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Impact of membrane bistability on dynamical response of neuronal populations

Wei Wei,1,2,* Fred Wolf,3 and Xiao-Jing Wang1,2,4

1Center for Neural Science, New York University, New York, New York 10003, USA
2Department of Neurobiology and Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06520, USA

3Max Planck Institute for Dynamics and Self-Organization and Bernstein Center for Computational Neuroscience,
D-37077 Göttingen, Germany

4NYU-ECNU Institute of Brain and Cognitive Science, NYU Shanghai, Shanghai, China
(Received 5 January 2015; revised manuscript received 5 August 2015; published 25 September 2015)

Neurons in many brain areas can develop a pronounced depolarized state of membrane potential (up state)
in addition to the normal hyperpolarized state near the resting potential. The influence of the up state on signal
encoding, however, is not well investigated. Here we construct a one-dimensional bistable neuron model and
calculate the linear dynamical response to noisy oscillatory inputs analytically. We find that with the appearance
of an up state, the transmission function is enhanced by the emergence of a local maximum at some optimal
frequency and the phase lag relative to the input signal is reduced. We characterize the dependence of the
enhancement of frequency response on intrinsic dynamics and on the occupancy of the up state.
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I. INTRODUCTION

The elevated state of the neuronal membrane potential
(MP), the so-called up state, has been observed extensively in
different brain areas [1–9]. In this regime the MPs of neurons
are characterized by a bimodal distribution resulting from two
stable fixed points in membrane dynamics. This bistability of
neuronal dynamics leads to synchronous transitions between
the down and up states of neurons in a network and the
development of global up and down states [10,11]. The exact
role of the bistability of MP in signal encoding and processing
is still not well understood.

Individual neurons in a network receive noisy synaptic
inputs and fire spikes irregularly [12]. Besides the stationary
firing rate, one important characteristic of neuronal dynam-
ics is the response to time varying signals superimposed
on background noise [13,14]. This dynamical response of
cortical neurons has recently been measured experimentally
up to 1 kHz of signal frequency, which revealed very high
cutoff frequencies [15–19]. Theoretically, the linear dynamical
response has been obtained analytically for the leaky integrate-
and-fire (LIF) neuron [20,21], in which membrane dynamics
has only one stable fixed point, and for the r − τ model (a
piecewise linear version of the exponential integrate-and-fire
model) [22], in which an additional unstable fixed point for
action potential initiation was included. The effect of the
unstable fixed point in membrane dynamics on dynamical
response was also investigated numerically in other one-
dimensional models and conductance-based models [23–27].
A theoretical characterization of the dynamical response of
neurons that exhibit up and down states, however, is still
missing. Intuitively, when the membrane potential of a neuron
has a higher probability to be around some depolarized voltage,
it is more likely that a small oscillatory signal can contribute
to the firing of spikes, leading to enhancement of frequency
response. Here we propose an analytically solvable bistable
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neuron model to investigate the impact of the up state on the
dynamical response of neurons.

II. MODEL DESCRIPTION

In this work we construct a one-dimensional bistable neuron
model, which has piecewise linear subthreshold dynamics and
is analytically solvable for the linear dynamical response. The
dynamics is described by the following Langevin equation:

τ v̇ = f (v) + μ + ση(t) , (1)

where

f (v) =
⎧⎨
⎩

−v, −∞ < v � v0

r1(v − vt1), v0 < v � v1

r(v − vt0), v1 < v � vb.

