Bert: Pre-training
of deep bidirectional transformers for language understanding. arXiv,
1810.04805 https://arxiv.org/abs/1810.04805.

Duchi, J., Hazan, E., and Singer, Y. (2011). Adaptive subgradient methods for
online learning and stochastic optimization. J. Mach. Learn. Res. 12,
2121–2159.

Eliasmith, C., Stewart, T.C., Choo, X., Bekolay, T., DeWolf, T., Tang, Y., and
Rasmussen, D. (2012). A large-scale model of the functioning brain. Science
338, 1202–1205.

Elman, J.L. (1990). Finding structure in time. Cogn. Sci. 14, 179–211.

Erhan, D., Bengio, Y., Courville, A., and Vincent, P. (2009). Visualizing higher-
layer features of a deep network. University of Montreal 1341, 1.

Felleman, D.J., and Van Essen, D.C. (1991). Distributed hierarchical process-
ing in the primate cerebral cortex. Cereb. Cortex 1, 1–47.

Freedman, D.J., and Assad, J.A. (2006). Experience-dependent representa-
tion of visual categories in parietal cortex. Nature 443, 85–88.

Freeman, J., and Simoncelli, E.P. (2011). Metamers of the ventral stream. Nat.
Neurosci. 14, 1195–1201.

Fukushima, K., and Miyake, S. (1982). Neocognitron: A new algorithm for
pattern recognition tolerant of deformations and shifts in position. Pattern Rec-
ognit. 15, 455–469.

Fukushima, K., Miyake, S., and Ito, T. (1983). Neocognitron: A neural network
model for a mechanism of visual pattern recognition. IEEE Transactions on
Systems, Man, and Cybernetics (IEEE), pp. 826–834.
1066 Neuron 107, September 23, 2020
Fusi, S., Drew, P.J., and Abbott, L.F. (2005). Cascade models of synaptically
stored memories. Neuron 45, 599–611.

Gers, F.A., Schmidhuber, J., and Cummins, F. (2000). Learning to forget:
continual prediction with LSTM. Neural Comput. 12, 2451–2471.

Glorot, X., Bordes, A., and Bengio, Y. (2011). Deep sparse rectifier neural net-
works. Proceedings of the Fourteenth International Conference on Artificial In-
telligence and Statistics 15, 315–323.

Gold, J.I., and Shadlen, M.N. (2007). The neural basis of decision making.
Annu. Rev. Neurosci. 30, 535–574.

Goldman-Rakic, P.S. (1995). Cellular basis of working memory. Neuron 14,
477–485.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair,
S., Courville, A., and Bengio, Y. (2014). Generative adversarial nets. Adv. Neu-
ral Inf. Process. Syst. 27, 2672–2680.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning (MIT Press).

Goudar, V., and Buonomano, D.V. (2018). Encoding sensory and motor pat-
terns as time-invariant trajectories in recurrent neural networks. eLife 7,
e31134.

Graves, A., Wayne, G., and Danihelka, I. (2014). Neural turing machines. arXiv,
1410.5401 https://arxiv.org/abs/1410.5401.

Grutzendler, J., Kasthuri, N., and Gan, W.-B. (2002). Long-term dendritic spine
stability in the adult cortex. Nature 420, 812–816.

Guerguiev, J., Lillicrap, T.P., and Richards, B.A. (2017). Towards deep learning
with segregated dendrites. eLife 6, e22901.

Haroush, K., and Williams, Z.M. (2015). Neuronal prediction of opponent’s
behavior during cooperative social interchange in primates. Cell 160,
1233–1245.

Hassabis, D., Kumaran, D., Summerfield, C., and Botvinick, M. (2017). Neuro-
science-inspired artificial intelligence. Neuron 95, 245–258.

He, K., Zhang, X., Ren, S., and Sun, J. (2015). Delving deep into rectifiers: Sur-
passing human-level performance on imagenet classification. In 2015 IEEE In-
ternational Conference on Computer Vision (IEEE), pp. 1026–1034.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image
recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recog-
nition (IEEE), pp. 770–778.

He, K., Gkioxari, G., Dollár, P., and Girshick, R. (2017). Mask R-CNN. In 2017
IEEE International Conference on Computer Vision (IEEE), pp. 2961–2969.

Hebb, D.O. (2005). The Organization of Behavior: A Neuropsychological The-
ory (Psychology Press).

Heilbron, M., and Chait, M. (2018). Great expectations: is there evidence for
predictive coding in auditory cortex? Neuroscience 389, 54–73.

Helmstaedter, M., Briggman, K.L., Turaga, S.C., Jain, V., Seung, H.S., and
Denk, W. (2013). Connectomic reconstruction of the inner plexiform layer in
the mouse retina. Nature 500, 168–174.

Hénaff, O.J., Goris, R.L.T., and Simoncelli, E.P. (2019). Perceptual straight-
ening of natural videos. Nat. Neurosci. 22, 984–991.

Hochreiter, S., and Schmidhuber, J. (1997). Long short-term memory. Neural
Comput. 9, 1735–1780.

Hopfield, J.J. (1982). Neural networks and physical systems with emergent
collective computational abilities. Proc. Natl. Acad. Sci. USA 79, 2554–2558.

Hornik, K., Stinchcombe, M., andWhite, H. (1989). Multilayer feedforward net-
works are universal approximators. Neural Netw. 2, 359–366.

Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger, K.Q. (2017). Densely
connected convolutional networks. In 2017 IEEE Conference on Computer
Vision and Pattern Recognition (IEEE), pp. 4700–4708.

Hubel, D.H., andWiesel, T.N. (1959). Receptive fields of single neurones in the
cat’s striate cortex. J. Physiol. 148, 574–591.

http://refhub.elsevier.com/S0896-6273(20)30705-4/sref25
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref25
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref25
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref26
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref26
https://arxiv.org/abs/1406.1078
https://arxiv.org/abs/1412.3555
https://arxiv.org/abs/1511.07289
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref30
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref30
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref30
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref31
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref31
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref31
https://arxiv.org/abs/1602.02830
https://arxiv.org/abs/1602.02830
https://arxiv.org/abs/1803.07770
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref34
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref34
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref34
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref35
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref35
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref35
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref36
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref36
https://arxiv.org/abs/1810.04805
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref38
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref38
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref38
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref39
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref39
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref39
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref40
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref41
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref41
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref42
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref42
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref43
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref43
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref44
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref44
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref45
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref45
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref45
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref46
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref46
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref46
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref47
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref47
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref48
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref48
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref49
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref49
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref49
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref50
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref50
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref51
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref51
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref52
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref52
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref52
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref53
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref54
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref54
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref54
https://arxiv.org/abs/1410.5401
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref56
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref56
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref57
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref57
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref58
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref58
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref58
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref59
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref59
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref60
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref60
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref60
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref61
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref61
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref61
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref62
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref62
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref63
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref63
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref64
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref64
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref65
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref65
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref65
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref66
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref66
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref67
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref67
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref68
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref68
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref69
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref69
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref70
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref70
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref70
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref71
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref71

ll
Primer
Hubel, D.H., and Wiesel, T.N. (1962). Receptive fields, binocular interaction
and functional architecture in the cat’s visual cortex. J. Physiol. 160, 106–154.

Huh, D., and Sejnowski, T.J. (2018). Gradient descent for spiking neural net-
works. Adv. Neural Inf. Process. Syst. 31, 1433–1443.

Ioffe, S., and Szegedy, C. (2015). Batch normalization: Accelerating deep
network training by reducing internal covariate shift. arXiv, 1502.03167
https://arxiv.org/abs/1502.03167.

Jacot, A., Gabriel, F., and Hongler, C. (2018). Neural tangent kernel: Conver-
gence and generalization in neural networks. Adv. Neural Inf. Process. Syst.
31, 8571–8580.

Jaeger, H., and Haas, H. (2004). Harnessing nonlinearity: predicting chaotic
systems and saving energy in wireless communication. Science 304, 78–80.

Januszewski, M., Kornfeld, J., Li, P.H., Pope, A., Blakely, T., Lindsey, L., Mai-
tin-Shepard, J., Tyka, M., Denk, W., and Jain, V. (2018). High-precision auto-
mated reconstruction of neurons with flood-filling networks. Nat. Methods 15,
605–610.

Jones, J.P., and Palmer, L.A. (1987). An evaluation of the two-dimensional Ga-
bor filter model of simple receptive fields in cat striate cortex. J. Neurophysiol.
58, 1233–1258.

Jouppi, N.P., Young, C., Patil, N., Patterson, D., Agrawal, G., Bajwa, R., Bates,
S., Bhatia, S., Boden, N., Borchers, A., et al. (2017). In-datacenter performance
analysis of a tensor processing unit. In ISCA ‘17: Proceedings of the 44th
Annual International Symposium on Computer Architecture (ISCA), pp. 1–12.

Kaplanis, C., Shanahan, M., and Clopath, C. (2018). Continual reinforcement
learning with complex synapses. arXiv, 1802.07239 https://arxiv.org/abs/
1802.07239.

Kar, K., Kubilius, J., Schmidt, K., Issa, E.B., and DiCarlo, J.J. (2019). Evidence
that recurrent circuits are critical to the ventral stream’s execution of core ob-
ject recognition behavior. Nat. Neurosci. 22, 974–983.

Khaligh-Razavi, S.-M., and Kriegeskorte, N. (2014). Deep supervised, but not
unsupervised, models may explain IT cortical representation. PLoS Comput.
Biol. 10, e1003915.

Kiani, R., and Shadlen, M.N. (2009). Representation of confidence associated
with a decision by neurons in the parietal cortex. Science 324, 759–764.

Kietzmann, T.C., Spoerer, C.J., Sörensen, L.K.A., Cichy, R.M., Hauk, O., and
Kriegeskorte, N. (2019). Recurrence is required to capture the representational
dynamics of the human visual system. Proc. Natl. Acad. Sci. USA 116,
21854–21863.

Kingma, D.P., and Ba, J. (2014). Adam: A method for stochastic optimization.
arXiv, 1412.6980 https://arxiv.org/abs/1412.6980.

Kingma, D.P., and Welling, M. (2013). Auto-Encoding Variational Bayes. arXiv,
1312.6114 https://arxiv.org/abs/1312.6114.

Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins, G., Rusu,
A.A., Milan, K., Quan, J., Ramalho, T., Grabska-Barwinska, A., et al. (2017).
Overcoming catastrophic forgetting in neural networks. Proc. Natl. Acad.
Sci. USA 114, 3521–3526.

Kobak, D., Brendel, W., Constantinidis, C., Feierstein, C.E., Kepecs, A.,
Mainen, Z.F., Qi, X.-L., Romo, R., Uchida, N., and Machens, C.K. (2016). Dem-
ixed principal component analysis of neural population data. eLife 5, e10989.

Koch, C., and Ullman, S. (1987). Shifts in selective visual attention: towards the
underlying neural circuitry. InMatters of Intelligence, L.M. Vaina, ed. (Springer),
pp. 115–141.

Kornblith, S., Norouzi, M., Lee, H., and Hinton, G. (2019). Similarity of Neural
Network Representations Revisited. arXiv, 1905.00414 https://arxiv.org/abs/
1905.00414.

Kriegeskorte, N. (2015). Deep neural networks: a new framework for modeling
biological vision and brain information processing. Annu. Rev. Vis. Sci. 1,
417–446.

Kriegeskorte, N., Mur,M., andBandettini, P. (2008). Representational similarity
analysis - connecting the branches of systems neuroscience. Front. Syst. Neu-
rosci. 2, 4.
Krizhevsky, A., Sutskever, I., and Hinton, G.E. (2012). Imagenet classification
with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 25,
1097–1105.

Krogh, A., and Hertz, J.A. (1992). A simple weight decay can improve general-
ization. Adv. Neural Inf. Process. Syst. 4, 950–957.

Kuffler, S.W. (1953). Discharge patterns and functional organization of
mammalian retina. J. Neurophysiol. 16, 37–68.

Laje, R., and Buonomano, D.V. (2013). Robust timing and motor patterns by
taming chaos in recurrent neural networks. Nat. Neurosci. 16, 925–933.

Le, Q.V., Jaitly, N., and Hinton, G.E. (2015). A simple way to initialize recurrent
networks of rectified linear units. arXiv, 1504.00941 https://arxiv.org/abs/
1504.00941.

LeCun, Y. (1988). A theoretical framework for back-propagation. In Proceed-
ings of the 1988 Connectionist Models Summer School, D. Touretzky, G. Hin-
ton, and T. Sejnowski, eds. (Morgan Kaufmann), pp. 21–28.

LeCun, Y., and Bengio, Y. (1995). Convolutional networks for images, speech,
and time series. In The Handbook of Brain Theory and Neural Networks, M.A.
Arbib, ed. (MIT Press), pp. 255–258.

LeCun, Y., Boser, B.E., Denker, J.S., Henderson, D., Howard, R.E., Hubbard,
W.E., and Jackel, L.D. (1990). Handwritten digit recognition with a back-prop-
agation network. Adv. Neural Inf. Process. Syst. 2, 396–404.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based
learning applied to document recognition. Proc. IEEE 86, 2278–2324.

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature 521,
436–444.

Lillicrap, T.P., Cownden, D., Tweed, D.B., and Akerman, C.J. (2016). Random
synaptic feedback weights support error backpropagation for deep learning.
Nat. Commun. 7, 13276.

Lillicrap, T.P., Santoro, A., Marris, L., Akerman, C.J., and Hinton, G. (2020).
Backpropagation and the brain. Nat. Rev. Neurosci. 21, 335–346.

Lindsay, G.W. (2020). Attention in psychology, neuroscience, and machine
learning. Front. Comput. Neurosci. 14, 29.

Lindsay, G.W., and Miller, K.D. (2018). How biological attention mechanisms
improve task performance in a large-scale visual system model. eLife 7,
e38105.

Lindsey, J., Ocko, S.A., Ganguli, S., and Deny, S. (2019). A unified theory of
early visual representations from retina to cortex through anatomically con-
strained deep cnns. arXiv, 1901.00945 https://arxiv.org/abs/1901.00945.

Lotter, W., Kreiman, G., and Cox, D. (2016). Deep predictive coding networks
for video prediction and unsupervised learning. arXiv, 1605.08104 https://
arxiv.org/abs/1605.08104.

Maheswaranathan, N., Williams, A.H., Golub, M.D., Ganguli, S., and Sussillo,
D. (2019). Universality and individuality in neural dynamics across large popu-
lations of recurrent networks. arXiv, 1907.08549 https://arxiv.org/abs/
1907.08549.

Mante, V., Sussillo, D., Shenoy, K.V., and Newsome, W.T. (2013). Context-
dependent computation by recurrent dynamics in prefrontal cortex. Nature
503, 78–84.

Markov, N.T., Ercsey-Ravasz, M.M., Ribeiro Gomes, A.R., Lamy, C., Magrou,
L., Vezoli, J., Misery, P., Falchier, A., Quilodran, R., Gariel, M.A., et al. (2014). A
weighted and directed interareal connectivitymatrix formacaque cerebral cor-
tex. Cereb. Cortex 24, 17–36.

Markram, H., Wang, Y., and Tsodyks, M. (1998). Differential signaling via the
same axon of neocortical pyramidal neurons. Proc. Natl. Acad. Sci. USA 95,
5323–5328.

Masse, N.Y., Grant, G.D., and Freedman, D.J. (2018). Alleviating catastrophic
forgetting using context-dependent gating and synaptic stabilization. Proc.
Natl. Acad. Sci. USA 115, E10467–E10475.

