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ABSTRACT The rhythmogenesis of 10-Hz sleep spindles
is studied in a large-scale thalamic network model with two
cell populations: the excitatory thalamocortical (TC) relay
neurons and the inhibitory nucleus reticularis thalami (RE)
neurons. Spindle-like bursting oscillations emerge naturally
from reciprocal interactions between TC and RE neurons. We
find that the network oscillations can be synchronized coher-
ently, even though the RE-TC connections are random and
sparse, and even though individual neurons fire rebound
bursts intermittently in time. When the fast y-aminobutyrate
type A synaptic inhibition is blocked, synchronous slow oscil-
lations resembling absence seizures are observed. Near-
maximal network synchrony is established with even modest
convergence in the RE-to-TC projection (as few as 5~10 RE
inputs per TC cell suffice). The hyperpolarization-activated
cation current (I,) is found to provide a cellular basis for the
intermittency of rebound bursting that is commonly observed
in TC neurons during spindles. Such synchronous oscillations
with intermittency can be maintained only with a significant
degree of convergence for the TC-to-RE projection.

The 7- to 14-Hz spindle oscillation, which concurs with the
onset of sleep, is a well-known phenomenon of coherent brain
waves. Its thalamic origin was demonstrated 50 years ago (1).
Since then spindle rhythmicity in thalamocortical (TC) relay
neurons has been shown to result from the integrative effects
of synaptic inhibition with special intrinsic membrane prop-
erties of these cells (2-4). The critical role of the nucleus
reticularis thalami (R E) was suggested by the Scheibels (5) and
has been established by the work of Steriade et al (3, 4).
y-Aminobutyratergic (GABAergic) neurons in the RE pro-
duce inhibitory postsynaptic potentials (IPSPs) in TC neurons,
leading to rebound bursts of spikes, which in turn excite RE
neurons. The rebound response to IPSPs is produced by a
low-threshold T-type Ca?* current (It) (6, 7) and a hyperpo-
larization-activated cation current (Iy) (8, 9) in TC cells.
Recent experiments have crystalized some of the critical
issues concerning spindle rhythmogenesis, which are not yet
fully understood. For instance, regarding the intrathalamic
circuit bases of spindling, an in vivo experiment on the cat
showed that an isolated RE network is capable of displaying
coherent spindle oscillations (10), probably due to intra-RE
recurrent inhibitory connections (3, 4, 11-13). The spindle
wave activity, however, can also result from the two-way
RE-TC interactions (3, 14). More recently, in vitro spontane-
ous spindling has been demonstrated in a ferret thalamic slice
preparation (15, 16): (i) during spontaneous spindles RE cells
fired bursts almost at the population rhythmic frequency
(about 6 Hz) but occasionally skipped cycles, whereas TC cells
fired bursts at half of that rate or lower; (ii) with the application
of GABA receptor antagonists, RE and TC cells fired bursts
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very regularly at about 3 Hz; (i) with GABAgp receptor
antagonists, no significant change was noticed; (iv) when both
the GABA A and GABAg synaptic inhibitions were blocked; or
(v) when the a-amino-3-hydroxy-5-methyl-4-isoxazolepropi-
onate (AMPA) synaptic excitation was blocked, the network
was quiescent. Therefore, the spindle oscillations observed in
ferret thalamic slices depended critically on the reciprocal
connections between the TC and RE cell types.

Here, we study a thalamic network model consisting of a
large population of TC neurons that interact reciprocally with
a large population of RE neurons. This allows us to investigate
the following basic issues on thalamic spindles which could not
have been adequately addressed in previous modeling works,
when only a single representative TC cell was included (12, 17).
First, we seek here to reproduce the in vitro results (i-v) of
McCormick and colleagues (15, 16) and to shed light on their
underlying cellular and synaptic mechanisms. Second, since
quantitative anatomical data on the intrathalamic circuit re-
main scarce at the present time, we use a computational ap-
proach to assess properties of the RE-TC reciprocal connec-
tions, especially their divergence /convergence factors, that are
required for generating a high degree of coherence during
spindles. Third, we are concerned with the common observa-
tion that spindling TC cells fire rebound bursts only once in
several rhythmic cycles (2, 4, 7, 14-16), and we explain this
intermittency phenomenon in terms of a temporal integration
of synaptic inhibition by the intrinsic slow inward current I}, of
TC cells, as proposed by Kopell and LeMasson (18) as well as
by us (ref. 19; X.-J.W. and J.R., unpublished work).