(2)

Here τ is the membrane time constant near the resting
potential, v is the MP relative to the resting potential, μ is
the mean external input, η(t) is a Gaussian white noise which
satisfies 〈η(t)〉 = 0 and 〈η(t)η(t ′)〉 = τδ(t − t ′), and σ is the
strength of the noise. We will take τ as the unit of time in
the theoretical results. Note that the membrane dynamics here
might result from an interaction between patterned synaptic
inputs and intrinsic membrane dynamics. Figure 1(a) shows
an illustration of the model dynamics when there is no external
input. The slopes of the middle and right pieces are denoted as
r1 and r , respectively. Note that r characterizes the membrane
dynamics around the higher stable fixed point where the time
constant is given by τ/|r|. MPs at the crossing points of the
left piece with the middle piece, and the middle piece with
the right piece are denoted as v0 and v1, respectively. When
there is no external input, vt1 and vt0 are the unstable fixed point
and the higher stable fixed point, respectively. We will fix v0

and vt0, whereas vt1 and v1 are given by vt1 = (1 + 1/r1)v0

and v1 = (r1vt1 − rvt0)/(r1 − r). The deterministic dynamics
[σ = 0 in Eq. (1)] possess one lower stable fixed point,
one unstable fixed point, and one higher stable fixed point,
located at v = μ, vt1 − μ/r1, and vt0 − μ/r , respectively.
When the MP reaches an absorbing boundary vb, it is reset
to a resetting potential vr for a refractory period τr . The larger
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FIG. 1. Illustration of the model. (a): illustration of the piecewise
linear model; (b): MP trajectories for r1 = 1, 5, and 10 from bottom
to top. Parameters used are: r = −1, v0 = 0.5, vr = vt1, vt0 = 2,

ṽb = −0.2, τ = 10 ms, τr = 0 ms, μ = 0, σ = 0.5.

one between |ṽ0| and |ṽb| determines the rheobase current
of the model neuron, where ṽ0 ≡ −v0 and ṽb ≡ r(vb − vt0).
Since the model neuron will never fire spikes when |r| is very
large if vb is fixed, we will fix ṽb and choose vb determined
by vb = vt0 + ṽb/r . The relative values of ṽ0 and ṽb might
indicate different dynamical regimes of the model neuron. For
example, a larger |ṽb| implies that the neuron can make a
transition from the up-down regime to a tonically depolarized
state when μ > |ṽ0|, which is reminiscent to that observed
for cortical neurons from sleep to wakefulness [28]. We are
most interested in the noise-driven regime, i.e., the mean
external current is smaller than the rheobase current, since real
neurons work in a regime in which excitatory and inhibitory
synaptic inputs to individual neurons balance each other [29].
In this dynamic regime, our neuron model describes barrier
penetration in a double well with reinjection of probability
current after reaching an absorbing boundary. Here we focus on
the case when vr is located within the middle piece, therefore
the model neuron could fire several spikes before transiting
to the down state, as normally observed for neurons exhibiting
up and down states. Figure 1(b) shows the MP trajectories for
three different r1. We see that with a larger r1, the MP spends
more times at the up state.

III. THE FOKKER-PLANCK EQUATION (FPE)
FRAMEWORK

The FPE corresponding to Eq. (1) has the following
form [30]:

∂tP (v,t) + ∂v[f (v) + μ − D∂v]P (v,t) = 0 , (3)

where D = 1
2σ 2 is the diffusion constant. We will use

both D and σ in the following. Defining the probability
current as J (v,t) = [f (v) + μ − D∂v]P (v,t), the FPE then
becomes the equation for probability conservation, ∂tP (v,t) +
∂vJ (v,t) = 0.

The boundary conditions are specified in the following (sub-
scripts 1, 2, 3 indicate the left, right, and middle MP regions in
Fig. 1(a). At the absorbing boundary vb, P2(vb,t) = 0. At the
resetting point vr , P3(v+

r ,t) − P3(v−
r ,t) = 0, and ∂vP3(v+

r ,t) −
∂vP3(v−

r ,t) = ∂vP2(vb,t − τr ), from the resetting condition
and continuity of the probability density and probability
current. At v0 and v1, the probability density and its derivative
are continuous: P1(v0,t) = P3(v0,t), ∂vP1(v0,t) = ∂vP3(v0,t),
P3(v1,t) = P2(v1,t), and ∂vP3(v1,t) = ∂vP2(v1,t). Finally the
normalization condition of the probability density requires

limv→−∞ P1(v,t) = 0. With these boundary conditions the
asymptotic solution of the FPE is uniquely determined (the
possible transient is not of interest here). The instantaneous
firing rate is given by the probability current through the
absorbing boundary, ν(t) ≡ J (vb,t) = −D∂vP2(vb,t).