Masse, N.Y., Yang, G.R., Song, H.F., Wang, X.-J., and Freedman, D.J. (2019).
Circuit mechanisms for the maintenance and manipulation of information in
working memory. Nat. Neurosci. 22, 1159–1167.
Neuron 107, September 23, 2020 1067

http://refhub.elsevier.com/S0896-6273(20)30705-4/sref72
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref72
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref73
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref73
https://arxiv.org/abs/1502.03167
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref75
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref75
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref75
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref76
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref76
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref77
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref77
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref77
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref77
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref78
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref78
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref78
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref79
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref79
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref79
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref79
https://arxiv.org/abs/1802.07239
https://arxiv.org/abs/1802.07239
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref81
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref81
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref81
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref82
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref82
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref82
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref83
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref83
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref84
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref84
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref84
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref84
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1312.6114
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref87
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref87
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref87
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref87
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref88
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref88
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref88
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref89
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref89
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref89
https://arxiv.org/abs/1905.00414
https://arxiv.org/abs/1905.00414
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref91
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref91
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref91
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref92
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref92
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref92
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref93
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref93
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref93
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref94
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref94
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref95
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref95
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref96
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref96
https://arxiv.org/abs/1504.00941
https://arxiv.org/abs/1504.00941
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref98
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref98
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref98
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref99
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref99
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref99
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref100
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref100
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref100
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref101
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref101
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref102
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref102
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref103
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref103
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref103
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref104
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref104
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref105
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref105
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref106
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref106
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref106
https://arxiv.org/abs/1901.00945
https://arxiv.org/abs/1605.08104
https://arxiv.org/abs/1605.08104
https://arxiv.org/abs/1907.08549
https://arxiv.org/abs/1907.08549
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref110
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref110
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref110
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref111
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref111
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref111
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref111
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref112
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref112
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref112
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref113
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref113
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref113
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref114
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref114
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref114

ll
Primer
Mastrogiuseppe, F., and Ostojic, S. (2018). Linking connectivity, dynamics,
and computations in low-rank recurrent neural networks. Neuron 99, 609–
623.e29.

Mathis, A., Mamidanna, P., Cury, K.M., Abe, T., Murthy, V.N., Mathis, M.W.,
and Bethge, M. (2018). DeepLabCut: markerless pose estimation of user-
defined body parts with deep learning. Nat. Neurosci. 21, 1281–1289.

McCloskey, M., and Cohen, N.J. (1989). Catastrophic interference in connec-
tionist networks: The sequential learning problem. Psychology of Learning and
Motivation 24, 109–165.

McIntosh, L.T., Maheswaranathan, N., Nayebi, A., Ganguli, S., and Baccus,
S.A. (2016). Deep learning models of the retinal response to natural scenes.
Adv. Neural Inf. Process. Syst. 29, 1369–1377.

Merolla, P.A., Arthur, J.V., Alvarez-Icaza, R., Cassidy, A.S., Sawada, J.,
Akopyan, F., Jackson, B.L., Imam, N., Guo, C., Nakamura, Y., et al. (2014). Arti-
ficial brains. Amillion spiking-neuron integrated circuit with a scalable commu-
nication network and interface. Science 345, 668–673.

Metz, L., Maheswaranathan, N., Cheung, B., and Sohl-Dickstein, J. (2018).
Meta-learning update rules for unsupervised representation learning. arXiv,
1804.00222 https://arxiv.org/abs/1804.00222.

Miconi, T., Clune, J., and Stanley, K.O. (2018). Differentiable plasticity: training
plastic neural networks with backpropagation. arXiv, 1804.02464 https://arxiv.
org/abs/1804.02464.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G.,
Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al. (2015). Human-
level control through deep reinforcement learning. Nature 518, 529–533.

Mongillo, G., Barak, O., and Tsodyks, M. (2008). Synaptic theory of working
memory. Science 319, 1543–1546.

Murray, J.M. (2019). Local online learning in recurrent networks with random
feedback. eLife 8, e43299.

Nath, T., Mathis, A., Chen, A.C., Patel, A., Bethge, M., and Mathis, M.W.
(2019). Using DeepLabCut for 3D markerless pose estimation across species
and behaviors. Nat. Protoc. 14, 2152–2176.

Nayebi, A., Bear, D., Kubilius, J., Kar, K., Ganguli, S., Sussillo, D., DiCarlo, J.J.,
and Yamins, D.L. (2018). Task-driven convolutional recurrent models of the vi-
sual system. Adv. Neural Inf. Process. Syst. 31, 5290–5301.

Nicola, W., and Clopath, C. (2017). Supervised learning in spiking neural net-
works with FORCE training. Nat. Commun. 8, 2208.

Niv, Y. (2009). Reinforcement learning in the brain. J. Math. Psychol. 53,
139–154.

Oh, S.W., Harris, J.A., Ng, L.,Winslow, B., Cain, N., Mihalas, S., Wang, Q., Lau,
C., Kuan, L., Henry, A.M., et al. (2014). A mesoscale connectome of the mouse
brain. Nature 508, 207–214.

Oja, E. (1982). A simplified neuron model as a principal component analyzer.
J. Math. Biol. 15, 267–273.

