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We present two hypotheses on the mathematical mechanism underlying bursting dynamics in a class of differential 
systems: (1) that the transition from continuous firing of spikes to bursting is caused by a crisis which destabilizes a chaotic 
state of continuous spiking; and (2) that the bursting corresponds to a homoclinicity to this unstable chaotic state. These 
propositions are supported by a numerical test on the Hindmarsh-Rose model, a prototype of its kind. We conclude by a 
unified view for three types of complex multi-modal oscillations: homoclinic systems, bursting, and the Pomeau- 
Manneville intermittency. 

1. Introduction 

1,1. Prelude 

By bursting oscillation we mean here a t ime 
evolution consisting of bursts of rapid spikes, 
a l ternated by phases of relative quiescence. It  is 
of ten in this form of membrane  electrical activity 

that  cells in the biological nervous system are 
involved in various rhythmic behaviours,  such as 
central  pat tern  generat ions in invertebrates [24], 
or pacemakers  of  brain waves in the mammal ian  
cortex [27]. It  is therefore  a question of bio- 
logical interest to ask how a rhythm (of bursting) 
can come about ,  starting f rom the "building 
blocks" of  the neuronal  electrical activity, the 
action potentials.  An individual cell capable of 
bursting may  be at rest or merely  exhibit con- 
tinuous firing of action potentials,  when it is 
subject  to different electrical stimuli. Spikes 
within bursts in a bursting state and those in a 
continuous spiking state are generated by the 
same ionic currents. This obvious biophysical 
fact provides a main ingredient to theoretical 
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models  of  bursting in excitable cells, where 
bursting oscillations are viewed as switching back 
and forth between a continuous spiking state and 

a quiescent (resting) state [11,19,20]. 
In this paper  we seek to express this picture of 

bursting in a precise mathematical  form. For  
definiteness, we shall consider a deterministic 

model  due to Hindmarsh  and Rose (HR)  [11]. 
The  H R  model  shares essential qualitative fea- 
tures with several other  biophysical models of 
excitable cells, such as the Chay-Ke ize r  equa- 
tions for the insulin-secreting 13-cells of  the pan- 
creas [2], the generalized Mor r i s -Leca r  equa- 
tions for the barnacle muscle fiber [14,22], or the 
D e c r o l y - G o l d b e t e r  equations for enzyme re- 
actions [4]. But  it is simpler, consisting of three 
differential equa t ions  with only quadratic and 
cubic algebraic nonlinearities. For  this class of 
systems, we would like to suggest that the transi- 
tion f rom a continuous spiking state to a bursting 
state occurs when the former  becomes chaotic, 
and this chaotic state is in turn destabilized. 
Moreover ,  we propose  that the genesis of the 
bursting state corresponds to the realization of a 
homoclinic mechanism to this unstable chaotic 
state. 
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1.2. Homoclinicity to a chaotic saddle 

In a three-dimensional dissipative system, the 
Lyapunov exponents of a chaotic state 12 must be 
of the type (+ ,  0, - ) ,  i.e., h~ > )t o = 0 > h s, with 
I hsl > h~. The positive exponent h~ characterizes 
the sensitivity to initial conditions, and a Kol- 
mogorov-Sinai  entropy hKs quantifies the ran- 
domness of the dynamics. According to a Ruelle 
inequality [6], we have h~ >-h~: s. The equality 
holds if l l  is asymptotically stable. Otherwise, it 
is nonattracting, and trajectories in a neighbor- 
hood of 12 would escape from it with a mean rate 
of 7 = h~ - hKs > 0. The attractiveness of 12 may 
be expressed in an alternative way: it is stable if 
it includes its own unstable manifold Wu(12); 
when 12 becomes unstable, W~(fL) will no longer 
be confined in 12, and can emanate to other 
regions of the phase space. 

We shall define a homoclinicity to a chaotic 
saddle 12 by the following conditions: (1) /2 is 
chaotic (hKs > 0) and nonattracting (7 > 0); (2) 
12 is endowed with a hyperbolic structure (cf. [6[ 
for a definition), in which case 12 is called a 
saddle; and (3) there exists a reinjection mecha- 

nism, by which the outgoing unstable manifold 
W~(12) of O is brought back to the vicinity of this 
same state, along its stable direction, and inter- 
sects with its stable manifold Ws(12). Such a 
situation is illustrated in fig. 1. 

Homoclinicity to a chaotic set [8,15[ presents 
another class of homoclinic systems to an in- 
variant set 12 of saddle nature; be it a Sil'nikov 
saddle-focus equilibrium point [25], a periodic 
cycle [9], or a quasiperiodic torus [26]. Homo- 
clinic mechanisms have proved to be relevant to 
a wide variety of nonlinear systems which display 
mixed-mode oscillations, with the two disparate 
time scales related to the subdynamics near 12 
and to the reinjection loop, respectively. 