IV. DEVELOPMENT OF THE UP STATE

When the mean input to a model neuron is constant,
the stationary probability density, denoted as P0(v), can be
obtained by setting J (v,t) = ν0, where ν0 is the stationary
firing rate and is determined by the normalization condition
of the stationary density,

∫ vb

−∞ P0(v) dv = 1 [see Appendix A
for the expressions of P0(v) and ν0]. The existence of the
up state requires the appearance of a local maximum of the
probability density at a depolarized MP value. Two peaks
appear in P0(v) if there exists an up state in the MP trajectories,
located around the lower stable fixed point and the higher
stable fixed point, which will be denoted as P down

0 and P
up
0 ,

respectively. The MPs corresponding to the two peaks, denoted
as vdown and vup, are the mean values of MPs at the down state
and up state, respectively. From the expression of P0(v), it
is easy to see that the down state locates at the lower stable
fixed point, vdown = μ. The development of a local maximum
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FIG. 2. (Color online) Dependence of stationary probability den-
sity and linear dynamical response on r1 and r . (a) and (b): probability
density for different r1 and r . (c) and (d): dependence of the
transmission function (upper panels) and phase lag (lower panels)
of the linear dynamical response on r1 and r . The linear dynamical
response is normalized with the value at f = 1 Hz. Signal frequency
f is related to the angular frequency ω by ω = 2πf . Solid lines are
from theoretical results and asterisks are from simulations. Parameters
used: r = −1 in (a) and (c), r1 = 10 in (b) and (d). Other parameters
are the same as in Fig. 1.
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around the higher stable fixed point requires P ′
02(v) = 0

since the probability density decreases monotonically when
0 < v < v1, or equivalently, the following equation:

xe−x2
∫ x

xb

ex ′2
dx ′ = 1

2
(4)

has a solution within the range v1 < v < vb, where x ≡
r(v−vt0)+μ√−rσ

, xb ≡ r(vb−vt0)+μ√−rσ
, with vup independent of r1. Since

xb < x, we have x > 0 and v1 < vup < vt0 − μ/r from
Eq. (4). Therefore the mean value of the MP at the up
state locates lower than the higher stable fixed point in the
deterministic dynamics due to the influence of noise and the
absorbing boundary. The probability density at v = vup is
given by

P
up
0 = ν0

r(vup − vt0) + μ
. (5)

The dependence of P0(v) on r1 and r is shown in Figs. 2(a)
and 2(b). With the increase of r1, the transition from the up
state to the down state becomes more difficult, therefore the MP
resides on the up state for a longer time [Fig. 1(b)], indicating

a larger ratio between the maximal probability density at the
up state and down state [Fig. 2(a)]. Note that changing the
slope r1 can determine whether the up state exists or not by
adjusting v1, but does not influence the position of vup if it
exists. With the increase of |r| (the absolute value of r), vup

is shifted slightly towards the higher deterministic fixed point
and the ratio P

up
0 /P down

0 decreases [Fig. 2(b)].