Olsen, S.R., Bortone, D.S., Adesnik, H., and Scanziani, M. (2012). Gain control
by layer six in cortical circuits of vision. Nature 483, 47–52.

Olshausen, B.A., and Field, D.J. (1996). Emergence of simple-cell receptive
field properties by learning a sparse code for natural images. Nature 381,
607–609.

Orhan, A.E., andMa,W.J. (2019). A diverse range of factors affect the nature of
neural representations underlying short-term memory. Nat. Neurosci. 22,
275–283.

Pandarinath, C., O’Shea, D.J., Collins, J., Jozefowicz, R., Stavisky, S.D., Kao,
J.C., Trautmann, E.M., Kaufman, M.T., Ryu, S.I., Hochberg, L.R., et al. (2018).
Inferring single-trial neural population dynamics using sequential auto-en-
coders. Nat. Methods 15, 805–815.

Pascanu, R., Mikolov, T., and Bengio, Y. (2013). On the difficulty of training
recurrent neural networks. Proceedings of the 30th International Conference
on Machine Learning 28, pp. 1310–1318.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen,
T., Lin, Z., Gimelshein, N., Antiga, L., et al. (2019). Pytorch: An imperative style,
1068 Neuron 107, September 23, 2020
high-performance deep learning library. Adv. Neural Inf. Process. Syst. 32,
8024–8035.

Pei, J., Deng, L., Song, S., Zhao, M., Zhang, Y., Wu, S., Wang, G., Zou, Z., Wu,
Z., He, W., et al. (2019). Towards artificial general intelligence with hybrid
Tianjic chip architecture. Nature 572, 106–111.

Polyak, B.T. (1964). Some methods of speeding up the convergence of itera-
tion methods. USSR Comput. Math. Math. Phys. 4, 1–17.

Ponce, C.R., Xiao, W., Schade, P.F., Hartmann, T.S., Kreiman, G., and Living-
stone, M.S. (2019). Evolving images for visual neurons using a deep generative
network reveals coding principles and neuronal preferences. Cell 177, 999–
1009.e10.

Prenger, R., Wu,M.C.-K., David, S.V., andGallant, J.L. (2004). Nonlinear V1 re-
sponses to natural scenes revealed by neural network analysis. Neural Netw.
17, 663–679.

Rajalingham, R., Issa, E.B., Bashivan, P., Kar, K., Schmidt, K., and DiCarlo, J.J.
(2018). Large-scale, high-resolution comparison of the core visual object
recognition behavior of humans, monkeys, and state-of-the-art deep artificial
neural networks. J. Neurosci. 38, 7255–7269.

Rajan, K., Harvey, C.D., and Tank, D.W. (2016). Recurrent network models of
sequence generation and memory. Neuron 90, 128–142.

Rao, R.P., and Ballard, D.H. (1999). Predictive coding in the visual cortex: a
functional interpretation of some extra-classical receptive-field effects. Nat.
Neurosci. 2, 79–87.

Reynolds, J.H., and Heeger, D.J. (2009). The normalization model of attention.
Neuron 61, 168–185.

Richards, B.A., Lillicrap, T.P., Beaudoin, P., Bengio, Y., Bogacz, R., Christen-
sen, A., Clopath, C., Costa, R.P., de Berker, A., Ganguli, S., et al. (2019). A
deep learning framework for neuroscience. Nat. Neurosci. 22, 1761–1770.

Riesenhuber, M., and Poggio, T. (1999). Hierarchical models of object recog-
nition in cortex. Nat. Neurosci. 2, 1019–1025.

Rigotti, M., Ben Dayan Rubin, D., Wang, X.-J., and Fusi, S. (2010). Internal rep-
resentation of task rules by recurrent dynamics: the importance of the diversity
of neural responses. Front. Comput. Neurosci. 4, 24.

Rigotti, M., Barak, O., Warden, M.R., Wang, X.-J., Daw, N.D., Miller, E.K., and
Fusi, S. (2013). The importance of mixed selectivity in complex cognitive tasks.
Nature 497, 585–590.

Robbins, H., and Monro, S. (1951). A stochastic approximation method. Ann.
Math. Stat. 22, 400–407.

Roelfsema, P.R., and Holtmaat, A. (2018). Control of synaptic plasticity in deep
cortical networks. Nat. Rev. Neurosci. 19, 166–180.

Roitman, J.D., and Shadlen, M.N. (2002). Response of neurons in the lateral
intraparietal area during a combined visual discrimination reaction time task.
J. Neurosci. 22, 9475–9489.

Romo, R., Brody, C.D., Hernández, A., and Lemus, L. (1999). Neuronal corre-
lates of parametric working memory in the prefrontal cortex. Nature 399,
470–473.

Rosenblatt, F. (1958). The perceptron: a probabilistic model for information
storage and organization in the brain. Psychol. Rev. 65, 386–408.

Rosenblatt, F. (1962). Principles of neurodynamics: Perceptions and the theory
of brain mechanisms. In Brain Theory, G. Palm and A. Aertsen, eds. (Springer),
pp. 245–248.

Rubin, D.B., Van Hooser, S.D., and Miller, K.D. (2015). The stabilized supralin-
ear network: a unifying circuit motif underlying multi-input integration in sen-
sory cortex. Neuron 85, 402–417.

Rumelhart, D.E., Hinton, G.E., and Williams, R.J. (1986). Learning representa-
tions by back-propagating errors. Nature 323, 533–536.