Homoclinic systems are particularly interesting 
near the situation of a tangency, when Ws(12 ) is 
tangent to Wu(12 ). In this way a system becomes 
structurally unstable, and complex bifurcation 
phenomena appear. In the case of homoclinic 
tangency to a basic cycle, Newhouse [16,23] 
proved the following: near the tangency, a hy- 
perbolic chaotic set of orbits is created, to which 
secondary homoclinicities are realized and persist 
for an open set of parameter values. As a con- 
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Fig. 1. (a) Illustration of homoclinicity to a chaotic saddle. The chaotic invariant set is not stable. Due to a reinjection 
mechanism, its outgoing unstable manifold is brought back to the vicinity of the set, and intersect with the stable manifold. (b) 
Poincar6 section of a homoclinic system to a variant of the Smale horseshoe. The map T has a unique fixed point, and possesses a 
chaotic invariant set O. The local stable (resp. unstable) manifold of aQ forms a Cantor family of horizontal (resp. vertical) straight 
lines. The reinjection is shown by the image of the black horizontal strip by one iteration of T. In concrete model systems several 
iterations may be needed to bring the orbits escaping from O back to its neighborhood again. This picture suggests a 
decomposi t ion of the map T into two subsystems: the local map T O which is defined in a neighborhood of O; and the global map 
T 1 which describes the reinjection. 
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sequence, there is a parameter set (the 
Newhouse set), for which infinitely many period- 
ic attractors of arbitrarily long period coexist in a 
bounded region of the phase space. The same 
conclusion has been obtained more recently in 
the case of a Sil'nikov saddle-focus fixed point 
[17]. In this sense, homoclinicity to a chaotic 
saddle is of relevance also to these two other 
situations. In particular, it has been used to 
investigate the Newhouse phenomenon, and the 
Newhouse parameter set was proved to possess a 
strictly positive Hausdorff  dimension in the pa- 
rameter space [32]. The question of whether the 
Newhouse set has a positive Lebesgue measure 
remains open [28,32]. 

regime, and positive in the bursting regime. By 
adopting an argument from [10], a power law is 
predicted, according to which y tends to zero as 
the criticality is approached from the bursting 
side. The exponent a of this power law has been 
estimated numerically and agrees with the 
theoretical value, a = 1/2. 

Finally we conclude by pointing out a similari- 
ty between the bursting dynamics near the crisis, 
and the Pomeau-Mannevil le  intermittent dy- 
namics. Thus, both these dynamics, as well as 
the homoclinic systems of various types, can all 
be included in a single framework of mathemati- 
cal description. 

1.3. Crisis o f  a chaotic state 2. The H i n d m a r s h - R o s e  model 

We shall construct numerically a chaotic sad- 
dle of continuous spiking in the bursting regime 
of the H R  model. Recently, Terman proved 
analytically that in a range of parameter values 
in the bursting regime, there exists a hyperbolic 
set of orbits which corresponds to spikes and is 
not attracting [30]. Although the hyperbolic cha- 
otic set we identified is not the same as Ter- 
man's,  this author's work was a source of inspira- 
tion. Furthermore,  we shall provide evidence 
that a homoclinic mechanism is realized to the 
unstable continuous spiking chaos, which under- 
lies the bursting dynamics. On the basis of Ter- 
man's approach we believe that the existence of 
homoclinic orbits can be confirmed by a rigorous 
analysis. 

On the other hand, we know that S'2 is attract- 
ing in another range of parameter values, where 
the system displays continuous spiking. The in- 
teresting question arises, therefore, as to the 
nature of the transition from one regime to the 
other. We shall show that /2 loses its stability 
when it merges with an invariant manifold of an 
unstable equilibrium point. Thus the transition 
may be viewed as a crisis [10] for J2. The order 
parameter of this transition is the mean escape 
rate y, which is zero in the continuous spiking 

2.1. D y n a m i c s  and bi furcat ions 

The system under study is [11] 

d x / d t  = y -  x 3 + 3x 2 -  z ,  (1) 

d y / d t  = 1 -  5x 2 -  y ,  (2) 

d z / d t  = E [ x -  ( z -  z0)/4 ] , (3) 

which depends on two parameters z o and E. The 
variable x represents the membrane potential, y 
a recovery variable, and z an adaptation variable 
which changes slowly (~ ~ 1). Note that a con- 
stant current applied to x can be absorbed into z0 
by a simple redefinition of z. 

In what follows we shall fix e = 0.004, and 
discuss the dynamics of the HR system as z o 

is varied. As z 0 is increased, four dynamic 
regions have been found (cf. also [12], and [3] 
for the Chay-Keizer  model). They are summar- 
ized briefly as follows: 

Reg ion  IV.  An equilibrium state with moderate x 
level. It is a stable focus for z 0 < (Z0)uHv = 
-18.86,  where it loses its stability via a Hopf 
bifurcation. 
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Region IlL A limit cycle of continuous spiking 

arises a t  ( z 0 ) i i i _ i v .  It covers a wide range of z 0 
and becomes unstable by a period doubling at 
z 0 =3 .11 .  As z 0 is further increased, a period 
doubling cascade [7] takes place, leading to cha- 
otic firing of spikes. Next,  a transition occurs, 
where bursting starts to substitute for continuous 
spiking. T H e  nature of this transition will be a 
focus of  discussion in what follows. 

sequence of periodic bursting attractors was 

found. This sequence ends at (z0)~_ H = 5.13. 