V. LINEAR DYNAMICAL RESPONSE

Now consider a weak sinusoidal signal encoded in the
mean input, μ(t) = μ + ε cos(ωt), where ε is small. At the
linear order in ε, the instantaneous firing rate is given by
ν(t) = ν0 + ε|ν1c(ω)| cos[ωt − φc(ω)], where |ν1c(ω)| is the
transmission function and φc(ω) is the phase lag. We find that a
complex response function ν1c(ω) can be obtained analytically
by solving the FPE at the linear order using the Green’s
function method. The transmission function is the absolute
value of ν1c(ω), while the phase lag φc(ω) is given by the
phase angle, φc(ω) = arg[ν1c(ω)]. The expression of ν1c(ω)
reads

ν1c(ω) = 1

B

[
iω(1 + 1/r1)

(1 − iω)(1 + iω/r1)
(ψ1P01 −

√
D
1P

′
01) + iω(1/r1 − 1/r)

(1 + iω/r)(1 + iω/r1)
(ψ1Y

′
5 − ψ ′

1Y5)P02(v1) e�1

+
√

Dr1(r − r1)

(r1 + iω)(r + iω)
(ψ1Y

′
51 − ψ ′

1Y51)P ′
02(v1) e�1 + ν0/

√
Dr1

1 + iω/r1
(ψ1Y

′
51r − ψ ′

1Y51r )e�0

− ν0/
√

D|r|
1 + iω/r

[(ψ1Y
′
5 − ψ ′

1Y5)Y ′
2 − (ψ1Y

′
6 − ψ ′

1Y6)Y2]e�2

]
, (6)

where ψ1(v), 
1(v), etc., are parabolic cylinder functions [31],
and Y1(v), Y5(v), B, etc., are combinations of them to simplify
the expression, as defined in Appendix B. Note the functions
adopt their values at v = v0, unless denoted otherwise. Taking
ω → ∞ in Eq. (6), we find that the high frequency limit
is the same as the LIF model and the r − τ model, i.e.,
ν1c → ν0√

D

1√
ω

ei π
4 . This high frequency limit is character-

istic of the linear sub-threshold dynamics and absorbing
boundary [22].

VI. FREQUENCY-SELECTIVE ENHANCEMENT OF
LINEAR DYNAMICAL RESPONSE BY THE UP STATE

The dependence of the linear dynamical response on r1

and r are shown in Figs. 2(c) and 2(d). We see that a local
maximum of the transmission function, denoted as νmax

1c ,
appears at frequency f max [Figs. 2(c) and 2(d), upper panels]
accompanying the development of the up state [Figs. 2(a) and
2(b)]. The local maximal value of the transmission function
at the resonance frequency increases with r1 and decreases
with |r|, following the same trend as the ratio between the
probability density at vup and vdown [Figs. 2(a) and 2(b)]. The
phase lag of the firing rate response relative to the input signal
is reduced when there is a more pronounced up state [Figs. 2(c)
and 2(d), lower panels]. Therefore the up state can enhance the
dynamical response by developing local maximum at some

specific resonance frequency, and reduce the phase lag of the
response.

We characterize the relationship between the up state
occupancy and resonance in the linear dynamical response
quantitatively in Fig. 3. While the ratio between probability
densities at vup and vdown increases with r1 [Fig. 3(a)], the
maximal value of the transmission function at the resonance
frequency also increases with r1 [Fig. 3(c)]. This leads to an
increase of νmax

1c with P
up
0 /P down

0 [Fig. 3(c), inset]. Similarly,
νmax

1c decreases with |r| [Fig. 3(d)], following with the same
trend as P

up
0 /P down

0 except for an initial small |r| regime where
there is no local maximum for |ν1c(ω)| [Fig. 3(b)]. This also
leads to an increase of νmax

1c with P
up
0 /P down

0 [Fig. 3(d), inset].
The signal frequency at which the transmission function is
maximally enhanced, f max, keeps constant when r1 increases,
i.e., being independent of the time scale characterizing the
transition between up and down states [Fig. 3(e)]. On the
contrary, f max goes to higher frequencies when |r| increases
[Fig. 3(f)], and therefore is determined by the membrane time
constant at the up state, τ/|r|.

