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Abstract

Recent physiological studies have shown that neurons in various regions of the central nervous systems continuously
receive noisy excitatory and inhibitory synaptic inputs in a balanced and covaried fashion. While this balanced synaptic
input (BSI) is typically described in terms of maintaining the stability of neural circuits, a number of experimental and
theoretical studies have suggested that BSI plays a proactive role in brain functions such as top-down modulation for
executive control. Two issues have remained unclear in this picture. First, given the noisy nature of neuronal activities in
neural circuits, how do the modulatory effects change if the top-down control implements BSI with different ratios between
inhibition and excitation? Second, how is a top-down BSI realized via only excitatory long-range projections in the
neocortex? To address the first issue, we systematically tested how the inhibition/excitation ratio affects the accuracy and
reaction times of a spiking neural circuit model of perceptual decision. We defined an energy function to characterize the
network dynamics, and found that different ratios modulate the energy function of the circuit differently and form two
distinct functional modes. To address the second issue, we tested BSI with long-distance projection to inhibitory neurons
that are either feedforward or feedback, depending on whether these inhibitory neurons do or do not receive inputs from
local excitatory cells, respectively. We found that BSI occurs in both cases. Furthermore, when relying on feedback inhibitory
neurons, through the recurrent interactions inside the circuit, BSI dynamically and automatically speeds up the decision by
gradually reducing its inhibitory component in the course of a trial when a decision process takes too long.

Citation:Wang C-T, Lee C-T, Wang X-J, Lo C-C (2013) Top-Down Modulation on Perceptual Decision with Balanced Inhibition through Feedforward and Feedback
Inhibitory Neurons. PLoS ONE 8(4): e62379. doi:10.1371/journal.pone.0062379

Editor: Gennady Cymbalyuk, Georgia State University, United States of America

Received August 13, 2012; Accepted March 20, 2013; Published April 23, 2013

Copyright: � 2013 Wang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The work is supported by National Science council (Taiwan) grants 98-2311-B-007-005-MY3 and 101-2311-B-007-008-MY3. The funders had no role in
study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: cclo@mx.nthu.edu.tw

Introduction

Neurons in the central nervous systems are continuously

bombarded by noisy excitatory and inhibitory synaptic inputs

with roughly balanced and covaried intensity. This balanced

synaptic input (BSI) has been observed in various regions including

the frontal cortex [1,2], primary visual cortex [3], developing

primary auditory cortex [4], somatosensory barrel cortex [5] and

spinal cord [6]. Experiments showed that the balance in excitation

and inhibition is crucial in stabilizing the neural circuit when

receiving excitatory input [5,7]. It has also been suggested that

imbalance in the ratio of excitation to inhibition in the brain may

contribute to certain psychiatric disorders [8,9]. At the single

neuron level, BSI has also been demonstrated to provide a source

of background noise that increases overall conductance and

response variability of neurons [10–12]. Furthermore, recent

computational and experimental studies have shown that BSI

modulates the response property of neurons [13–15] and hence

provides a plausible mechanism for gain modulation at the

neuronal level [16–21]. A key insight is that with the ability of

changing the gain of single neurons, BSI may play more proactive

roles than previously thought in exerting top-down control over

neural circuit functions.

Indeed, a number of studies have shown that BSI shapes the

tuning curve of sensory neurons [3,4,20]. Furthermore, some of us

have previously demonstrated that in a neural circuit model of

perceptual decision [22–25], by applying BSI with different

strengths we could dynamically adjust performance of the decision

process in terms of trading between speed and accuracy [26]. The

speed-accuracy tradeoff (SAT) is a salient feature of decision

making [27–30] and is commonly described as the result of

adjusting a decision threshold in a drift diffusion model (DDM)

[28,30–33]. A number of studies suggested that the decision

threshold adjustment may be implemented in the cortico-basal

ganglia circuit [22,28,34,35]. Our model provided a different (but

not mutually exclusive) neuronal mechanism of SAT and

predicted that the ramping rate of neural integrators for

information accumulation is higher with speed emphasis, which

is consistent with a recent electrophysiological experiment with

behaving monkeys [36].

Although BSI provides an appealing idea for the top-down and

dynamic control of the neural circuit functions, two important
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issues remain to be investigated: 1. In the highly noisy and plastic

neural circuits, the ratio between the inhibition and excitation in

BSI may not be able to maintain at an ideal level from trial to trial.

Therefore, we ask how the ratio affects the functions of BSI. 2.

The top-down control is presumably provided by long-range

projections from remote cortical regions such as prefrontal cortex

[37–40] which is known to be crucial for executive control.

Considering that cortical output neurons are typically excitatory

pyramidal neurons which can provide the excitatory component of

BSI, we ask how the inhibitory component of BSI can be produced

by the long-range excitatory projection.

To address the issues, we systematically investigated the

behavior (reaction times and task performance) and the dynamics

of the neural circuit under the influence of BSI with different ratios

using the neural circuit model of perceptual decision [22–25]. We

further investigated a novel BSI configuration in which the long-

range projection from a remote cortical brain region is excitatory

only and the balanced inhibition is established within the decision

circuit. Specifically, we assumed that the long-range excitation

projects onto both pyramidal neurons and GABAergic interneur-

ons in the feedback decision circuit in light of recent findings of

long-range projection from the prefrontal cortex onto the

GABAergic neurons in other brain regions [41–43].

We found that BSI produces rich effects on the decision process.

There exist two operational modes of BSI and each corresponds to

different ranges of BSI ratio. In one region, increasing the top-

down control (BSI strength) speeds up the decision whereas in the

other region, increasing the top-down control improves the

accuracy. We also found that BSI can be established internally

within the feedback decision circuit by the GABAergic interneur-

ons. Furthermore, this internally produced BSI gradually shifts to

the excitatory side as the decision progresses. This change of

balance provides an internal signal that speeds up the decision

when it takes too long.