Region I. For z 0 > (z0)1_ii , the attractor is an 
equilibrium node at low x level. 

We shall mainly be concerned with the rhy- 
thmogenesis of bursting dynamics in region II, 
near  the border  with region III. 

Region H. So, above the critical value 

(2 '0 ) i i_ i i  I = 3.15867947 --+ 10 -8 (4) 

bursting oscillations occur. The bursting state is 
chaotic for z 0 values immediately above the 
criticality. However ,  there exist also a few small 
periodic windows in this range of z 0. For  z 0 > 
3.2, no chaos has been seen. Instead, a regular 

2.2. Periodic and chaotic bursting 

As illustrated in fig. 2a, a periodic bursting 
oscillation consists of regular alternations be- 
tween bursts of spikes and phases of near steady 
state quiescence. Following Rinzel [19], a rather 
suggestive picture of bursting emerges, when we 
project  this orbit onto the xz-plane, and 

2- 
(a) 

1- 

X 0- 

- 1 -  

- 2  

4000  

zo=5. 10 

45bo sobo 55bo 6obo 
Time 

2' 

(c) 
1- 

Z O- 

- I -  

-2- 
4obo 

9 

5obo 6obo 7obo Sobo 
T i m e  

2.0 

(b) 
1.0 

z o.o 

-I .0 

-2 .0  

zo=5. 10 (d)2O 

1.0 

-~ x o.o 

X m i n  ~ ~ ~ ~ - 1 . 0  

"-2.0 

i zo=3.19 

-I ' .0 -C~.5 o.b o.'5 1.b - I  .oo -o~5o 0.60 o.,~o 1,6o 
z z 

Fig. 2. Periodic (a), (b) and chaotic bursting (c), (d). In (b) and (d), the bursting orbits are projected on the xz-plane.  
Superimposed is the bifurcation diagram of the fast subsystem, with a Z-shaped steady state curve (solid: stable; dashed: unstable) 
and a branch of periodic solutions indicated by the minimum and maximum of the x-component .  For (a) and (c), eqs. (1 ) - (3 )  
were integrated by using a subroutine called LSODE (standing for the Livermore Solver for Ordinary Differential Equations,  
1981 Version). A Gear  method was used to handle the stiffness of the system. The same initial condition was used thoroughly: 
x = -1.1804,  y = -5 .809943  and z = 0.02212644. 
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superimpose it with the bifurcation diagram for 
the fast xy subsystem (fig. 2b). The xy system, 
with E = 0 and with its control parameter z = 
const., has a Z-shaped steady state curve and a 
branch of periodic solutions which terminates at 
a homoclinic point z = z~. In a bursting oscilla- 
tion of the full system, the z variation is confined 
approximatively between the lower knee of the 
steady state Z-curve and the homoclinic point z c 
of the xy system (fig. 2b). In this range of z there 
is a bistability in the xy system, with a stable 
steady state and a limit cycle. On the other hand, 
the z-nullcline, x = ( z -  z0)/4, divides the xz- 
plane into two parts: above the nullcline dz/ 
d t >  0 and z slowly increases, whereas the oppo- 
site is true below the nullcline. Consequently if 
the z-nullcline lies somewhere in the middle of 
the two regions of coexisting attractors in the xy 
system, an orbit can undergo several spikes as z 
is increased above the z-nullcline until it reaches 
z~, when the orbit drops down to the lower 
steady state branch of the xy system. Then z 
starts to decrease as x slowly drifts up to the 
knee of that branch, when the orbit is reinjected 
to the upper oscillatory region, and the process 
restarts itself ab initio. 

A unique equilibrium state p of the complete 
system is determined by the intersection of the 
z-nullcline and the steady state Z-curve of the 
fast subsystem. In the bursting regime the z- 
nullcline intersects with the middle branch of the 
Z-curve, hence p is a saddle. Let us denote its 
three linear stability eigenvalues as A s < 0 < A' u < 
hu, and the corresponding invariant manifolds as 
Ws(p), W'(p) and W~(p), respectively. We 
know that A" is vanishingly small as E--~ 0, and is 
relatively unimportant for the local behavior 
around p. Then, if an oscillatory orbit ap- 
proaches the equilibrium state, it faces a situa- 
tion similar to that of the homoclinic loop of the 
xy system. Its period is lengthened (cf. fig. 2a), 
and bypassing the equilibrium state p it eventual- 
ly escapes from it along one of the two eigen- 
directions of W~(p). Now, along one eigendirec- 
tion the x-component is increasing, thus the orbit 

will remain in the oscillatory region; whereas 
along the other eigendirection the x-component 
is decreasing, so that the orbit is sent to  the 
lower steady state branch of the xy system. 