We tested the predication by using a neuron model with
biophysically realistic membrane currents, which includes a
non-inactivating potassium current controlling the up state and
an inward rectifying potassium current stabilizing the down
state [11]. We find that the normalized frequency response
is strongly enhanced with the development of the up state
(see Appendix C).
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FIG. 3. Dependence of up state occupancy and resonance in the
linear dynamical response on r1 and r . (a) and (b): the up state
occupancy P

up
0 /P down

0 as a function of r1 (a) and |r| (b). (c) and
(d): the local maximal value νmax

1c of the normalized transmission
function as a function of r1 (c) and |r| (d). Insets: νmax

1c as a function
of P

up
0 /P down

0 due to the change of r1 (c) and |r| (d). (e) and (f): the
resonance frequency f max as a function of r1 (e) and |r| (f). Parameters
used: r = −1 in (a) and r1 = 10 in (b). Other parameters are the same
as in Fig. 1.

VII. DISCUSSION

Dynamical response to noisy oscillatory inputs is a funda-
mental characterization of neurons’ capability in signal encod-
ing and transmission. Our model predicts a frequency-selective
enhancement of signal transmission with the development of
the up state. This prediction can be experimentally tested
for neurons exhibiting up and down states by performing
experiments similar to that in [15]. Selective enhancements
of specific high frequency components of signals might
be functionally beneficial for neural communication, since

signals with frequencies within the γ band (30–100 Hz) or
“high gamma” (>100 Hz) have been suggested to synchro-
nize inter-regional brain activity [32–34]. Firing reliability
of bistable neurons driven by time-dependent inputs were
investigated numerically in the Morris-Lecar model [35].
Bistable piecewise linear membrane dynamics was introduced
previously to approximate the nullcline of MP in the FitzHugh-
Nagumo model [36]. In the limit of τ → 0, the linear
response of that system was obtained [37]. Here we obtain the
linear dynamical response analytically for a one-dimensional
bistable system with general τ .

The network up state exhibits properties significantly
different from those in the down state, such as high irregular-
ity [11,38], oscillatory activity with frequency located within
β and γ ranges [39,40], and self-organized criticality [41].
Different mechanisms have been proposed to generate the
network up and down states, including short-term depression in
synaptic dynamics [41,42], and interaction between excitatory
and inhibitory populations [11,43]. Bistability in individual
neurons provides an alternative explanation for persistent
activity in some brain areas [44,45], and is related to ramping
neuronal activity implementing temporal information accumu-
lation [46,47]. Our work sheds insights into the possible role
of the up state on signal encoding and transmission through
population response. Further work on building a network of
interconnected such bistable units is needed to examine the
relationship between the up state at the individual neuron level
and at the circuit level [10,48].
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APPENDIX A: STATIONARY RESPONSE

When the mean input current μ and the noise strength σ

are constants, the stationary response is obtained by setting the
probability current to be constant, i.e., J (v,t) = ν0, where ν0

is the stationary firing rate. Denote the stationary probability
densities P0(v) within the left, middle, and right regions of the
model as P01(v), P03(v), and P02(v), respectively. By utilizing
the boundary conditions given in the main text, we have

P01(v) = 2ν0τ

σ
e
− 1

σ2 (v−μ)2

eA

(
1√
r1

∫ ṽ1+μ√
r1σ

ṽr +μ√
r1σ

e−x2
dx + 1√−r

eB

∫ ṽ1+μ√−rσ

ṽb+μ√−rσ

ex2
dx

)
,

P03(v) = 2ν0τ

σ
e

1
σ2 (r1(v−vt1)+μ)2

(
1√
r1

∫ ṽ1+μ√
r1σ

r1(max(v,vr )−vt1)+μ√
r1σ

e−x2
dx + 1√−r

eB

∫ ṽ1+μ√−rσ

ṽb+μ√−rσ

ex2
dx

)
, (A1)