Methods

The Perceptual Decision Task: Random-dot Motion
Discrimination
In the present study we investigated the effects of BSI on

perceptual decision by performing model simulations of a visual

direction-discrimination task using the random-dot motion para-

digm [44]. In the task, a subject is shown a display of randomly

moving dots. A small portion (called coherence level or stimulus

motion strength) of the dots move coherently toward one of the

two possible directions, e.g. right or left. The subject is required to

determine the direction of the coherent motion. The subject has to

indicate the direction by a saccadic eye movement as soon as

a decision is reached. In our model, two inputs (presumably from

middle temporal area (MT) as previously reported [45]) represent-

ing the amount of rightward and leftward random-dot motion

directions are fed into neurons in two competing neural

populations (ExcR and ExcL) in the decision circuit model,

respectively (Figure 1). The mean spike rate m of each input

depends on the motion strength of the stimulus linearly and follows

the equations: m= m0 + mA 6 c’ for the direction of the coherent

motion and m= m0 - mB 6 c’ for the opposite direction. m0 ( =

40 Hz) is the baseline input for the purely random motion, c’

(between 0% and 100%) is the coherence level that characterizes

the stimulus motion strength and mA ( = 120 Hz) and mB ( =

40 Hz) are factors of proportionality. The differences between the

values of mA and mB is to capture the observation in which the

population average of the slope of MT neuron response function

was found to be roughly 3.5 times higher in the preferred direction

than in the non-preferred direction [45]. Given the fact that mA
and mB for individual MT neurons follow broad distributions [45],

our assumption of mA=3 mB is not substantially different from the

observation. In the present study, we used six levels of motion

strength: 0%, 3.2%, 6.4%, 12.8%, 25.6% and 51.2%. The

decision time is defined as the time interval between the start of the

sensory input and the time when the population firing rate of

either of the populations ExcL and ExcR reaches a preset threshold

(30 Hz). The reaction time is defined as the decision time plus

a 250 ms non-decision time which represents the neural processing

time not related to the decision. A correct trial is defined as the

trial in which the excitatory population (ExcL or ExcR) which

receives the stronger input (m0 + mA 6 c’) reaches the decision

threshold first.

Neural Circuit Model
The computational model used in the present study is based on

a previously described cortical circuit model [22–25] that is

capable of working memory and perceptual decision [22–

24,29,46–51]. Briefly, the network model consists of four

interconnected neural populations ExcR, ExcL, Inh and ExcBg

(Figure 1). Each of ExcR and ExcL contains excitatory neurons and

receives inputs that represent the random-dot moving toward right

and left, respectively. The populations compete against each other

through the population I which consists of inhibitory interneurons.

The non-selective background population ExcBg contains 1100

excitatory neurons mimicking neurons that are selective for

directions other than the two forced-choice alternatives or to

other stimuli that are irrelevant to the present study. See Table 1

for the number of neurons, background noise input and

connectivity of the circuit model. In the model, ExcBg neurons

do not receive stimulus input and maintain a baseline activity

(several Hertz). The circuit model exhibits winner-take-all

competition: only one of the excitatory populations (ExcR or

ExcL) can win the competition by ramping up its activity until it

crosses the decision threshold, whereas the other population is

eventually suppressed. This behavior resembles neuronal activity

observed in the lateral intraparietal area and frontal eye fields in

monkeys when performing the random-dot task or other tasks such

as visual search [36,44,52].

Single Neuron and Synapse Models
Each neuron in the circuit model is simulated using the leaky

integrate-and-fire model. The membrane potential V(t) for each

neuron obeys the following equation:

Cm

dV (t)

dt
~{gL V (t){VLð Þ{Isyn(t),

where Cm is the membrane capacitance, gL is the leak conductance,

VL is the resting potential and Isyn is the total synaptic current.

When the membrane potential V(t) of each neuron reaches

a threshold Vthreshold =250 mV, a spike is emitted and V(t) is set to

the reset potential Vreset =255 mV for a refractory period

Tr=2 ms. For inhibitory neurons, we used the following

parameters: Cm=0.2 nF, gL=20 nS and VL=270 mV. For

excitatory neurons, we used Cm=0.5 nF, gL=25 nS and

VL=270 mV.

The synaptic current Isyn(t) includes inputs from visual stimulus,

other neurons in the circuit (recurrent connections), background

noise and the top-down control input:

Isyn tð Þ~Istimulus tð ÞzIrecurrent tð ÞzInoise tð ÞzItop-down tð Þ,

Modulation on Decision by Balanced Synaptic Input
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where the background noise is applied to all neuronal populations

and visual stimulus are only applied to the populations ExcR and

ExcL. In the case of BSIff, only the two decision populations ExcR
and ExcL receive the top-down control input whereas in the case of

BSIfb, all populations receive the top-down control input. We

modeled three types of receptors for synapses: AMPA, NMDA and

GABAA. They are described by:

Synaptic current~gAMPAsAMPA(t) V (t){VEð Þ

z
gNMDAsNMDA(t) V (t){VEð Þ
1z Mg2z½ �e{0:062V (t)=3:57

zgGABAsGABA(t) V (t){VIð Þ,

Figure 1. Schematics of a cortical neural circuit model of perceptual decision with different configurations of balanced synaptic
input (BSI). The basic model circuit consists of two strongly-recurrent populations of excitatory neurons (ExcL and ExcR) serving as the decision
neurons and a population of inhibitory interneurons (Inh) which produces mutual inhibition between the two excitatory populations. There is an
excitatory background neural population (ExcBg) that is not selective to task-relevant stimuli and maintains a baseline activity. The two decision
populations receive sensory inputs and compete against each other by ramping up its activity and suppressing the other. A decision is made when
the population firing rate of a decision population crosses a preset threshold first. A. In first configuration, BSIff, the balanced excitatory and inhibitory
inputs to ExcL and ExcR are generated externally by two pairs of excitatory and inhibitory neuronal populations (ctr1-ctr4) in a feedforward manner. B.
In the second configuration, BSIfb, the balance between excitation and inhibition is generated internally through the feedback inhibitory neurons. The
circuit receives a long range excitatory projection from a top-down control module (Ctr) to all neurons in the circuit. The balance between the
excitation and inhibition is determined internally by the input strength of Ctr -. Exc (pathway 1) and the increased input strength (comparing to the
condition without the Ctr input) of Inh -. Exc (pathway 3) which is driven by Ctr neurons through the pathway 2.
doi:10.1371/journal.pone.0062379.g001
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where VE ( = 0) and VI ( =270 mV) are the reversal potentials,

[Mg2+] ( = 1.0 mM) is the extracellular magnesium concentration,

g is the synaptic efficacy and s is the gating variable. Subscripts in g

and s denote the receptor type. The gating variables of the three

receptors obey

dsAMPA(t)

dt
~

X

k

d(t{tk){
sAMPA

tAMPA
,

dsNMDA(t)

dt
~a 1{sNMDA(t)ð Þ

X

k

d(t{tk){
sNMDA

tNMDA

,

dsGABA(t)

dt
~

X

k

d(t{tk){
sGABA

tGABA
,

where the decay constants tAMPA = 2 ms, tNMDA =100 ms and

tGABA = 5 ms. a=0.63. d(t2tk) is the delta function and tk is the

time of the kth presynaptic spike.