The decisive role for p,  as suggested above, is 
especially evident if p is close to the homoclinic 
point of the xy system, where bursts invariably 
terminate (cf. fig. 2a). In other words, the z- 
component  z* of p must be close to z c. This is 
expected to be the case near the transition from 
continuous spiking to bursting, since as ~ ~ 0 the 
value of (z0)ii_~i 1 is determined by the condition 
z*(Zo) = zc. Numerically, however, the value of 
(z0)~i_in is usually found to be lower than that 
predicted by this condition, even for seemingly 
small values of E (e.g. eq. (4) compared with the 
predicted value z 0 ---3.77 for E = 0.004. See also 
[21]). In fig. 2c, d is shown an example of chaotic 
bursting at z 0 = 3 . i 9 ,  where z* is significantly 
above z~. We also tested ~ = 0.0005 and 0.0001, 
in addition to 0.004, which led to the same 
conclusion. 

Nevertheless, one may slightly generalize the 
above reasoning with a weaker assumption about 
how close an oscillatory orbit must come to the 
equilibrium state p. In fact, the above reasoning 
can be repeated, with the role of p replaced by 
that of the unstable manifold W'u(p). Thus, the 
two-dimensional manifold Ws(p) x W~(p) would 
separate the two eigendirections of Wu(p), and 
as an orbit approaches Ws(p) × W'(p), it would 
either stay in the oscillatory region or escape 
from it, depending on which side of this 2D 
surface it would fall. Expressed in this way, we 
may surmise the following transition criterion: an 
attractor of continuous spiking is restricted to 
one side of the invariant manifold Ws(p)x 
W ' ( p )  of the equilibrium state p,  while a transi- 
tion to bursting occurs when orbits are allowed 
to escape to the other side. 

2.3. Test of the transition criterion 

We construct a Poincar6 section, which is de- 
fined by the intersection of the flow with a 
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surface in the phase space. We chose this surface 
as a plane 11 very close to the equilibrium state 

P, 

11: x = x* + 10 -5 , (5 )  

where x* is the x-component  of p. The sense of 
intersection was fixed to be from above to below 
the plane. 

A Poincar6 section is obtained numerically 
f rom the intersection of a long orbit with the 
plane H. Also computed is the linearized 
W~(p)× W'u(p), and its intersection with the 
plane H. This straight line segment, say y = 
w(z; z0) , is an approximation of the one-dimen- 
sional curve Ws(p) × W'u(p) N H. In principle, if 
• is not infinitesimally small, so that the equilib- 
rium state p is not close to the homoclinic point 

near  z 0 = (z0)n_ m, the global (nonlinear) in- 
variant manifolds would have been needed. We 
used the linear approximation instead, merely 
because of our  inability to construct the global 
Ws(p) × W'u(p) numerically. In terms of the 
Poincar6 section, the transition criterion asserts 
that an attractor of continuous spiking is con- 
fined to one side of the linear segment y = w(z; 
z0), and the transition to bursting occurs when 
orbits are allowed to escape to the other  side. 

This criterion was found numerically to be con- 
sistent with other  ways to distinguish a bursting 
regime from a continuous firing one, such as 
visual inspection of time traces. Indeed, applying 
this criterion we were able to locate the critical 
point (z0)1i_ m of the transition, eq. (4), with 
high accuracy (see figs. 3a, b). Fig. 3 presents 
convincing evidence in favor of the posited tran- 
sition criterion. 

The attractors in the Poincar6 section of fig. 3 
are compressed approximatively onto a one- 
dimensional (1D) curve in the plane, near the 
unstable manifold of the fixed point of the Poin- 
car6 map (the basic continuous spiking cycle). 
This remarkable feature has also been found in 
other  biophysical models of bursting [1], and is a 
consequence of strong contraction transversal to 
the attractor. For  instance, the stable eigenvalue 
A s of the basic cycle was found to be IA, I < 10 -12 

for the z 0 values of fig. 3. Let  this 1D curve be 
denoted  by y = f(z; zo). The invariant manifold 
W,(p) × W'u(p)fq 1I divides this 1D curve into 
two parts, with the middle point z =  z b de- 

termined by W(Zb; ZO)= f(Zb; ZO) (cf. fig. 4a). 
Moreover ,  the two-dimensional Poincar6 map 