NETWORK MODEL

Biophysical models of single RE and TC neurons were re-
ported elsewhere (12). The single-compartment model neu-
rons contain only ionic currents that have been shown exper-
imentally to play a crucial role in the low-threshold spikes of
spindle oscillations. For the sake of simplicity, the Na* spike-
generating currents (20) are not included. A RE neuron has an
It; a Ca?"-activated, voltage-independent (“after-hyperpolar-
ization””) K* current (/app); and a leak current. A TC neuron
possesses an It, an Iy, and a leak current. The leak current is
decomposed into two components, a nonspecific component
[l = go(V — V1)] and a K* component [Ixr. = gx(V — V)]
The K* leak conductance (gkr) is considered as a “sleep
parameter” in the model, since it has been shown that the slow
sleep rhythms in the thalamic circuit are conditioned by
neuromodulators which act on TC and RE cells largely by
varying a gk (21). The standard parameter values for single
neurons are as follows. For RE neurons; gr = 1.5, gagp = 0.1,
gL = 0.04, and gk = 0.02 (mS/cm?); VL = —82.5 and Vx =
=90 (mV). For TC neurons, gr = 2, gn = 0.04, g = 0.01, and

Abbreviations: AMPA, a-amino-3-hydroxy-5-methyl-4-isoxazolepro-
pionate; GABA, y-aminobutyrate; IPSP, inhibitory postsynaptic po-
tential; RE, nucleus reticularis thalami; TC, thalamocortical.
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= 0.02 (mS/cm?); V1, = =70 and VgL = —100 (mV).
Neurons of each cell type are identical and deterministic.

The network model consists of Ngg RE neurons and Npc TC
neurons coupled by reciprocal connections; intra-RE connec-
tions are also included. The circuit connectivity is assumed to
be random. Consider for instance the RE inputs to TC neu-
rons. Each RE cell sends its output to a given TC cell with
probability prr; hence on average there are Mrt = prTNRE
RE inputs per TC cell. [Mgr is the convergence factor for the
RE-to-TC projection; the divergence factor is Mrr(Ntc/
Ngrg).] Similar random connectivity is assigned to the TC-
to-RE projection and the RE-to-RE lateral projection, with
Mg and Mgg mean inputs per RE neuron, respectively. There
is no coupling among TC cells. Accurate experimental esti-
mates for the ratio Nre/Ntc and connectivity parameters
Mg, MR, and Mrg are presently not available. In simulations
we set Nrg = Ntc = 1000, and our results are expected to be
valid in the limit of large networks. Typically, a sparse con-
nectivity is prescribed, with Mgt = Mtr = Mgrr = 10 (so that,
for example, prr = Mr1/NrEg = 0.01). For comparison, we also
considered the all-to-all coupling 11m1t (MrT = MRRr = Ngg,
M1r = Nrc).