All synaptic connections between neural populations and within

a neural population (recurrent connections) are all-to-all, i.e. every

neuron in the source population makes synaptic connections to

every neuron in the target populations. Each neuron in the

network receives external spike inputs (spike rate = 2400 Hz)

through AMPA mediated receptor with Poisson statistics serving as

the background noise. See Table 1 for the detailed setting.

Balanced Synaptic Input (BSI)
Neurons in the populations ExcR and ExcL receive BSI, in

which the excitatory and inhibitory components are applied

through AMPA and GABAA mediated receptors, respectively.

Given a ratio between the strength of the excitatory and inhibitory

components of BSI, the induced depolarizing and hyperpolarizing

currents can cancel each other (balanced) at a specific membrane

potential, VB. This can be formularized as:

IBSI~{gBSIAMPAs
BSI
AMPA(VB{VE){gBSIGABAs

BSI
GABA(VB{VI )~0,

where the superscript BSI denotes the balanced synaptic input.

Assuming that BSI provides a steady input with a mean firing rate

r, we can easily demonstrate that the steady input results in a mean

gating variable s= tr. Let spike rate of the excitatory and

inhibitory components of BSI be re and ri, respectively. We have

{gBSIAMPAtAMPAre(VB{VE){gBSIGABAtGABAri(VB{VI )~0,

which leads to

rig
BSI
GABA

reg
BSI
AMPA

~
tAMPA(VB{VE)

{tGABAi
(VB{VI )

~{0:4
VB

(VBz70)
,

where tGABA= 5 ms and tAMPA= 2 ms. The left side of the

equation,
rig

BSI
GABA

reg
BSI
AMPA

, represents the ratio between the strength of

Table 1. The parameters for each neural population.

Name
Number of
neurons

Background noise
(rate / conductance in nS)

Target Population
(target receptor: conductance in nS)

ExcBg 1120 2400 / 2.1 ExcBg (A: 0.05), ExcBg (N: 0.165)

ExcL (A: 0.0429), ExcR (A: 0.0429)

ExcL (N: 0.142), ExcR (N: 0.142)

Inh (A: 0.04), Inh (N: 0.13)

ExcR 240 2400 / 2.1 ExcBg (A: 0.05), ExcBg (N: 0.165)

ExcL (A: 0.0429), ExcL (N: 0.142)

ExcR (A: 0.09), ExcR (N: 0.297)

Inh (A: 0.04), Inh (N: 0.13)

ExcL 240 2400 / 2.1 ExcBg (A: 0.05), ExcBg (N: 0.165)

ExcR (A: 0.0429) ExcR (N: 0.142)

ExcL (A: 0.09), ExcL (N: 0.297)

Inh (A: 0.04), Inh (N: 0.13)

Inh 400 2400 / 1.62 ExcBg (G: 1.398), ExcL (G: 1.398)

ExcR (G: 1.398), Inh (G:1.075)

Ctr1 (BSIff ) 500 x / 2.1 ExcL (A: 0.1)

Ctr2 (BSIff ) 500 x / 2.1 ExcL (G: x)

Ctr3 (BSIff ) 500 x / 2.1 ExcR (A: 0.1)

Ctrl4 (BSIff ) 500 x / 2.1 ExcR (G: x)

Ctr (BSIfb) 240 x / 2.1 ExcBg (A: 1), ExcL (A: 1),

ExcL (A: 1) , Inh (A:x)

In the fourth column, ‘‘A’’ indicates AMPA receptors, ‘‘N’’ indicates NMDA receptors and ‘‘G’’ indicates GABAA receptors. ‘‘x’’ indicates variable values that were used to
set the strength and ratio of BSI.
doi:10.1371/journal.pone.0062379.t001
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inhibitory and excitatory components of BSI and is hence defined

as BSI ratio. The equation shows that there is no single value of

the BSI ratio that cancels the hyperpolarizing and depolarizing

currents for all levels of the membrane potential. Rather, for

a given membrane potential VB, we can find a specific BSI ratio

which produces balanced hyperpolarizing and depolarizing

currents. The effect of BSI is that it drives the membrane potential

toward VB which acts as a reverse potential. When the membrane

potential is higher than VB, BSI produces a hyperpolarized

current. If the membrane potential drops below VB, the BSI

current becomes depolarized.

BSI through Feedforward and Feedback Inhibitory
Neurons
In the present work, we investigated BSI in two different

configurations. In the first configuration the balanced inhibition is

established through feedforward inhibitory neurons (BSIff)

(Figure 1A) and in the second configuration the balanced

inhibition is established through the feedback inhibitory neurons

(BSIfb) (Figure 1B). In BSIff, excitatory and inhibitory inputs are

projected to the excitatory decision population ExcL and ExcR in

a feedforward manner. Each of the excitatory and inhibitory

components is provided by an independent neural population.