[ Z n +  1 = F(y,,, z,,; Zo) , 
T:I. Y,,+I = G ( y , ,  z,,; Zo) (6) 
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Fig. 3. Poincar6 section of attractors on a plane H, for two very close values of  z 0 below (a) and above (b) the cont inuous  
sp ik ing-burs t ing  transition. The  solid circle at the upper  right is the intersection with the  plane of the stable manifold W,(p) of 
the  equil ibrium state p of  the system. The  straight solid line y = w(z; Zo) is the intersection with the plane of the  linearized 
invariant  manifold W,(p) × WE(p). This figure demonst ra tes  that  the  cont inuous spiking state is confined to one ( the upper)  side 
of y = w(z; zo), and burst ing occurs when this state is enlarged to merge  with y = w(z; zo). 
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Fig. 4. (a) Schematic illustration of the Poincar6 section. The attractor is collapsed onto a 1D curve y = )7(z; z0). The point at 
z = z b is the intersection of this curve with the invariant manifold W,(p) x W',(p) t3 H. (b) The reduced 1D map z,+l = f(z.; zo). 
The point Zq is one of the two preimages of zb, and z,. is the location of the maximum of the map. (c) The 1D map for Zo = 3.19. 
The square window delimits the definition domain of the continuous spiking subdynamics, A = [zb, Zq]. (d) An enlarged view of 
the local map T 0. The chaotic invariant set of To is not attracting, because the maximum of the map exceeds the definition 
domain. This is in contrast with the continuous spiking case (not shown). 

is r educed  to a 1D m a p  

z.+, = F(g(z~; Zo), z.; Zo)-- f(z .;  Zo), (7) 

as is schematical ly  shown in fig. 4b. 

T h e  funct ion f ( z ;  Zo) possesses a unique  maxi- 
m u m ,  say at z = Zm. We define ]cA on z < z.,  as 

the par t  o f  f that  is strictly increasing, and fB on 
z > z m as the par t  of  f that  is strictly decreasing.  

Le t  Zq = fB~(Zb)- Then ,  in terms of  the 1D map,  
the transition criterion is expressed as follows: a 

con t inuous  spiking state is confined in the inter- 
val [Zb, Zq], and burst ing occurs  when orbits are 
a l lowed to escape f rom this interval. 

The  1D at t rac tor  cor responding  to a chaotic  

burs t ing  regime at z o = 3.19 is displayed in fig. 
4c. The  por t ion  on  [zb, zq] is ma rked  by a square  

window,  and enlarged in fig. 4d. Note  that  the 

m a p  z,+~ = f ( z , ;  z o = 3.19) may  be obta ined  by 
a m e t h o d  used in [3], which would  yield a form 

similar to fig. 4b. 

2.4. Hyperbolic chaos and reinjection 

Suppose  that  we are in the bursting region II.  

We  deno te  by  T o the 1D map  restr icted to the 
interval  A = [zb, Zq], the definition domain  o f  the 

con t inuous  spiking subdynamics .  T O is o f  logistic 

type ,  and  has a single fixed point.  
The  m a x i m u m  of  T O at z m exceeds the defini- 

t ion doma in  A, f(Zm) > Zq, SO that  orbits may  fall 
into [fAl(Zq), fBl (Zq) ] ,  and escape f rom A. Let  
A t  ~ --1 - - I  f [ f g  (Zq), f a  (Zq)] = [Zq, f(Zm) ]. The  
image  of  A'  by  f is a very  small interval located 
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on the left side of A, where f has a slope near to 
unity. Due to the channel-like form of f,  by 
fur ther  iterations A' is simply moved upwards 
without deformation,  and must eventually enter 
the interval A. (At Zo = 3.19, for instance, the 
required number  of iterations is k = 16, given by 
the number  of dots seen outside A in fig. 4c.) 
Thus,  there exists an integer k, such that fk  
projects the interval A' back to A. We shall 
denote  by T 1 the reinjection map f k  restricted on 
A t" 

Note  that the integer k depends sensitively on 
e, because of the channel-like form of the f-  
function for z < z b. For  smaller e, the channel is 
tighter, covers a narrower range of z, and even- 
tually shrinks to a point of the diagonal straight 
line. This reflects the fact that as E tends to 0, 
both  the speed and the range of the z variation 
vanish, and continuous spiking can last indefi- 
nitely. 

In terms of the two subdynamics T O and T1, 
with their aforementioned properties,  we can 
show that all three conditions for a realization of 
homoclinicity to a chaotic saddle can be fulfilled: 

(1) the invariant set 12 of T o is chaotic, and 
nonattracting. The chaotic nature of 12 can be 
proved by applying a theorem of Li and Yorke 
[13]. The  proof  is strictly similar to that carried 
out  in [8], which we shall not reiterate. Recall 
that the L i -Yorke  theorem implies that there 
exists an invariant set of orbits included in 12 
which is not countable and forms a Cantor  set. 

That  /2 is not attracting in region II follows 
immediately from the fact that the maximum of 
T O exceeds the definition domain A of T 0. This is 
t rue for z 0 in the bursting region II, not in the 
continuous spiking region III. 

(2) the invariant set /2 is endowed with a 
hyperbolic structure. It can be shown that 
ITS[ -1/2 is a convex function, so that the Schwar- 
tzian derivative of T O is negative for z E A. This 
combined with the fact that To(z,, ) > Zq is suffi- 
cient (cf. [31]) to imply a hyperbolic structure for 
12, in the sense that there exist a K > 0  and 
0 > 1, such that [(T0)'(z)l > KO", for all n-> 1 

and for all z ~ O. The invariant state of continu- 
ous spiking 12 is thus a chaotic saddle. 

