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Toward a Prefrontal Microcircuit Model for Cognitive

Deficits in Schizophrenia

X.-J. Wang

I present here a biophysically-based model of cortical microcir-
cuits capable of both internal representation (memory storage)
and dynamical processing (decision and action selection). The
model is illustrated through computer simulations that account
for neurophysiological and behavioral data from studies using
nonhuman primates. This computational theory proposes that

an interplay between slow reverberating excitation and compe-
titive synaptic inhibition enables a cortical area, such as the pre-
frontal cortex, to subserve cognitive functions. It is argued that
quantitatively accurate microcircuit models can potentially pro-
vide a framework for a systematic approach to pharmacological
treatment of schizophrenia and other mental disorders.

Introduction

Among core features of schizophrenia are deficits in cognitive
functions, such as working memory, decision making and inhibi-
tory control. Converging evidence indicates that these impair-
ments are associated with abnormal function of the prefrontal
cortex (PFC) [27,73,65]. Last 10 years have witnessed great
strides in basic research of PFC, galvanized by a cross-disciplin-
ary approach combining physiology of behaving animals, human
functional brain imaging, anatomical and biophysical analysis of
neural circuitry, computational modeling [65,50,71]. Informa-
tion is accumulating at rapid pace concerning the structure and
dynamical operation of PFC in normal subjects. Knowledge thus
gained is beginning to shed insights into the cellular and circuit
basis of PFC dysfunction associated with schizophrenia.

In this endeavour, computational models are playing an increas-
ingly significant role. For example, a cardinal prefrontal function
is working memory, and physiological studies of alert nonhuman
primates have revealed mnemonic ‘persistent activity’ in PFC, at
the single cell level, during working memory [22,20,51,55,59].
An open question is how to link neural processes observed in be-
having animals with the underlying cellular mechanisms; Rea-
listic neural network modeling has proven to be a valuable tool

in this regard, helping bridge the gaps between levels of investi-
gation that would be difficult to achieve with existing ex-
perimental methods. Biophysically-based microcircuit models
have become possible only recently, thanks to advances in our
knowledge of the biophysics of single neurons [40,44] and sy-
napses [46,1], as well as microcircuit connectivity of neocortex
[63,17].

Interests in a computational approach also stem from the fact
that cognitive functions involve strongly recurrent cortical cir-
cuits with an abundance of feedback loops, the behaviors of
which are not easy to predict by intuition alone. Indeed, a central
tenet of the field is the concept of reverberation, or recurrent dy-
namics in a neural circuit [42,30,4,68]. Broadly speaking, feed-
back mechanisms underlying reverberation can either arise
from recurrent network dynamics [5,39,67,18,10,62,7,52], or
from intrinsic membrane/intracellular dynamics of single cells
[8,19,33,41,25,45]. The idea of reverberation is made precise
mathematically, in terms of ‘dynamical attractors’ [74,3,4,68].
The mathematical term ‘attractor’ simply means any self-sus-
tained and stable state of a dynamical system, such as a neural
network. According to this picture, in a working memory system,
the spontaneous (resting) state and stimulus-selective memory
states are assumed to represent multiple attractors, such that a
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memory state can be switched on and off by transient inputs. The
challenge today is to test whether the attractor theory is suitable
for describing cortical processes of cognition and, if so, to find
out how attractor dynamics can be instantiated by neuronal
hardware in the brain.