Therefore, re and ri, can be controlled independently by driving the

corresponding neural populations (Ctr1-Ctr4) with a top-down

signal implemented by Poisson spike inputs. We define two

important parameters, BSIff ratio and strength:

BSIff ratio~
rig

Ctr2-ExcL
GABA

reg
Ctr1-ExcL
AMPA

, BSIff strength SBSIff~0:3reg
Ctr1-ExcL
AMPA

Since all parameters are symmetric between the left side (ExcL,

Ctr1 and Ctr2) and the right side (ExcR, Ctr3 and Ctr4) of the

neural circuit, here we only define the BSIff ratio and strength

using the parameters in one side. We note that BSIff ratio is only

defined for the condition of non-zero BSIff strength

(reg
Ctr1{ExcL
AMPA =0). In the model re and ri are represented by the

firing rate of each neurons in the excitatory and inhibitory control

modules, respectively. The purpose of multiplying reg
Ctr1-ExcL
AMPA by

0.3 was to bring the value of the maximum working BSIff strength

to about 1 as gCtr1-ExcLAMPA ~0:1 nS and we found that the maximum

working value of re is in the range of 30–40 Hz. In the simulations,

changes of the BSIff strength were done by changing the firing

frequencies (re and ri) of both AMPA and GABA inputs by the

same percentage (thus leaving the BSIff ratio unchanged), whereas

changes of BSIff ratio were done by changing the value of GABA

Figure 2. The behavioral outcome of the decision circuit is dependent on the BSIff strength and ratio A. Performance (top), defined as
the portion of trials with correct decisions, and mean reaction time (bottom) as functions of the task difficulty (characterized by the stimulus motion
strength) for different BSIff strength (black = 0, red = 0.3, green= 0.5). BSIff ratio = 1.11. B. Same as in A with ratio = 1.20 (BSIff strength: black = 0,
green= 0.5, blue = 0.8). C. Same as in A with ratio = 1.25 (BSIff strength: black = 0, purple = 0.4, orange= 0.6). Depending on the ratio, the performance
and mean reaction time change differently with increasing BSIff strength. With a higher ratio, stronger BSIff increases the speed of decision (shorter
mean reaction time) while decreases the performance. With a lower ratio, we found an opposite trend in which a stronger BSIff increases the
performance while reduces the speed of decision. The curves in the top panels in A-C are plotted only for the visualization purpose only. The curves
were obtained by fitting to the data using the function p~ 1

1ze{(c’{m)=s where c’ is the stimulus motion strength, m and s are fitting parameters.
doi:10.1371/journal.pone.0062379.g002
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conductance (gCtr2{ExcL
GABA ). Theoretically changing the firing

frequency and changing the input conductance result in the same

effect as the input strength equals the multiplication of the two

factors. The reason why we chose this way of varying BSIff
strength and ratio was to be consistent with the way we varied the

strength and ratio of BSIfb (see below).

In BSIfb, we tested a more biologically realistic setting in which

the top-down influence is originated from a control module (Ctr)

via a long-range cortical projection, which is excitatory only. We

assumed that the projection provides non-specific excitatory input

to all neural populations in the circuit model. The excitatory

component of BSIfb is provided by the direct input from the top-

down control module (Ctr) to ExcL and ExcR while the inhibitory

component is provided by the increased firing rate drinh (due to the

input from the top-down module) of the inhibitory interneurons in

Inh. However, drinh is influenced by the neural interaction in the

circuit and is not directly controllable by the top-down control

module. What is controllable is the strength of the input (including

the spike rate and the synaptic strength) from the control module

to ExcL (and ExcR) and Inh. Therefore, we define a ‘‘preset’’ BSIfb

ratio as the ratio between the two inputs:

BSIfbratio~
rctrg

ctr-Inh
AMPA

rctrg
ctr-Exc
AMPA

~
gctr-InhAMPA

gctr-ExcAMPA

gCtr{Exc here represents both gCtr{ExcL and gCtr{ExcR because

they are of the same value in the current model. rCtr is the firing

rate of each neuron in the control module, which can be controlled

by the background input to the module.

We found that the maximum working BSIfb strength is

rCtr,14 Hz. Given that the control module in BSIfb has 240

neurons with a synaptic strength gCtr-Exc of 1 nS and the control

module in BSIff has 500 neurons with a synaptic strength gCtr-Exc

of 0.1 nS, rCtr = 14 Hz in BSIfb matches re=67.2 Hz in the

strength in BSIff, or SBSIff,2.0. Accordingly, we define BSIfb
strength as

Figure 3. BSIff modulates the neuronal activity and the dynamics of the decision circuit differently between different BSI ratios. A.
At a lower BSIff ratio ( = 1.11), the ramping rate of the population firing activity of the winning decision population increases with BSIff strength (top).
Thick curves show trial-averaged population firing rate and thin curves are samples of population firing rate from single trials. The effect of changing
ramping activity is reflected in the shape of the reaction time distribution (middle). The faster ramping rate caused by increasing BSIff strength results
from the steeper energy landscape (bottom). x represents the difference between the population firing rates of ExcL and ExcR. The stimulus motion
strength is 3.2% for all conditions. BSIff strength= 0 (black) and 0.5 (green) B. Same as in A with a higher BSIff ratio ( = 1.20). With more inhibition, BSIff
causes an opposite effect: the ramping rate decreases with increasing BSIff strength. The slowing down in the ramping activity is due to the shallower
energy landscape around the peak. When the BSIff strength is strong enough, a crater is created at the center of the peak which significantly slows
down the speed of decision (falling into one of the two basins). BSIff strength= 0 (black) and 0.8 (blue) C. The trend becomes more significant with
a stronger inhibitory component in BSIff (ratio = 1.25). BSIff strength= 0 (black) and 0.6 (orange).
doi:10.1371/journal.pone.0062379.g003

Modulation on Decision by Balanced Synaptic Input
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Figure 4. Effects of BSIff on A, task performance (portion correct) and B, mean reaction time across different values of BSIff ratio
and strength for the stimulus motion strength c’ =3.2%. There is a critical value of the ratio ( = 1.156). Above the value, the performance and
the mean reaction time increase with increasing BSIff strength. In contrast, the performance and reaction time decrease with increasing BSIff strength
when the ratio is below the critical value. The gray regions indicate that under the given strength and ratio, the system could not reach a decision in
more than 5% of the trials, hence we excluded them from the analysis.
doi:10.1371/journal.pone.0062379.g004
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SBSIfb~rCtr=7:

This makes SBSIfb roughly match the strength of SBSIff in values.

We note that the normalization factors (0.3 for BSIff and 1/7 for

BSIfb) are specific to our modeling setting and the purpose is only

to make the comparison between BSIff and BSIfb easy. In the

simulations we varied the strength of BSIfb by changing the firing

frequency (rCtr) of the control module and varied the ratio of BSIfb
by changing the conductance (gCtr{Inh

GABA ) of the input from the

control module to the inhibitory neurons.