The TC-to-RE excitation is assumed to be mediated by fast
glutamate synapses of the AMPA subtype. The RE-to-TC
inhibition has two components, mediated by fast GABAA and
slow GABAgp synapses. Only GABA, interactions are in-
cluded for mutual inhibition within the RE circuit. The AMPA
and GABA synaptic currents are modeled according to refs.
11 and 12. The GABAg synaptic current, known to be activated
through a heterotrimeric guanine nucleotide-binding protein
(G protein), is modeled by a simple scheme with two first-order
kinetic steps. Assume that Igapa-B = gcaBa-BsUV — Vk),
where s is a gating variable and ¢ = 4. Then, dx/dt =
o X(Vore)(1.— x) — Bux, and ds/dt = asx(1 — s) — Bss. In these
equations, x represents concentration of a dissociated G-
protein subunit. The concentration of the postsynaptic trans-
mitter-receptor complex, X(}), is assumed to be an instanta-
neous and sigmoid function of the presynaptic membrane
potential, X(V) = {1 + exp[—(V-+ 45)/2]} ', —45 mV being
~ a presumed threshold for the transmitter release. The param-
eters o, = 5.0, B, = 0.007, a; = 0.03, and B; = 0.005 (ms™1)
were chosen so that the rise time (=100 ms) and the decay time
(=200 ms) of the GABAg synaptic current elicited by a brief
presynaptic pulse are matched with the experimental mea-
surements (22, 23).

The standard synaptic parameter values are as follows
(maximal conductances in mS/cm?, voltage in mV). For
RE-to-TC Synapses, §GABA-A = 0.2, 8GABA-B = 0.02, VgaBa-a
= -85, and Vgasa.s = —100. For RE-to-RE synapses,
8GABA-A = 0.2 and VGABA-A = —75. For TC-to-RE synapses,
gampa = 0.08 and Vampa = 0. The maximal conductances are
normalized by the mean number of synaptic inputs, M, so that
when the convergence factor M is varied, the average total
synaptic drive per cell remains the same. This is necessary
especially in the all-to-all coupling case, where M is propor-
tional to the network size and can be very large.

Numerical integration was carried out with the fourth-order
Runge—Kutta method, typically with a time step of 0.5 ms. As
initial conditions, the membrane potentials are randomly
distributed between —80 and —70 mV, and the current gating
variables are at their corresponding steady-state values. The
global network behavior is characterized by two types of
quantities: the fraction of cells that are simultaneously active
(above the synaptic threshold of —45 mV), pre(f) and prc(t),
and the population-averaged membrane potentials, Vre(f) and
V1c(t). The coherence of network oscillations is measured by
the normalized temporal variances of V'rg(f) and Vrc(f), which
are denoted by xrg and xtc, respectively (see refs. 12, 24, and
25).
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RESULTS

Dependence. of Spindle Oscillations on Reciprocal RE-TC
Connections. The thalamic network model as specified above
displays coherent oscillations at about 7.7 Hz (Fig. 14). The
TC cell population dynamically segregates approximately into
two firing clusters that fire rebound bursts alternately in time,
at half of the network frequency [as seen in prc(#)]. Individual
RE neurons typically receive inputs from both TC clusters and
are thereby excited to fire a burst at about every cycle.

To assess the connectivity dependence of the rhythm,
GABA, synaptic transmission is first blocked (Fig. 1B), mim-
icking the experiment with bicuculline (15, 16). Both RE and
TC cells display powerful bursting oscillations (at 3.4 Hz) that
are perfectly synchronized. This behavior is similar to that seen
by McCormick and colleagues (15, 16) and reminiscent of that
observed during absence seizures (26). Note that the burst
duration in RE cells is about twice as large as in the “intact”
case (compare Fig. 1 4 and B), in agreement with the exper-
imental observations (15, 16). In the present model this
duration increase is largely due to the loss of intra-RE GABA4
inhibition that normally cuts short the burst. With different
initial conditions we observed two other types of behaviors
that coexist with this synchronous slow oscillation. One is the
rest state (where the network is quiescent). In the other, TC
cells fire bursts repetitively at 3 Hz but are no longer synchro-
nized (data not shown). In this case, RE cells fire at higher
rates (>5 Hz); the slowly decaying GABAg synaptic inhibition
yields a nearly constant hyperpolarization and does not pro-
vide phasic information to synchronize the TC cells. A de-
crease of the excitatory TC-to-RE synaptic conductance
(gampa), which decreases the RE firing rate, eliminated this
asynchronous state.