Sacramento, J., Costa, R.P., Bengio, Y., and Senn, W. (2018). Dendritic
cortical microcircuits approximate the backpropagation algorithm. Adv. Neu-
ral Inf. Process. Syst. 31, 8721–8732.

http://refhub.elsevier.com/S0896-6273(20)30705-4/sref115
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref115
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref115
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref116
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref116
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref116
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref117
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref117
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref117
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref118
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref118
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref118
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref119
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref119
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref119
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref119
https://arxiv.org/abs/1804.00222
https://arxiv.org/abs/1804.02464
https://arxiv.org/abs/1804.02464
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref122
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref122
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref122
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref123
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref123
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref124
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref124
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref125
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref125
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref125
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref126
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref126
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref126
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref127
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref127
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref128
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref128
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref129
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref129
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref129
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref130
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref130
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref131
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref131
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref132
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref132
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref132
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref133
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref133
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref133
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref134
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref134
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref134
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref134
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref135
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref135
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref135
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref136
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref136
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref136
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref136
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref137
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref137
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref137
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref138
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref138
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref139
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref139
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref139
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref139
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref140
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref140
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref140
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref141
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref141
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref141
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref141
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref142
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref142
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref143
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref143
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref143
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref144
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref144
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref145
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref145
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref145
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref146
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref146
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref147
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref147
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref147
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref148
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref148
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref148
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref149
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref149
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref150
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref150
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref151
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref151
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref151
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref152
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref152
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref152
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref153
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref153
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref154
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref154
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref154
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref155
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref155
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref155
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref156
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref156
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref157
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref157
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref157

ll
Primer
Salinas, E., and Thier, P. (2000). Gain modulation: a major computational prin-
ciple of the central nervous system. Neuron 27, 15–21.

Saxe, A.M., McClelland, J.L., and Ganguli, S. (2013). Exact solutions to the
nonlinear dynamics of learning in deep linear neural networks. arXiv,
1312.6120 https://arxiv.org/abs/1312.6120.

Saxe, A.M., Bansal, Y., Dapello, J., Advani, M., Kolchinsky, A., Tracey, B.D.,
and Cox, D.D. (2019a). On the information bottleneck theory of deep learning.
J. Stat. Mech. 2019, 124020.

Saxe, A.M., McClelland, J.L., and Ganguli, S. (2019b). A mathematical theory
of semantic development in deep neural networks. Proc. Natl. Acad. Sci. USA
116, 11537–11546.

Schultz, W., Dayan, P., and Montague, P.R. (1997). A neural substrate of pre-
diction and reward. Science 275, 1593–1599.

Seung, H.S. (1996). How the brain keeps the eyes still. Proc. Natl. Acad. Sci.
USA 93, 13339–13344.

Shu, Y., Hasenstaub, A., and McCormick, D.A. (2003). Turning on and off
recurrent balanced cortical activity. Nature 423, 288–293.

Shwartz-Ziv, R., and Tishby, N. (2017). Opening the black box of deep neural
networks via information. arXiv, 1703.00810 https://arxiv.org/abs/1703.00810.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A.,
Hubert, T., Baker, L., Lai, M., Bolton, A., et al. (2017). Mastering the game of Go
without human knowledge. Nature 550, 354–359.

Simonyan, K., and Zisserman, A. (2014). Very deep convolutional networks for
large-scale image recognition. arXiv, 1409.1556 https://arxiv.org/abs/
1409.1556.

Sompolinsky, H., Crisanti, A., and Sommers, H.-J. (1988). Chaos in random
neural networks. Phys. Rev. Lett. 61, 259–262.

Song, S., Miller, K.D., and Abbott, L.F. (2000). Competitive Hebbian learning
through spike-timing-dependent synaptic plasticity. Nat. Neurosci. 3,
919–926.

Song, H.F., Yang, G.R., and Wang, X.-J. (2016). Training excitatory-inhibitory
recurrent neural networks for cognitive tasks: a simple and flexible framework.
PLoS Comput. Biol. 12, e1004792.

Song, H.F., Yang, G.R., and Wang, X.-J. (2017). Reward-based training of
recurrent neural networks for cognitive and value-based tasks. eLife 6,
e21492.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R.
(2014). Dropout: a simple way to prevent neural networks from overfitting.
J. Mach. Learn. Res. 15, 1929–1958.

Stokes, M.G. (2015). ‘Activity-silent’ working memory in prefrontal cortex: a
dynamic coding framework. Trends Cogn. Sci. 19, 394–405.

Strogatz, S.H. (2001). Nonlinear Dynamics and Chaos: With Applications to
Physics, Biology, Chemistry, and Engineering (Studies in Nonlinearity)
(CRC Press).

Sussillo, D. (2014). Neural circuits as computational dynamical systems. Curr.
Opin. Neurobiol. 25, 156–163.

Sussillo, D., and Abbott, L.F. (2009). Generating coherent patterns of activity
from chaotic neural networks. Neuron 63, 544–557.