(3) a reinjection mechanism is realized by T1, 
since T~(A')C A. For parameter  z o values such 
that T~(A') is not in any gap of the Cantor set 12, 
TI(A') N 12 ~ O. Thus, there are points in A' 
which converge to 12 after k iterations of f. These 
correspond to homoclinic orbits since their iter- 
ates by f - n  also tend asymptotically to 12. 

In conclusion, a bursting dynamics can be 
expressed as a reinjection mechanism to a cha- 
otic saddle of continuous spiking. Its Poincar6 
map is similar to that sketched in fig. lb,  with 
two differences: the transversal compression is 
very strong, so that the map is reduced to an 
one-dimensional one; and the reinjection con- 
sists of a number  of iterations which can be 
larger for small ~ values. Hence,  bursting dy- 
namics is distinguished from other homoclinic 
systems, in that its global reinjection map may 
be rather  subtle. 

2.5. Complex sequences of  bursting cycles 

The destabilization of the continuous spiking 
chaotic state 12 and a homoclinic mechanism to it 
not  only generate an enlarged chaotic state (of 
bursting oscillations), but also lead to the crea- 
tion of a plethora of periodic attractors. This is 
because the invariant set 12 contains a countable 
infinity of periodic orbits, all of the saddle type; 
and a homoclinic tangency to each of these 
cycles can create an infinite sequence of periodic 
windows in the parameter  space. For instance, 
suppose that a homoclinic tangency to the fixed 
point of the Poincar6 map is realized at z o. 
Then,  periodic bursting with n spikes per period 
bifurcate at (z0)tn which accumulate at z~, and 
they remain stable for parameter  ranges (Az0) n 
which tend to zero as n--~ oo. We have [8,9,23] 

(z0)tn - z~ ~ const, x Au" , 

(AZo)n ~ const, x Aft 2" , (8) 
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where A u is the unstable eigenvalue of the fixed 
point. Thus, periodic windows near a homoclinic 
tangency typically converge according to an ex- 
ponential law, with the rate given by A u. 
Furthermore,  in contrast to the case with Au > 0, 
where the whole sequence shows a simple order, 
if A~ < 0, there is a subsequence of which the 
even values of n are located on one side of z~, 
while the odd ones are on the other side. 

Since the periodic window width in such a 
sequence vanishes exponentially, as n - - -~ ,  a 
numerical observation of eq. (8) is feasible only 
if IAul is not too large. In the case of the HR 
model,  we used the AUTO program [5] to esti- 
mate A u as function of z 0. At  the period dou- 
bling point z 0 - 3 . 1 1 ,  A u = -1 .  As z 0 is further 
increased, IAul was found to increase sharply, 
and become more negative than -100 for z 0 > 
3.45. This implies that such a bifurcation se- 
quence can be relevant at most for a small range 
of z 0 in the bursting region II. On the other 
hand, close to the transition point (z0)H_ m = 
3.15867947 _+ 10 -8, we observed numerically two 
consecutive periodic windows: n = 23 for z 0 
[3.168, 3.18] and n = 2 5  for z0E[3.16,  3.161], 
with no discernable n = 24 window between the 
two. Chaos was found for z 0 E [3.162, 3.167]. 
Hence,  perhaps a homoclinic tangency is realized 
to the fixed point of the Poincar6 map at z 0 near 
3.16. 

Similar consideration can be carried out for 
periodic orbits of higher order, but the related 
periodic windows would be even narrower in the 
parameter space. To classify all the possible 
periodic windows generated by homoclinic 
tangencies, one needs a symbolic dynamics de- 
scription. Let us partition the interval A into two 
domains, 

A 0 = {Z: Z b < Z < f a l ( Z m ) }  , (9)  

A 1 : ( z :  / B l ( Z m )  ~" g <7 Zq} ,  (10)  

This particular choice, which is analogous to 
that used in [8], is made so that (1) only in d 1 is 

the return time sharply increased; (2) the unique 
fixed point belongs to A0; (3) the quiescent phase 
is always preceded by a spike of type 0; and (4) a 
spike of type 1 is always followed by a spike of 
type 0. This last condition is in keeping with the 
numerical observation that a spike with con- 
spicuously large return time is always followed 
by a spike with a short return time (see fig. 2c for 
an example). 