If both the GABA,4 and GABAg synapses are blocked, or if
only the AMPA synapses are.blocked, the network becomes
silent (data not shown). In the disconnected network, the
resting membrane potential is —63 mV for TC neurons and
—84 mV for RE neurons. Hence, as in the in vitro ferret slice
experience (15, 16), the RE-TC interactions in both directions
are needed for achieving coherent network rhythmicity in our
model. Oscillations emerge in a self-consistent fashion: the
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FiG. 1. (4) Rhythmic burst oscillations of the thalamic network
model; population frequency f = 7.7 Hz. A RE neuron (Bottom) fires
bursts at about twice the frequency of a TC neuron (Middle) (the
membrane potential is clipped at —45 mV; dashed baseline is at —90
mV). The bursts have large amplitudes, because several voltage-
dependent K* currents were not included in our model neurons. The
TC cell population segregates approximately into two clusters that fire
rebound bursts alternately in time. For this periodic TC population
activity (Top), prc(t) (the fraction of TC cells that are suprathreshold)
shows a maximum amplitude of about 50%. (B) When GABAa
synapses are blocked, the entire network oscillates at 3.4 Hz, in perfect
synchrony. Note the enlargement of burst width in both TC and RE
neurons, due to the lack of fast GABA4 inhibition.
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resting membrane potential of RE neurons is sufficiently
hyperpolarized so that transient depolarizing input from TC
neurons can produce powerful burst responses in RE neurons,
which in turn provide synaptic inhibition and elicit rebound
bursts in TC neurons (27).

Under suitable parameter changes, single RE or TC neurons
may become intrinsic oscillators. In that case, blocking syn-
apses would only disrupt synchrony but would not abolish
cellular oscillations (data not shown).

The RE-to-TC Convergence and Spindle Synchrony. As the
RE-to-TC convergence factor Mg is varied systematically, the
coherence measure ytc displays a quite nonlinear dependence
(Fig. 2). When MRgr is below a critical value the network is
virtually completely asynchronous; hence, yrc is almost zero
(and this residual value decreases with increasing network
size). Above the well-defined transition value of Mgrr, xtc
reaches a large value (0.5-0.6) and saturates (Fig. 2, solid
curve). The quantity ytc does not approach the value of 1,
since, in this regime, the TC cell population is not fully
synchronized but breaks itself into two clusters. When the
intra-RE connections are blocked, the synchronous behavior
occurs at even smaller values of Mg (Fig. 2, dashed curve).
This is due to the combined effects of the reciprocal GABAA
fast inhibition between RE cells: it reduces the IPSP ampli-
tudes in the TC cells that promote the network synchronization
(15, 16, 27); and it tends to dynamically fracture the RE
network into mutually out-of-phase clusters (11-13, 24, 25). A
similar asynchrony-to-synchrony transition was also found
when the convergence factor My for the TC-to-RE projection
was varied (data not shown)

Intermittent Bursting in TC Neurons. The TC neurons
generally fire rebound bursts at a rate lower than the network
thythmic frequency. To quantify this phenomenon, we com-
puted first the power spectrum of the global variable prg(f) or
prc(t) and identified the frequency f at maximum power as the
population rhythmic frequency. Then, the bursting rate for
each of the TC neurons was computed and averaged over the
entire TC population, yielding the mean TC bursting rate,
(f)tc. The bursting ratio ktc = f/{f)rc measures the degree of
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FI1G. 2. Dependence of the TC synchrony measure ytc on the
RE-to-TC convergence factor Mgt with (solid line) or without (dashed
line) intra-RE GABA, inhibition. There is a sharp but continuous
transition from an asynchronous state at low Mgr to a synchronized
state at higher Mgt values. The quantity ytc was computed by
averaging over a time interval of 10 sec and over five realizations of
connectivity patterns and initial conditions, for each parameter value.
(Inset) Time courses of population activity prc(f) for Mrt = 4 with
(curve a) and without (curve b) intra-RE inhibition (scales apply to
both). Dotted line denotes the zero level. Asterisk at Mgy = 10
corresponds to Fig. 14. Mtr = Mgrgr = 10.
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intermittency of spindling TC cells. Note that f and krc can
vary with the realization of the connectivity pattern and with
initial conditions.