Sussillo, D., and Barak, O. (2013). Opening the black box: low-dimensional dy-
namics in high-dimensional recurrent neural networks. Neural Comput. 25,
626–649.

Sussillo, D., Churchland, M.M., Kaufman, M.T., and Shenoy, K.V. (2015). A
neural network that finds a naturalistic solution for the production of muscle
activity. Nat. Neurosci. 18, 1025–1033.

Sutskever, I., Martens, J., Dahl, G., and Hinton, G. (2013). On the importance of
initialization and momentum in deep learning. Proceedings of the 30th Interna-
tional Conference on Machine Learning 28, 1139–1147.

Sutton, R.S., and Barto, A.G. (2018). Reinforcement Learning: An Introduction
(MIT Press).
Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I.,
and Fergus, R. (2013). Intriguing properties of neural networks. arXiv,
1312.6199 https://arxiv.org/abs/1312.6199.

Tavanaei, A., Ghodrati, M., Kheradpisheh, S.R., Masquelier, T., and Maida, A.
(2019). Deep learning in spiking neural networks. Neural Netw. 111, 47–63.

Tieleman, T., and Hinton, G. (2012). Lecture 6.5-rmsprop: Divide the gradient
by a running average of its recentmagnitude. COURSERA: Neural networks for
machine learning 4, pp. 26–31.

Tikhonov, A.N. (1943). On the stability of inverse problems. Dokl. Akad. Nauk
SSSR 39, 195–198.

Ulyanov, D., Vedaldi, A., and Lempitsky, V. (2016). Instance normalization: The
missing ingredient for fast stylization. arXiv, 1607.08022 https://arxiv.org/abs/
1607.08022.

van Vreeswijk, C., and Sompolinsky, H. (1996). Chaos in neuronal networks
with balanced excitatory and inhibitory activity. Science 274, 1724–1726.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N.,
Kaiser, q., and Polosukhin, I. (2017). Attention is all you need. Adv. Neural
Inf. Process. Syst. 30, 5998–6008.

Wang, X.-J. (2001). Synaptic reverberation underlying mnemonic persistent
activity. Trends Neurosci. 24, 455–463.

Wang, X.-J. (2002). Probabilistic decision making by slow reverberation in
cortical circuits. Neuron 36, 955–968.

Wang, X.-J. (2008). Decision making in recurrent neuronal circuits. Neuron 60,
215–234.

Wang, X.-J., and Yang, G.R. (2018). A disinhibitory circuit motif and flexible in-
formation routing in the brain. Curr. Opin. Neurobiol. 49, 75–83.

Wang, X.-J., Tegnér, J., Constantinidis, C., and Goldman-Rakic, P.S. (2004).
Division of labor among distinct subtypes of inhibitory neurons in a cortical
microcircuit of working memory. Proc. Natl. Acad. Sci. USA 101, 1368–1373.

Wang, J., Narain, D., Hosseini, E.A., and Jazayeri, M. (2018). Flexible timing by
temporal scaling of cortical responses. Nat. Neurosci. 21, 102–110.

Werbos, P.J. (1990). Backpropagation through time: what it does and how to
do it. Proc. IEEE 78, 1550–1560.

Williams, R.J., and Zipser, D. (1989). A learning algorithm for continually
running fully recurrent neural networks. Neural Comput. 1, 270–280.

Williams, A.H., Kim, T.H., Wang, F., Vyas, S., Ryu, S.I., Shenoy, K.V., Schnitzer,
M., Kolda, T.G., and Ganguli, S. (2018). Unsupervised discovery of demixed,
low-dimensional neural dynamics across multiple timescales through tensor
component analysis. Neuron 98, 1099–1115.e8.

Wilson, H.R., and Cowan, J.D. (1972). Excitatory and inhibitory interactions in
localized populations of model neurons. Biophys. J. 12, 1–24.

Wu, Y., and He, K. (2018). Group normalization. In Computer Vision – ECCV
2018, V. Ferrari, M. Hebert, C. Sminchisescu, and Y. Weiss, eds.
(ECCV), pp. 3–19.

Xie, X., and Seung, H.S. (2003). Equivalence of backpropagation and contras-
tive Hebbian learning in a layered network. Neural Comput. 15, 441–454.

Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A., Salakhudinov, R., Zemel, R., and
Bengio, Y. (2015). Show, attend and tell: Neural image caption generation with
visual attention. Proceedings of the 32nd International Conference onMachine
Learning 37, pp. 2048–2057.

Yamane, Y., Carlson, E.T., Bowman, K.C., Wang, Z., and Connor, C.E. (2008).
A neural code for three-dimensional object shape in macaque inferotemporal
cortex. Nat. Neurosci. 11, 1352–1360.

Yamins, D.L., and DiCarlo, J.J. (2016). Using goal-driven deep learningmodels
to understand sensory cortex. Nat. Neurosci. 19, 356–365.