P02(v) = 2ν0τ√−rσ
e

1
rσ2 (r(v−vt0)+μ)2

∫ r(v−vt0)+μ√−rσ

ṽb+μ√−rσ

ex2
dx,
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where ṽ1 = r1(v1 − vt1), ṽr = r1(vr − vt1), ṽb = r(vb − vt0), A = 1
σ 2 (1 + 1

r1
)(v0 − μ)2, and B = 1

σ 2 (− 1
r1

+ 1
r
)(ṽ1 + μ)2. The

stationary firing rate ν0 is obtained from the normalization condition
∫ vb

−∞ P0(v)dv = 1, which reads

ν−1
0 = τr + 2τ

[
eA

∫ v0−μ

σ

−∞
e−x2

dx

(
1√
r1

∫ ṽ1+μ√
r1σ

ṽr +μ√
r1σ

e−x2
dx + 1√−r

eB

∫ ṽ1+μ√−rσ

ṽb+μ√−rσ

ex2
dx

)
+ 1

r1

∫ ṽ1+μ√
r1σ

ṽr +μ√
r1σ

e−y2
dy

∫ y

−v0+μ√
r1σ

ex2
dx

− 1

r

∫ ṽ1+μ√−rσ

ṽb+μ√−rσ

e−y2
dy

∫ y

ṽb+μ√−rσ

ex2
dx + 1√−rr1

eB

∫ ṽ1+μ√
r1σ

−v0+μ√
r1σ

ex2
dx

∫ ṽ1+μ√−rσ

ṽb+μ√−rσ

ex2
dx

]
. (A2)

APPENDIX B: PARABOLIC CYLINDER FUNCTIONS IN
THE EXPRESSION OF LINEAR DYNAMICAL RESPONSE

Parabolic cylinder functions and their combinations are
used in the expression of linear dynamical response. Parabolic
cylinder functions U (a,x) and V (a,x) are two independent
solutions of the Weber’s equation

d2y

dx2
−

(
1

4
x2 + a

)
y = 0 ,

and are normalized to satisfy U ′(a,x)V (a,x) −
U (a,x)V ′(a,x) = −

√
2
π

, where the prime represents
derivative with respect to x [31].

The following parabolic cylinder functions are used in the
linear dynamical response:

ψ1(v) = U

(
−iω − 1

2
,−v − μ√

D

)
,


1(v) = U

(
−iω + 1

2
,−v − μ√

D

)
,

ψ2(v) =
√

πD

2
V

(
−iω − 1

2
,−v − μ√

D

)
,

ψ3(v) = U

(
− iω

|r| − 1

2
,−v − vt0 + μ/r√

D/|r|
)

,


3(v) = U

(
− iω

|r| + 1

2
,−v − vt0 + μ/r√

D/|r|
)

,

ψ4(v) =
√

πD

2|r|V
(

− iω

|r| − 1

2
,−v − vt0 + μ/r√

D/|r|
)

,


4(v) =
√

πD

2|r|V
(

− iω

|r| + 1

2
,−v − vt0 + μ/r√

D/|r|
)

,

ψ5(v) = U

(
− iω

r1
+ 1

2
,−v − vt1 + μ/r1√

D/r1

)
,


5(v) = U

(
− iω

r1
− 1

2
,−v − vt1 + μ/r1√

D/r1

)
,

ψ6(v) =
√

πD

2r1
V

(
− iω

r1
+ 1

2
,−v − vt1 + μ/r1√

D/r1

)
,


6(v) =
√

πD

2r1
V

(
− iω

r1
− 1

2
,−v − vt1 + μ/r1√

D/r1

)
.