TC firing becomes more intermittent (krc larger) with
increased hyperpolarization, for instance when the K* leak
conductance is increased. In Fig. 3, with gxg; = 0.04 mS/cm?
for TC cells (as compared to Fig. 1 with ggr. = 0.02 mS/cm?),
the network frequency drops to f = 6.3 Hz; the period T, = 1/f
= 157 ms. The TC network now segregates into more than two
approximate clusters. The bursts of individual TC cells are
always phase-locked with the population rhythm but are not
necessarily synchronized with each other. Hence, at each
network cycle only a small fraction (at most 20-25%) of the TC
population fire bursts almost simultaneously [see prc(f) in Fig.
3A]. The intermittent firing pattern is further illustrated by the
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FiG. 3. Intermittent burst firing during spindles (same parameters
as in Fig. 1, except gkr = 0.04 instead of 0.02 mS/cm? for TC cells);
the population frequency is 6.3 Hz. (4) Population activities, prg and
prc, are rhythmic and quite regular. At each network cycle <25% of
TC neurons fire bursts simultaneously. As illustrated by two mem-
brane potential time courses (the membrane potential is clipped at
—45 mV; dashed baseline: —90 mV), RE cells occasionally skip a
network rhythmic cycle, while TC cells fire rebound bursts once in
three to five cycles. A TC cell’s I slowly accumulates during sub-
threshold cycles and de-activates quickly during a rebound burst (as
shown by its gating variable rtc). (B) The intermittent firing patterns
are also seen in the rastergram of 100 TC neurons. (The time scale
applies to all panels in 4 and B.) (C) The normalized histogram of TC
and RE cells’ time-averaged bursting rates (bin = 0.1 Hz). TC neurons
fire at a lower rate than RE neurons, both below the network rhythmic
frequency (f = 6.3 Hz, dashed vertical line). The histograms were
obtained by computing the mean bursting rates of all cells averaged
over a time interval of 10 s. (D) Normalized interburst interval (IBI)
histogram (bin = 10 ms) calculated for all IBIs from the entire TC
population (dashed vertical line: the population oscillation period, T,
=157 ms). In C and D, the distributions were normalized by dividing
the number of events within each bin by the total number of events.
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rastergram (Fig. 3B) of 10% of the TC neurons (100 out of the
total 1000). The RE neurons do not fire at every cycle either;
instead they fire quite irregularly, and often skip rhythmic
cycles (Fig. 34). This is because the excitatory inputs to each
RE cell fluctuate considerably: they come from a limited
number of TC cells (with the average Mtr = 10), and only a
small fraction of them fire at each cycle due to the intermit-
tency effect. For the same reasons, the overall excitation by TC
inputs varies considerably from one RE cell to another, and
RE cells display different mean bursting rates.

The intermittent firing of TC neurons is critically dependent
on their intrinsic cellular properties, especially on Iy (19). The
activation of Iy, is voltage dependent, requires sufficient hy-
perpolarization, and is fairly slow (maximal time constant ~ 1
s). By contrast, its deactivation at depolarized voltage levels is
very fast. Therefore, as is shown in Fig. 34, during a strong
rebound burst, the activation gating variable (rrc) of I, quickly
drops to a very small value, and I, becomes negligible. Without
Iy, a TC cell would be too deeply hyperpolarized to generate
postinhibitory rebound bursts. After a burst, a TC cell remains
subthreshold for several cycles, while rrc gradually accumu-
lates until I, reaches a critical value, and the cell fires a full
rebound burst at the next cycle.