Furthermore,  one iteration by f from a point 
in A' corresponds to a spike followed by a silent 
phase, which we denote by the symbol 0S. Then, 
the symbol assigned to one iteration by T 1 should 
be 0S0 k-1. Equipped with this symbolic dynamics 
of spiking and reinjection, all the periodic win- 
dows can be classified according to their sym- 
bolic names. For instance, the aforementioned 
two windows with n = 23 and 25 have as their 
symbols (023S) and (02310S), respectively. Note 
that all three symbols are required, since two 
periodic windows may differ not by the number 
of spikes per burst, but by the characteristics of 
spikes themselves. For instance, another n = 23 
window was observed at z o = 3.24, which is of 
the type (02°100S), different from the previous 
one. Besides, periodic windows may have several 
different bursts per period. We record here three 
such examples: (1) at z o = 3.39814, three bursts 
per period (n=19,19,20) ,  symbolic n a m e =  
(01710S)2(0171005); (2)  at  z0=3.33945, two 
bursts per period (n = 20,21), symbolic name = 
(01810S)(018100S); and (3) at z 0 =3.339, four 
bursts per period (n =20,20,20,21), symbolic 
name = (1018105)3(018100S). 

To conclude, chaotic bursting, as well as com- 
plex bifurcation sequences of periodic bursting, 
can be described and classified using a symbolic 
dynamics with three alphabets. They are how- 
ever important only in a relatively small range of 
z0 values near the onset point (z0)n_ m of burst- 
ing. This is explained by the fact that IAu[ of the 
basic cycle becomes rapidly very large. 

On the other hand, for z 0 away from the 
critical zone, say z 0 > 3.2, no chaos has been 
observed, and a simple sequence of periodic 
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bursting is dominant (with n = 2 1 , . . . ,  7,6,5 ob- 
served as z 0 is increased from 3.25 to 5.1). This 
regular sequence is not related to a homoclinic 
tangency to /2 .  Rather,  as z 0 is increased beyond 
3.2, the reinjection is closer to 12 (compare fig. 
2b with fig. 2d). This means that less iterations 
on the Poincar6 map are needed for the reinjec- 
tion, and the integer k in the definition of T, is 
reduced for increasing z 0. In this way the num- 
ber of spikes per burst can decrease gradually 
with increasing z 0. Therefore ,  transitions be- 
tween n + 1 to n spikes in this sequence may 
even by continuous without a bifurcation [29]. 
The transition usually occurs as (0" ÷1) 
( 0 " - ' 1 0 ) ~  (0"). 

Comparing figs. 2a, b with 2c, d, we also note 
that for larger z 0 the orbit spends more time on 
the lower steady state branch of the fast sub- 
system, so that the silent phases are prolonged. 
In that region of the phase space the flow is 
virtually compressed onto an one-dimensional 
curve. This can already be seen in fig. 2d: orbits 
which are separate when escaping from the spik- 
ing region become visually indistinguishable at 
the end of the silent phase. For  large z o, during 
the prolonged silent phase the flow may be com- 
pressed practically onto the 1D curve, so that 
chaos is effectively eliminated. 

2.6. Crisis of  the chaotic continuous spiking 
state 

We shall end with a characterization of the 

transition which takes place at z 0 = ( z 0 ) i i _ i i  I .  

According to our hypothesis, the chaotic con- 
t inuous spiking state 12 is destabilized at the 
critical point,  when it merges with the invariant 
manifold Ws(p) x Wu' (p )  of the equilibrium state 
p. In terms of the Poincar6 section, since the 
invariant state 12 is confined on a quasi-one 
dimensional curve (fig. 3) which is near the 
unstable manifold of the fixed point of the map, 
we may surmise a more specific hypothesis: the 
criticality occurs when the unstable manifold o f  a 
periodic orbit in 12 merges with W s (p )  × W',(p). 

This conjecture can be tested by considering 
how the mean escape rate 3, of the chaotic state 
behaves near (z0),i_ m. As we summarized in the 
introduction,  3' is the order parameter  of this 
critical phenomenon,  which is positive for z 0 > 

(Zo)H_ m and vanishes for Zo<-(Zo),,_ m. Our 
situation is similar to a type of crisis studied in 
[i0], which is induced by a heteroclinic tangency 
between the unstable manifold of an unstable 
periodic orbit in a chaotic state 12, and the stable 
manifold of another periodic orbit outside fl. In 
that case, the mean escape rate 7 tends to zero 
as the crisis is approached, according to a power 
law, with the exponent a given by 

-- ½ + ( l n l A u l ) / ( l n l A s I ) ,  (11) 

where A s and A u are the stable and unstable 
eigenvalues, respectively, of the periodic orbit in 
/2. In the strongly contracting limit, IAsl- 0, we 
have a = ½. 

We found that the derivation of expression 
(11) can be carried over without change to our 
case of the H R  model,  except that the stable 
manifold of the second periodic orbit is here 
replaced by W s ( p ) ×  WE(p) of the equilibrium 
state p. Hence,  with the strong contraction we 
predict that the transition from continuous spik- 
ing to bursting is characterized by the following 
power law: 

3" ~ (2"  0 - -  ( Z 0 ) I I _ I I I )  1 / 2  ' (12) 

as (z0)u-ni is approached from above. 
We have undertaken a numerical test of eq. 