Yamins, D.L., Hong, H., Cadieu, C.F., Solomon, E.A., Seibert, D., and DiCarlo,
J.J. (2014). Performance-optimized hierarchical models predict neural re-
sponses in higher visual cortex. Proc. Natl. Acad. Sci. USA 111, 8619–8624.
Neuron 107, September 23, 2020 1069

http://refhub.elsevier.com/S0896-6273(20)30705-4/sref158
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref158
https://arxiv.org/abs/1312.6120
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref160
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref160
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref160
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref161
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref161
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref161
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref162
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref162
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref163
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref163
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref164
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref164
https://arxiv.org/abs/1703.00810
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref166
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref166
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref166
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1409.1556
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref168
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref168
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref169
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref169
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref169
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref170
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref170
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref170
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref171
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref171
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref171
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref172
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref172
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref172
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref173
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref173
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref174
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref174
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref174
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref175
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref175
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref176
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref176
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref177
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref177
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref177
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref178
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref178
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref178
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref179
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref179
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref179
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref180
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref180
https://arxiv.org/abs/1312.6199
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref182
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref182
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref183
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref183
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref183
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref184
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref184
https://arxiv.org/abs/1607.08022
https://arxiv.org/abs/1607.08022
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref186
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref186
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref187
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref187
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref187
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref188
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref188
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref189
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref189
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref190
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref190
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref191
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref191
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref192
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref192
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref192
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref193
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref193
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref194
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref194
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref195
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref195
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref196
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref196
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref196
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref196
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref197
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref197
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref198
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref198
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref198
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref199
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref199
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref200
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref200
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref200
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref200
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref201
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref201
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref201
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref202
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref202
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref203
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref203
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref203

ll
Primer
Yang, G., Pan, F., and Gan, W.-B. (2009). Stably maintained dendritic spines
are associated with lifelong memories. Nature 462, 920–924.

Yang, G.R., Murray, J.D., and Wang, X.-J. (2016). A dendritic disinhibitory cir-
cuit mechanism for pathway-specific gating. Nat. Commun. 7, 12815.

Yang, G.R., Ganichev, I., Wang, X.-J., Shlens, J., and Sussillo, D. (2018). A da-
taset and architecture for visual reasoning with a working memory. In Com-
puter Vision – ECCV 2018, V. Ferrari, M. Hebert, C. Sminchisescu, and Y.
Weiss, eds. (ECCV), pp. 729–745.

Yang, G.R., Joglekar, M.R., Song, H.F., Newsome, W.T., and Wang, X.-J.
(2019). Task representations in neural networks trained to perform many
cognitive tasks. Nat. Neurosci. 22, 297–306.

Zeiler, M.D., and Fergus, R. (2014). Visualizing and understanding convolu-
tional networks. In Computer Vision – ECCV 2014, D. Fleet, T. Pajdla, B.
Schiele, and T. Tuytelaars, eds. (ECCV), pp. 818–833.
1070 Neuron 107, September 23, 2020
Zenke, F., and Ganguli, S. (2018). Superspike: Supervised learning in multi-
layer spiking neural networks. Neural Comput. 30, 1514–1541.

Zenke, F., Poole, B., and Ganguli, S. (2017). Continual learning through synap-
tic intelligence. Proceedings of the 34th International Conference on Machine
Learning 70, pp. 3987–3995.

Zhuang, C., Yan, S., Nayebi, A., and Yamins, D. (2019). Self-supervised neural
network models of higher visual cortex development. In 2019 Conference on
Cognitive Computational Neuroscience (CCN), pp. 566–569.

Zipser, D., and Andersen, R.A. (1988). A back-propagation programmed
network that simulates response properties of a subset of posterior parietal
neurons. Nature 331, 679–684.

Zucker, R.S., and Regehr, W.G. (2002). Short-term synaptic plasticity. Annu.
Rev. Physiol. 64, 355–405.

http://refhub.elsevier.com/S0896-6273(20)30705-4/sref204
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref204
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref205
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref205
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref206
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref206
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref206
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref206
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref207
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref207
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref207
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref208
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref208
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref208
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref209
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref209
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref210
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref210
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref210
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref211
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref211
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref211
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref212
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref212
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref212
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref213
http://refhub.elsevier.com/S0896-6273(20)30705-4/sref213

	Artificial Neural Networks for Neuroscientists: A Primer
	2.1. Basic Ingredient: Learning Problem, Architecture, and Algorithm
	Learning Problem
	Network Architecture
	Training Algorithm

	2.2. Variations of Learning Problems/Objective Functions
	Supervised Learning
	Reinforcement Learning
	Unsupervised Learning

	2.3. Variations of Network Architectures
	Recurrent Neural Network
	Convolutional Neural Networks
	Activation Function
	Normalization

	2.4. Variations of Training Algorithms
	Variants of SGD-Based Methods
	Regularization

	3.1. Convolutional Networks for Visual Systems
	3.2. RNNs for Cognitive and Motor Systems
	Similarity Comparison
	Complex Tuning Analysis
	Dynamical Systems Analysis
	Understanding Neural Circuits from Objectives, Architecture, and Training
	5.1. Structured Connections
	5.2. Canonical Computation
	Normalization
	Attention
	Gating
	Predictive Coding

	5.3. Learning and Plasticity
	Selective Training and Continual Learning
	Hebbian Plasticity
	Short-Term Plasticity
	Biologically Realistic Gradient Descent

	Spiking Neural Networks
	Standardized Protocols for Developing Brain-like Recurrent Networks
	Detailed Behavioral and Physiological Predictions
	Interpreting Learned Networks and Learning Processes
	Conclusion
	Acknowledgments
	References