Fig. 3C shows the bursting rate distributions for the RE and
TC populations. As expected, the TC distribution peaks at a
lower frequency (about 1.6 Hz) than the RE distribution
(about 3.5 Hz), both below the network rhythmic frequency
(6.3 Hz). The RE distribution is significantly more dispersed
than the TC distribution, reflecting the fact that TC inputs to
RE neurons are quite variable in the intermittent bursting
regime. The distribution of TC interburst intervals was com-
puted for the entire TC population (Fig. 3D). The maximum
is located at about 4Ty, although peaks of large amplitudes are
seen at 3T, and 5T),. Small peaks exist at 2T}, (not visible) and
6T}, Therefore, TC neurons fire rebound bursts once in every
two to six cycles, with the intermittency measure ktc ~ 4.3.

The dependence of the degree of intermittency on the
hyperpolarization level of TC cells is further quantified in Fig.
4A4. Thus, krc increases as gk is strengthened. Since the
population oscillation frequency f decreases (e.g., f = 7.7 Hz
in Fig. 1 and 6.3 Hz in Fig. 3), and since krc = f/(f)Tc, we see
that the TC bursting rate (f)rc drops even faster than f does.
When gk is too large (above a critical value of about 0.047
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FiG. 4. Dependence of the TC bursting ratio (krc) on the K* leak
conductance (gxL) (4) and g, (B) in TC cells: Comparison for sparse
coupling (Mrtr = Mtr = Mgrr = 10, solid lines) and for all-to-all
coupling (dashed line). The bursting ratio increases with gk1. as the TC
cells become more hyperpolarized. Distinct regimes are observed for
all-to-all coupling; sparseness smooths the transitions. With sparse
coupling, the bursting ratio becomes large at small g, values, as many
neurons are quiescent and the remaining ones burst at low rates. The
krc value was computed by averaging over a time interval of 10 s and
over five realizations of connectivity patterns and initial conditions, for
each parameter value. The asterisks correspond to the parameter set
of Fig. 14, and the diamonds to that of Fig. 3.
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mS/cm?), TC neurons are completely hyperpolarized and the
entire RE-TC network becomes quiescent. A similar increase
of krc is observed when gy, is diminished (Fig. 4B), demon-
strating the strong dependence of the phenomenon on gy,. To
confirm that intermittency is essentially a dynamical phenom-
enon and depends less on the randomness of sparse connec-
tivity, we performed the same computations with all-to-all
connectivity (Fig. 4, dashed curves). In the latter case, the TC
cells usually segregate into clusters that burst alternately,
whereas the RE cells burst together at every cycle. As g1 and
gn is varied, ktc varies by discontinuous steps from one integer
to another (Fig. 4). Comparing the results for all-to-all and
sparse coupling, one sees that the randomness of connectivity
smooths the dependence of krc on the parameters, and krc
changes more dramatically with sparse connectivity than with
all-to-all connectivity.

DISCUSSION

Since the pioneering work of Andersen and Andersson (2), the
rhythmogenesis of thalamic spindles has been hypothesized to
arise from divergent projections from inhibitory neurons
which simultaneously hyperpolarize many TC neurons and
induce subsequent rebound bursts in these cells. Here we have
presented a large-scale thalamic network model and shown
that coherent oscillations can emerge by this mechanism as a
collective phenomenon, even when no single neuron is an
intrinsic oscillator (Fig. 1). We have quantitatively assessed the
properties of the RE-TC connections that are necessary for
spindle rhythmogenesis, and revealed a transition from asyn-
chrony to synchrony as the convergence/divergence factors of
connectivity were varied (Fig. 2). Interestingly, global network
synchrony can be realized even with a small value of 5-10
RE-to-TC convergence factor (see also ref. 28). Moreover, we
predict that the blockade of intra-RE fast inhibitory synapses
generally enhances the global synchrony of the thalamic net-
work (Fig. 2). This is supported by the observation that an
enhancement of intra-RE GABA, synapses, the mechanism
by which the antiseizure drug clonazepam (27) may act,
interferes with synchronized rhythmogenesis in the thalamus.
We conclude that the synchronization of 10-Hz spindle oscil-
lations can be robustly realized by the RE-TC reciprocal
interactions, with reasonable and minimal assumptions about
the underlying synaptic circuitry. To model and analyze other
aspects of the network behaviors, however, more quantitative
descriptions about the intrathalamic network architecture are
highly desirable.