Estimation of the Energy Function
We constructed a one-dimensional energy function to shed

insights into the circuit dynamics affected by BSI. Briefly, we

considered the difference in the firing rates of the two selective

neural populations, x~rExcR{rExcL . In each trial, the change of x

over each time window of 20 ms was assessed as an estimate of the

velocity of the network dynamics, v:x(tzDt){x(t), where

Dt=20 ms. We choose Dt=20 ms as the firing rates were

calculated using a time window of 20 ms in our simulator. Note

that v(x) is strongly influenced by the noise in the circuit. To filter

out the noise, we calculated v(x) for each time steps ( = 0.1 ms) of

the simulation for 1000 trials and obtained a large pool of data.

We then calculated average v(x) for each small range of x from the

pooled data to obtain a smooth v(x) in which the noise are

averaged-out. The energy function, or the potential, U(x) was

obtained based on v~{dU(x)=dx [24,53], by integrating v over

x: U~{
Ð
v(x)dxzC, where C is a constant of integration which

can be chosen arbitrarily without affecting the analysis of the

system dynamics. To avoid the edge effect which distorts the

values of v(x), we discarded the data points for which rExcL , 3 Hz

when x . 0 and rExcR , 3 Hz when x , 0. The edge effect arises

from the fact that the firing rates of ExcR and ExcL cannot go

below zero. If the firing rate of either ExcR or ExcL is very close to

zero, it is likely to increase in the next time steps due to the noise

perturbation, thereby introducing a bias in v(x). For example, if x is

positive (rExcR. rExcL ) while rExcL < 0 at a given time t, x tends to

decrease at t+Dt due to increasing rExcL . This produces a negative

v(t) even though rExcR may also increase.

Figure 5. BSIfb modulates behavior of perceptual decision in a way similar to that of BSIff. A. Performance (left) and mean reaction time
(right) are shown for three different BSIfb strengths (black: 0, red: 0.857, blue: 1.714) with the BSIfb ratio of 0.848. At this ratio, a stronger BSIfb increases
the performance and mean reaction time. The curves in the left panel are plotted for visualization purpose only and were obtained by curve fittings
using the same function as described in Figure 2 caption. B. A summary of the effect of BSIfb strength and ratio on the performance (left) and the
mean reaction time (right) with the stimulus motion strength of 3.2%. Similar to that of BSIff, with a lower ratio (more excitation), increasing BSIfb
strength speeds up the decision process whereas with a higher ratio (more inhibition), increasing BSIfb strength improves the performance. As in
Figure 4, the gray regions indicate that under the given strength and ratio, the system could not reach a decision in more than 5% of the trials.
doi:10.1371/journal.pone.0062379.g005
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Spike Synchronization
In the study we investigated the effect of BSI on spike dynamics

by measuring the spike synchrony in the decision population (ExcR
or ExcL). We adapted the algorithm published in Quiroga et al.

2002 [54]. Briefly, the algorithm counts the number of events in

which spikes from two neurons fall within a preset time window t
( = 5 ms in the present study) and then normalizes the event count

by the spike numbers of the two neurons. The procedure results in

a non-negative index of spike synchronization with the maximum

value of 1 representing a pair of fully synchronized spike trains.

Results

We first tested how different ratios between inhibition and

excitation (BSI ratio) affect the behavior of the decision circuit. To

this end, we performed the test with the condition of BSIff in which

the excitatory and inhibitory components of BSI are all provided

and controlled independently by external sources (Figure 1A). We

found that when the BSIff ratio is low (more excitation), stronger

BSIff reduces the performance (percentage of correct decisions) but

increases the speed of decision (Figure 2A). This is because the

extra excitation triggers faster ramping activity which reduces the

time for the system to integrate the sensory input. If we decreases

the BSIff ratio (increasing the strength of the inhibitory compo-

nent), the BSI-induced changes in performance and mean reaction

time become smaller and smaller until at a certain ratio the effect

reverts and BSI starts to produce better performance and slower

reaction time (Figure 2 B–C). The result suggests that BSI is able

to exhibit two different modulatory effects simply by changing the

ratio between its excitatory and inhibitory components.

We next investigated how the neural activity and its dynamics

are changed by BSIff. With more excitation in BSI (ratio = 1.11),

stronger BSI leads to a faster ramping activity (Figure 3A top) for

the wining neural population, which is consistent with the trend of

shorter mean reaction time. When we increased the inhibitory

component, BSI starts to slow down the ramping activity

(Figure 3B &C, top). Interestingly, the slowing down is character-

ized by not just one, but two trends: 1) a smaller ramping slope and

2) a delayed onset time of the ramping activity. We looked at the

behavior change from a different aspect by plotting the reaction

time distribution (Figure 3 A-C, middle). The result showed that

when the mean reaction time is increased by a strong BSIff, the

effect is not simply due to a shift of the distribution, but also due to

the production of a long tail. The long tail indicates that while we

still see many fast decisions as in no BSIff conditions, we also

observe some trials with extremely long reaction time.

Figure 6. BSIfb alters the dynamics of the circuit by changing its energy landscape in a way similar to BSIff. A. (Top) Energy landscape
for different BSIfb ratios. The BSI strength is set to be 0.857. If we increase the BSIfb ratio, the slope of the landscape becomes shallower while the
crater on top of the hill becomes bigger and deeper. (Bottom) Energy landscape for different BSI strengths. The BSIfb ratio is set to be 0.848. A similar
trend can be observed if we increased the BSI strength. B. The differences between the heights of the two walls of the crater (DH) as a function of
BSIfb ratio and strength. C. Performance as a function of DH plotted for several BSIfb ratios and strengths. Each color indicates data obtained from one
BSIfb ratio and each dot of a given color represents a specific BSIfb strength for the corresponding BSIfb ratio. The data from different BSIfb ratios form
a linear relationship with DH with overlapping distributions, which indicate that the performance is mainly determined by the size of the crater.
Regardless a specific combination of BSIfb ratio and strength, as long as they give rise to the same DH, the performance of decision is the same. The
stimulus motion strength c’ = 3.2% in all panels.
doi:10.1371/journal.pone.0062379.g006

Modulation on Decision by Balanced Synaptic Input

PLOS ONE | www.plosone.org 9 April 2013 | Volume 8 | Issue 4 | e62379



The trends of delayed onset of the ramping activity and the

slower ramping activity observed in the simulations can be

explained by considering the energy function of the neural circuit

(Figure 3A–C, bottom). With a low BSI ratio, the stronger

excitatory component in BSI makes neurons in the decision neural

populations (ExcL and ExcR) more excitable. The effect is that

once a population wins the competition, it tends to accelerate its

ramping activity due to the stronger recurrent excitation. The

dynamical change is reflected in the energy landscape (Figure 3A

bottom) which shows a steeper slope. On the other hand, with

a high BSI ratio, the stronger inhibitory component reduces the

excitability of the neurons and hence weakens the competition

between ExcL and ExcR. The weakened competition slows down

the accumulation of neuronal activity of the wining population

and also produces a relatively stable state in the beginning of a trial

when the firing rates of the two populations are comparable.