To simplify the expression, we use the following combinations
of parabolic cylinder functions:

Y1(v) = ψ3(v)ψ4(vb) − ψ4(v)ψ3(vb),

Y2(v) = ψ3(v)
4(vb) + iω/r ψ4(v)
3(vb),

Y5(v) = ψ5(v1)ψ6(v) − ψ6(v1)ψ5(v),

Y6(v) = ψ ′
5(v1)ψ6(v) − ψ ′

6(v1)ψ5(v),

Y51(v) = ψ6(v)
5(v1) − iω/r1ψ5(v)
6(v1),

Y5r (v) = ψ5(vr )ψ6(v) − ψ6(vr )ψ5(v),

Y51r (v) = ψ6(v)
5(vr ) − iω/r1ψ5(v)
6(vr ),

B = (ψ ′
1(v0)Y5r (v0) − ψ1(v0)Y ′

5r (v0))e�0+iωτr

+ ((ψ1(v0)Y ′
5(v0) − ψ ′

1(v0)Y5(v0))Y ′
1(v0)

− (ψ1(v0)Y ′
6(v0) − ψ ′

1(v0)Y6(v0))Y1(v0))e�2 ,

where

�0 = 1

4D
(v0 − vr )(ṽ0 + ṽr ),

�1 = 1

4D
(v0 − v1)(ṽ0 + ṽ1),

�2 = 1

4D
[(v0 − v1)(ṽ0 + ṽ1) + (v1 − vb)(ṽ1 + ṽb)].

Note that ψ2(v) is used in the derivation of the linear dynamical
response, but does not appear in the final expression.

APPENDIX C: LINEAR DYNAMICAL RESPONSE IN A
BISTABLE NEURON MODEL WITH BIOPHYSICALLY

REALISTIC MEMBRANE CURRENTS

We check the linear dynamical response in a biologically
realistic neuron model with up and down states stabilized by
potassium currents. The neuronal dynamics has the following
form:

τ
dV

dt
= −(V − VL) − gARh∞(V − VK )

− gKSm(V − VK ) + μ0 + μext + ση(t), (C1)

where τ is a time constant determined by the leak conductance
gL. Normalized conductances for potassium currents, gAR ≡
ḡAR/gL and gKS ≡ ḡKS/gL, are responsible for the down and
up states, respectively. The first term in the right-hand side of
Eq. (C1) is the leak current, the second term is an anomalously
rectified potassium current that stabilizes the down state, and
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the third term is a non-inactivating potassium current which
stabilizes the up state [11]. The voltage-dependent inactivation
variable h∞ is given by h∞ = 1

1+exp[(V +90)/10] . The activation
variable m satisfies

dm

dt
= 1

τ∞
(m − m∞) ,

where

m∞ = 1

1 + exp[−(V + 49)/3]
,

τ∞ = 10

exp[−(V + 55)/30] + exp[(V + 55)/30]
.

The parameters used are: τ = 10 ms, VL = −60 mV, VK =
−90 mV, gAR = 50, gKS = 5, Vr = −60 mV, Vb = −50 mV,
μ0 = 100 mV, μext = 0, σ = 10 mV.

In Fig. 4 the linear dynamical response of this model
is presented. The numerical results are obtained using the
second-order Runge-Kutta method for stochastic differential
equations [49]. When gKS increases from 0 to 5, bistability is
developed at the nullcline of the activation variable m, i.e., m =
m∞ [Fig. 4(a)], and the model neuron exhibits up and down
states [Fig. 4(b)]. We see that the normalized transmission
function is significantly enhanced with the development of the
up state [Fig. 4(c)].
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FIG. 4. (Color online) Impact of bistability on linear dynamical
response in a biophysical realistic model. (a): membrane dynamics on
the nullcline of activation variable m (m = m∞) with gKS = 0 and 5.
Here V̇ in the vertical axis is the time derivative of V obtained by
taking μext = 0 and σ = 0 in Eq. (C1). (b): trajectory of membrane
potential for gKS = 5 and σ = 10 mV. (c): normalized transmission
functions for the two different gKS . Note that μext is reduced to −4 mV
when gKS = 0 to have similar stationary firing rates in the two cases
(about 10 Hz).
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