The present modeling was partly motivated by the in vitro
experiments of McCormick and colleagues (15, 16). Our
computer simulations reproduced many of their main obser-
vations, indeed all (i-v) as enumerated in the Introduction. In
particular, a transition from an 8-Hz spindle-like oscillation to
a 3-Hz absence seizure-like oscillation was demonstrated when
the fast GABA4 synapses were blocked (Fig. 1). However, we
found that this latter result is in fact somewhat fragile, in the
following sense. On one hand, during the 8-Hz spindle-like
network activity, RE cells fire close to the population rhythmic
frequency (15, 16). To reproduce this characteristic, relatively
strong gampa is needed to ensure that RE cells are sufficiently
excited by a small number of intermittently firing TC cells. On
the other hand, with the GABA, blockade, the network is
desynchronized for large gampa values (say >0.1 mS/cm?)
when the bursting rates of RE cells are sufficiently high (see
Results). To compromise, we used intermediate gampa values,
in which case the synchronous state typically coexists with the
asynchronous one, either of the two being observable with
different initial conditions. This was not reported by McCor-
mick and colleagues (15, 16) and may indicate certain defi-
ciencies of our model. The model may be improved in the
future on the basis of further biological constraints.
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During spindles, the thalamic network as monitored by
population-averaged quantities displays remarkably regular
oscillations, whereas single neurons fire rebound bursts fairly
intermittently, but always phase-locked to the population
rhythm (2, 4, 7, 14-16). Theoretical studies of a single TC
neuron (ref. 19; X.-J.W. and J.R., unpublished work) and of a
large-scale thalamic network model (Figs. 3 and 4) clearly
demonstrate that intermittent burst firing in TC neurons can
be explained in terms of a temporal integration of rhythmic
IPSPs by the current I, (see also refs. 18 and 29). However, the
Iy-dependent intermittent firing occurs only if the gating
kinetics of I, are significantly, but not too much, slower than
the rhythmicity in question (19). If RE cells are not intrinsic
oscillators, the intermittent network oscillation also depends
on the circuit properties—i.e., RE cells should receive ade-
quate convergent synaptic excitation from TC cells for most of
the rhythmic cycles. As we demonstrated with all-to-all cou-
pling, and in contrast with the work of Kopell and LeMasson
(18), our model’s TC cells segregate spontaneously into firing
clusters, without heterogeneity, noise, or sparseness. On the
other hand, the experimental observation that RE cells occa-
sionally skip bursts could not be reproduced with all-to-all
coupling in our simulations, even in the presence of strong
neuroelectric noise (data not shown). With sparse connectiv-
ity, skipping can occur, since each RE cell now receives inputs
from a limited number of intermittently bursting TC cells and
sometimes is not sufficiently excited to reach the firing thresh-
old. The dependence of intermittent bursting on I, may be
testable experimentally—for instance, by use of pharmacolog-
ical blockers of gy. In the thalamus, the degree of intermittency
of TC cells’ firing can be controlled by modulatory transmitters
such as norepinephrine and serotonin, which act on TC
neurons by varying a K* leak conductance, or by modulating
the activation kinetics of g, (21).

To conclude, some of our results may be relevant to other
brain rhythms in the central nervous system (for a recent
review, see ref. 30). First, we have shown how network
oscillations may arise from a circuit based on synaptic inhibi-
tion and rebound excitation, rather than recurrent synaptic
excitation. Second, we have demonstrated that a high degree
of network synchronization may be realized even with random
and very sparse connectivities. Third, intermittent firing of
single cells may result from an integration of synaptic inputs by
a slow intrinsic membrane process.
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