These dynamical changes are reflected in the energy landscape by

the appearance of a crater on top of the peak and a gradual slope.

When a trial starts, the system tends to stay in the crater, or the

energy well, for a period of time until the noise in the system

pushes the system out of the energy well. Once the system leaves

the energy well, it falls into either side of the peak and makes

a decision. The period which the system stays in the energy well

corresponds to the delayed onset time of the ramping activity. The

speed of ramping is determined by the slope of the energy

landscape outside the crater (Figure 3C).

We systematically tested the behavioral effect of BSIff and plot

the performance and mean reaction time as functions of BSIff ratio

and strength (Figure 4). We observed a critical value of BSIff ratio

(,1.156). Below this critical value, increasing BSIff strength

reduces the performance and the mean reaction time whereas

above the critical value, increasing BSIff strength improves the

performance but also prolongs the mean reaction time. At the

critical value, changing BSIff strength does not significantly affect

the performance and the mean reaction time. As a summary, the

effects of BSIff on the decision behavior can be characterized by

Figure 7. BSIfb produces time varying inhibitory component and the energy landscape in the course of a trial. A. The time progression
of the inhibitory component (drinh) of BSIfb. With a given BSIfb ratio ( = 0.848) and strength ( = 0.857), the balance between the excitation and
inhibition of BSIfb changes with time after the stimulus onset. The inhibitory component reduces gradually, indicating a trend of shifting toward
excitation in BSIfb during the decision process. The black arrow indicates the mean reaction time. The motion strength c’ = 3.2%. B. The instantaneous
energy landscapes are shown for four different periods: 100–200 ms, 300–500 ms, 500–600 ms and 700–800 ms. The result indicates that the center
crater of the energy landscape gradually disappears during the course of a trial. This change provides an internal mechanism to speed up the
decision when it takes too long.
doi:10.1371/journal.pone.0062379.g007

Figure 8. BSIfb produces a wider range of speed-accuracy
tradeoff.We plot performance versus mean reaction time with motion
strength = 3.2% for the BSIfb (black curves) and BSIff (red curves)
conditions. In the working range of BSIfb (preset ratio = 0.84820.858),
the system exhibits trading between speed and accuracy in wide ranges
of mean reaction time and performance while for BSIff (ratio = 1.221.3),
speed-accuracy trade-off works in a narrower range. With BSIff, when
the mean reaction time exceeds 1300 ms, the performance is not
improved anymore.
doi:10.1371/journal.pone.0062379.g008
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two operational modes: a ‘‘speed-emphasis’’ mode that corre-

sponds to the BSIff ratios below the critical value and an

‘‘accuracy-emphasis’’ mode for the BSIff ratios above the critical

value. Therefore, in a noisy neural circuit environment, if the

system cannot maintain a constant ratio of BSIff, it can still exhibit

the same modulatory effect on the perceptual decision as long as

the ratio stays in the same side of the critical value. We note that

the gray regions in Figure 4 indicate that under the given strength

and ratio, the system could not reach a decision in more than 5%

of the trials, hence we excluded them from the analysis. These

non-decision trials were characterized by extremely slow ramping

activity due to strong inhibition in BSIff and therefore have

decision times longer than the cut-off time.

We have demonstrated the basic properties and effects of BSI

which is implemented by feedforward excitation and inhibition.

Next, we consider a more realistic BSI configuration in which BSI

is applied through a long range intra-cortical projection. The idea

is that if BSI acts as a top-down control that modulates the

perceptual decision, the modulation is likely originated from

higher brain centers such as prefrontal cortex [37–40]. Consid-

ering that the intra-cortical projections are typically excitatory

only, one plausible way to produce balanced excitation and

inhibition is to have these long-range excitations project to both

excitatory neurons and inhibitory interneurons in the decision

circuit. The projection excites the interneurons hence increases

their inhibitory inputs to the excitatory decision neurons. The

increased inhibitory inputs act as the inhibitory component of BSI

(Figure 1B). Because the inhibitory component is generated by the

inhibitory interneurons which are part of the feedback local

decision circuit, we define this type of BSI as BSIfb. The strength of

BSIfb is represented by the firing rate of the long-range excitatory

input (from the control module Ctr) while the BSIfb ratio can be

tuned by changing the synaptic weight of the Ctr-Inh projection.

This is because a stronger synaptic weight induces stronger activity

in Inh neurons, hence increases the BSI ratio.

We tested the behavior performance of BSIfb by varying its

strength and ratio (Figure 5) and found that BSIfb influenced the

behavior of the decision circuit in a way similar to BSIff. With a low

BSI ratio, increasing BSIfb strength shortens the mean reaction

time but reduces the performance whereas with a high BSI ratio,

increasing BSIfb strength improves the performance but prolongs

the mean reaction time. The accuracy-emphasis and speed-

emphasis modes are separated by the critical ratio = 0.828. We

note that the gray regions in Figure 5B indicate the conditions in

which the system could not reach a decision in more than 5% of

the trials. The non-decision trials in the gray regions in the upper

right corners correspond to the case in which no neural population

reaches the decision threshold until end of the trial as in the gray

regions in Figure 4. In contrast, the non-decision trials in the gray

regions in the upper left corners correspond to the case in which

both neural populations ramp up and reach the threshold together

due to too much excitation in BSIfb.