(12). We did not compute separately the 
Lyapunov exponent  h u of the continuous spiking 
chaos and its Kolmogorov-Sinai  entropy hKs, in 
order  to subtract 3' = h u -  hrs- Instead, we fol- 
lowed [10] to estimate 3' via its inverse ~- = 1/7, 
which is the mean residence time in /2. Our 
numerical result shown in fig. 5 agrees with the 
theoretical prediction eq. (12). 

Note that if the equilibrium state p was very 
close t o /2 ,  for z o near (Z0),~_HI, it would have to 



X.-J. Wang / Bursting oscillations in Hindmarsh-Rose model 273 

o 
t 

5 - 

2 I t I I 
3 4 5 6 7 

-logt,(zo-(zo)~r_~r) 

Fig. 5. Numerical estimation of the mean escape rate T as z 0 
approaches to the critical point (z0)n_m from the bursting 
side. The solid circles are data points. At each fixed z0, an 
orbit is integrated for a time of 6 × 105, which requires about 
4 × l0 T integration steps of variable size. The mean residence 
time of the orbit in/~ was evaluated, and its inverse yields an 
estimate of the % The data agree with the theoretical predic- 
tion eq. (12). The sudden drop at the beginning of the 
numerical curve corresponds to a periodic window (n = 25). 
Note that for the last few data points at the upper end, the 
integrated orbit contains only about ten bursts which become 
very long-lasting. Thus the mean is not accurately estimated 
due to the poor statistics. 

affect the critical behavior ,  and eq. (12) would  in 
fact  need  to be modif ied (cf. [10], subsection 
IV.B).  

3. Concluding remarks 

In  this pape r  we discussed the genesis of  burst-  
ing oscillations in a class of  differential equa-  

tions, exemplified by the H i n d m a r s h - R o s e  
model .  A specific mechanism,  namely  that  o f  
homocl in ic i ty  to a chaot ic  saddle,  is p roposed  
and tes ted favorably  by numerica l  simulations.  
We also discussed the nature  o f  the transit ion 
f rom cont inuous  spiking to bursting, and ob- 

ta ined a quant i ta t ive  character izat ion (eq. (12)) 
fo r  its critical behavior .  

A compar i son  is now in o rder  be tween the 
burst ing dynamics  discussed here,  and the 

P o m e a u - M a n n e v i l l e  in termi t tency [18]. The  

t ime evolut ion o f  this lat ter  system also displays 

long regular  phases  of  relative quiescence inter- 

rup ted  by bursts o f  large ampli tude oscillations, 
and the under ly ing  mechan i sm is also based on a 

re in jec t ion principle.  The  critical intermit tent  
systems should be c o m p a r e d  with the burst ing 

systems at the crisis: in bo th  cases we have a 

cod imens ion -one  situation where  a basic state 

b e c o m e s  neutral ly  stable. To this basic state a 

re in jec t ion mechan i sm is present .  The  difference 
be tween  the two,  however ,  is that  for  the inter- 

mi t ten t  dynamics  the basic state is a periodic 

cycle;  while for  the burst ing dynamics  the basic 

state is a chaot ic  set. Consequen t ly ,  the qu iescen t  

p h a s e s  in the fo rmer  case should be identified to 
the  basic state,  and the bursts to  the reinject ion 

loop.  In  the  burst ing case the opposi te  is t rue 
(fig. 6). 

A w a y  f rom the critical si tuation the basic state 

m a y  acquire  a hyperbol ic  s t ructure,  hence  it 

b ecomes  a saddle. Then ,  the reinject ion mecha-  

(a) 

7 
I 

/ 
! 
I 
t 

(b) 

Fig. 6. Comparison of bursting dynamics near the criticality 
with the Pomeau-Manneville (PM) intermittent dynamics. 
(a) An iterative orbit of the 1D map z~+t = f(z,; z 0 = 3.159) 
and (b) an orbit generated by the PM map zn+ l =0.01+ 
z n + z~ 2 . Scales are arbitrary. 
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nism m a y  c r ea t e  homoc l in i c  orb i t s  to  this  in- 

v a r i a n t  s add le ,  a n d  a cr i t ical  s i tua t ion  of  a dif fer-  

en t  k ind  occurs  w h e n  a homoc l in i c i ty  is t angen t .  

H e r e ,  it  is the  r e i n j e c t i o n  m a p p i n g ,  in s t ead  of  

t he  bas ic  s t a t e ,  t ha t  is c o d i m e n s i o n  one .  

T h e r e f o r e ,  the  t h r e e  types  of  comp lex  mul t i -  

m o d a l  osc i l l a t ions  ( i .e .  homoc l in i c  sys tems,  

bu r s t i ng  and  i n t e r m i t t e n c y ) ,  which  are  o f  wide  

i n t e r e s t  in va r ious  b r a n c h e s  of  na tu r a l  sc iences ,  

m a y  all b e  v i e w e d  as a r e in j ec t i on  m e c h a n i s m  to 

a ce r t a in  i nva r i an t  bas ic  s ta te .  
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