We further investigated how BSIfb changes the dynamics of the

circuit. We plotted the energy functions for different BSIfb
strengths and ratios (Figure 6A). We found that, similar to BSIff,

the energy function is altered by BSIfb. With a medium BSIfb
strength (0.857) and ratio (0.848), higher ratios or stronger BSIfb
strengths produce a shallower energy landscape with a wider and

deeper crater on the hill. We define DHas the differences between

heights of the left wall and right wall of the crater. We found that

DHvaries with the BSIfb ratio and strength in a way very similar to

what the performance does (Figure 6B, comparing to Figure 5B

left panel). In the low ratio region (BSIfb ratio , 0.828), increasing

BSIfb strength reduces DHwhile in the high ratio region,

increasing BSIfb strength enlarges DH. From the dynamical

system point of view, the height of the wall of an energy well

determines the probability of a noisy system overcoming the

barrier and jumping out of the energy well. Therefore, the

difference between the heights of the two walls of the crater

determines the probability of the system escapes from one sides

versus the other side. Indeed, we found that DH ultimately

determines the performance of the system (Figure 6C). Regardless

of the BSIfb ratio and strength, as long as the neural circuit

experiences the sameDH , they performance similarly.

Due to the strong and nonlinear interactions between neurons

in the circuit, the actual inhibitory component drinh (the difference

of Inh firing rate between the conditions with and without BSIfb)

may change during the course of a trial even when the top-down

input from Ctr neurons remains constant. A time varying drinh

Figure 9. Degree of spike synchronization between neurons
significantly correlates with the reaction time, but not with the
balanced synaptic input. A. Distributions of the synchronization
index between each pair of neurons in the wining decision population
(ExcR or ExcL) for different trial conditions. Each distribution represents
one selected trial. We selected trials with fast (reaction time ,600 ms)
and slow (reaction time ,1300 ms) responses from both BSI conditions
(BSIff strength= 0.5 and no BSI). We can find clear difference between
the distributions of slow and fast trials, but not between strong BSIff
and no BSI trials with similar reaction times. B. Mean synchronization
index reduces significantly with reaction time for both strong BSIff and
no BSI conditions. Each point represents the mean synchronization
index averaged over 10 trials with similar reaction times. Error bars
indicate the standard deviation and ‘‘***’’s denote p,0.0005 in
Student’s t test.
doi:10.1371/journal.pone.0062379.g009
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indicates a changing BSIfb ratio, or a changing dynamics of the

neural circuit. To accurately estimate the instantaneous drinh in the

course of a trial, we calculated the trial-average drinh from 2000

trials. We selected a moderate BSIfb condition (BSIfb ratio = 0.848,

strength = 0.857), and calculated trial-averaged rinh as a function of

time for the two conditions (with a moderate BSIfb and without

BSIfb). The difference in rinh between the two conditions gives rise

to the inhibitory component drinh. We found that the instantaneous

drinh starts to drop around 200ms after the stimulus onset, reaches

the minimum at 600 ms and rises again slowly (Figure 7A).

To evaluate the impact of the varying strength of the inhibitory

component of BSIfb on the network dynamics, we calculated the

instantaneous energy function at three representative periods:

100–200 ms, 400–500 ms and 700–800 ms after the stimulus

onset. We observed an intriguing phenomenon which was in

consistence with the trend of decreasing drinh as shown in

Figure 7A: the top region of the energy landscape gradually

transforms from an earlier ‘‘trapping state’’ (with a crater) to

a latter ‘‘force-decision’’ state (without the crater) (Figure 7B). In

the trapping state the system stays in the crater (rExcL,rExcR) for

a prolonged time period due to the local stability in the crater until

the system is pushed away by the noise. The trapping state often

results in extremely long reaction times. Therefore, the disappear-

ance of the crater in the later part of a trial in the BSIfb condition

forces the system to move down the hill and prevents long reaction

times, implying that the system has an intrinsic mechanism to

speed up the decision when it takes too long.

We further investigated how the time-varying energy land-

scape affects the behavior performance. To this end, we tested

how the performance improves differently with increasing BSI

strength in the BSIff and BSIfb conditions (Figure 8). We choose

the c’ = 3.2% condition because both BSIfb and BSIff exhibit the

greatest performance improvement when the task is difficult. We

found that BSIfb produces a wide range of speed-accuracy

tradeoff and the performance reaches ,85% with a mean

reaction time of ,2.0s whereas BSIff produces a smaller

performance improvement which tops at 80% with a mean

reaction time of ,1.5s. The reason of a smaller performance

improvement is that BSIff produces a fix-shaped energy

landscape which has a deep crater on the top of the energy

landscape when BSIff is strong. A deep crater increases the risk

that the system being trapped in the non-decision state (the

center crater) until the end of the trial which has a 5000 ms

cut-off time after the onset of the motion stimulus. Therefore,

when BSIff is strong, the reaction time increases rapidly and the

increasing probability of non-decision trial reduces the perfor-

mance. On the other hand, there is no such concern for BSIfb
as the crater gradually disappears as the trial progresses.

We have shown how BSI modulates the decision process from

dynamical system point of view by demonstrating the variations in

the energy landscape. One may ask whether the changes at the

system level reflect a more fundamental change in the spike

dynamics. To this end, we measured the spike synchronization (see

Method) between each pair of neurons in the winning decision

population (ExcR or ExcL) for various conditions including strong

BSIff (strength = 0.5), no BSI, fast trials and slow trials (Figure 9).

We found that, while the mean spike synchronization reduces with

the reaction time, there is no significant difference in the spike

synchrony between the strong BSIff and no BSI trials with similar

reaction times. Therefore, the effect of BSI mainly lies in the firing

rate at circuitry levels rather than in the individual spike levels, at

least for the proposed model.

Discussion

In the present study, we have demonstrated that by varying the

strength of the input and the ratio between the excitatory and

inhibitory components of BSIff, we can switch the neural circuit

between two operational modes (speed emphasis or accuracy

emphasis). The result suggests that BSIff is an efficient and versatile

mechanism for the top-down modulation of the decision process.

We further investigated internally generated BSI, in which the

decision neural circuit only receives an excitatory long-rang

projection as the top-down control. We showed that if the

excitatory projection innervates all neurons including excitatory

neurons and inhibitory interneurons in the decision circuit,

a balance between the excitation and inhibition can still be

achieved. In fact, this BSIfb exhibits time-varying dynamics which

prevents the circuit from being trapped in a deadlock state and

thus improves the tradeoff between speed and accuracy.

Our finding of two operational modes for BSI is interesting

because it suggested that the same mechanism can accommodate

two distinct behavioral effects. In the ‘‘speed-emphasis’’ mode,

which corresponds to lower BSI ratios (stronger excitation),

increasing BSI strength speeds up the decision. In contrast, in

the ‘‘accuracy-emphasis’’ mode, which corresponds to stronger

inhibition, increasing BSI strength improves the accuracy. The

result implies that in some perceptual decision tasks, we may

observe that the activity of the brain region which exerts the top-

down control increases in response to time pressure (speed

instruction) [55], whereas in other tasks we may observe the top-

down modulation increasing its activity in response to perfor-

mance pressure (accuracy instruction) [56]. Our model suggests

that the seemly contradictory observations could result from the

same mechanisms in two different operational modes. Moreover,

while the top-down control from the remote brain region may

represent the overall level of attention, whether the top-down

influence should be used to increase the speed or the accuracy is

determined locally in the decision circuit through learning induced

synaptic plasticity. For example, assuming the system is initially in

the speed-emphasis mode (lower BSI ratios) when the task requires

a better accuracy. A strong top-down control is likely to reduce the

accuracy and the number of rewards which results in no synaptic

weight change or slight depression in ctr-Exc synapses (due to the

low dopamine level). If occasionally in some trials the inhibitory

neurons become strongly activated. The strong activation

increases BSI ratio which improves the accuracy and results in

more rewards. As a consequence, the ctr-inh synapses are

facilitated due the co-activation of the control and inhibitory

neurons and the circuit gradually shifts toward higher BSI ratio

region, or the accuracy-emphasis mode. It is interesting to

implement such a learning mechanism in future studies and see

how the model quantitatively reproduces some of the behavioral

observations.

We note that the differential responses of the top-down control

observed between studies could also result from other factors such

as the task designs, types of decision and actual functions of the

brain regions being studied. For example, a brain region could

exert a top-down control to modulate the information accumu-

lation (as proposed here), or to change the decision threshold

[22,28,34,35]. Further studies with carefully designed decision

tasks are needed in order to test our model predictions.

To address the issue that the long-range projection of the top-

down control is likely to be excitatory only, we proposed BSIfb in

which the inhibitory interneurons in the decision circuit partici-

pate in producing the inhibitory component of BSI. However, one

may argue that the issue can also be addressed by BSIff if the

Modulation on Decision by Balanced Synaptic Input

PLOS ONE | www.plosone.org 12 April 2013 | Volume 8 | Issue 4 | e62379



feedforward inhibitory neurons in local to the decision circuit.

However, this solution requires a dedicated inhibitory neural

population which is local but does not receive any input from

other neurons in the local circuit and it is not clear whether such

type of neurons exist in the cerebral cortex. In contrast, our BSIfb
proposal does not need a new neural population but only utilizes

the existing inhibitory interneurons that already participate in the

decision process.

Another interesting property we discovered in the present study

is how the central crater in the energy landscape determines the

performance of the system. Although the performance is affected

by both BSIfb strength and ratio at the circuitry level, it all boils

down to the shape of the central crater of the energy landscape

from the perspective of dynamical system. We found that

regardless of the BSIfb strength and ratio, as long as DH (the

differences between the heights of the two walls of the central

crater) is the same, the system exhibits the same performance

(Figure 6C).

Our result of time-varying BSIfb ratio within a trial (Figure 7)

suggests a natural way to prevent the neural circuit from being

trapped in the deadlock state. To improve the performance, one

needs to increase DH , which produces a side effect of a wider and

deeper crater. In the case of BSIff in which the BSI ratio remains

constant throughout the whole trial, the wider and deeper crater

significantly reduces the probability of the system jumping out of

the crater, hence increases the expected time for the system to

reach a decision. When the crater is big enough, the reaction times

become extremely long and the performance starts to drop

because the system fails to jump out of the crater and reaches

a decision before the timeout (5000 ms) in some trials. This

indicates the limitation in the performance improvement by BSIff.

On the other hand, in the case of BSIfb, the BSI ratio starts to

decrease after the onset of the trial and the crater gradually

disappears, hence the system is less likely to be trapped in the

deadlock state. Therefore, the decreasing BSI ratio can be viewed

as a mechanism generated internally to speed up the decision

when the decision process becomes too long. Comparing to the

decision made under BSIff, BSIfb can further improve the

performance without losing too much in the reaction time

(Figure 8).

In the model we only considered AMPA mediated currents for

the excitatory component in BSIff and BSIfb due to the

consideration of simplicity. Ideally both AMPA and NMDA

should be taken into account because the excitatory (glutamater-

gic) input is often simultaneously mediated by both receptor types.

However, NMDA receptors have the same reverse potential with

that of AMPA, therefore both types of receptors have a similar

effect in BSI. The change in the strength of excitatory component

of BSI due to the omission of NMDA mediated current can be

easily compensated by increasing the strength of AMPA conduc-

tance. Although NMDA receptors are endowed with voltage

dependent conductance, during the course of a trial the membrane

potential of an excitatory neuron mainly varies in the range

between the reset potential (255 mV) and the threshold potential

(250 mV), resulting in small (only ,7%) changes in the NMDA

conductance. Therefore the voltage dependent NMDA receptors

do not significantly alter the property of BSI and it is safe to omit

NMDA when we analyze the effects of BSI.

In summary, our result provides three novel perspectives

regarding how top-down control in a form of balanced synaptic

input modulates perceptual decision: 1) by changing the ratio

between the excitation and inhibition in the balanced synaptic

input, one can switch the neural circuit between the accuracy-

emphasis mode and the speed-emphasis mode, suggesting that the

two different types (or modes) of top-down modulation can be

realized by the same mechanism, 2) the balanced synaptic input

can be produced internally with the participation of inhibitory

interneurons in the decision circuit when the top-down control

input is excitatory only. Therefore, there is no need for recruiting

additional inhibitory neurons that are dedicated for balancing the

top-down excitatory input, and 3) the BSIfb exhibits time-varying

ratio between the inhibition and excitation, which provides an

internal signal that speeds up the decision and improves the ability

of the neural circuit to trade speed for accuracy.
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