A biophysically-based model of working memory

Arguably the simplest paradigm for studying prefrontal function
is delayed response tasks [32], in which the sensory stimulus and
motor response are separated by a brief delay period, during
which time the sensory information must be actively held in
mind by the subject. An especially elegant experimental design
is the spatial delayed oculomotor response task (Fig.1A). Using
this task, Funahashi et al. [20] found that many neurons in the
dorsolateral prefrontal cortex including and surrounding the
principal sulcus, and in the frontal eye field, exhibited mnemonic
persistent activity during the delay period (Fig.1B). Remarkably,
the delay activity of a recorded neuron was selective for preferr-
ed spatial cues (the cell’s ‘memory field’), and this selectivity
could be quantified by a bell-shaped tuning curve (Fig.1C).
Thus, the question of prefrontal microcircuitry underlying work-
ing memory could be formulated in cellular and synaptic terms
[28,68,14]: what are the excitatory-inhibitory synaptic mecha-
nisms for the formation of memory fields? what are the micro-
circuitry properties of the prefrontal cortex, such as local hori-
zontal connections, that generate persistent activity? We have
investigated these questions using a biophysically constrained
model of recurrent cortical microcircuit [8,10,66,58].

A network model for the Funahashi experiment of spatial work-
ing memory is illustrated in Fig. 2A. The key feature is the pre-
eminence of recurrent connections (‘loops’) between neurons
via ‘horizontal’ connections [37,34]. A commonly assumed net-
work architecture is the so called ‘Mexican-hat’: localized recur-
rent excitation between pyramidal cells with similar preference
to spatial cues, and broader inhibition mediated by interneurons.
Models of synapses and single cells are calibrated quantitatively
by cortical electrophysiological studies. Fig. 2B shows a model si-
mulation of the delayed oculomotor task [10,57] (for movie pre-
sentation of this model, go to http://wanglab.ccs.brandeis.edu/).
Initially, the network is in a resting state in which all cells fire
spontaneously at low rates. A transient input (in this case at 180
degrees) drives a subpopulation of cells to fire at high rates. As a
result they send recruited excitation to each other via horizontal
connections. This internal excitation is large enough to sustain
elevated activity, so that the firing pattern persists after the sti-
mulus is withdrawn. Synaptic inhibition ensures that the activity
does not spread to the rest of the network, and persistent activity
has a bell shape (‘bump attractor’). At the end of a mnemonic de-
lay period the cue information can be retrieved by reading out
the peak location of the persistent activity pattern; and the net-
work is reset back to the resting state. In different trials, a cue can
be presented at different locations. For example, across eight cue
presentations the firing activity of a single cell (Fig.2C) can be
compared with the single-unit recording data from monkey’s
prefrontal cortex [20]. At the network level, each cue triggers a
persistent firing pattern of the same bell-shape but peaked at a
different location. A spatial working memory network thus re-

quires a continuous family of ‘bump attractors’, each encoding a
potential location [8,10,57,72].

Thus, this biologically constrained model captures salient ex-
perimental observations from behaving monkeys. What have
we learned from such a model? An important lesson is that mul-
tiple aspects of network function can be traced to a few key cir-
cuit features. Namely, we found a complementarity of two re-
quirements. On the one hand, to ensure stable working memory
behavior, reverberatory neurodynamics should be strong but in-
stantiated by a slow positive feedback mechanism, such as sy-
naptic excitation mediated by the NMDA receptors [67,68,66].
On the other hand, it is essential that exuberant excitation be
tightly balanced by inhibition [10,7,72]. The balance between
strong excitation and inhibition underlies the generation of per-
sistent activity and its selectivity to sensory stimuli [10,72]. The
model predicts quantitative features of GABAergic inhibitory
cells [10,72], which have been supported by direct measure-
ments of putative inhibitory neurons from behaving monkeys
during working memory [12] (Fig.1, bottom panel), and by the
observation that GABAA receptor antagonists resulted in the
loss of spatial tuning of prefrontal neurons during a delayed ocu-
lomotor task [56]. Moreover, balanced excitation and inhibition
naturally gives rise to coherent network oscillations, typically in
the gamma (40 Hz) frequency range [67,10,66, 58] (Fig. 3). There-
fore, fast rhythms, that are commonly observed in awake behav-
ing animals, may be a characteristic sign of the engagement of
strongly reverberatory cortical circuits in cognition and memory.

A key aspect of memory maintenance is the brain’s ability to filter
out irrelevant sensory stimuli. In delayed response experiments
using intervening stimuli (distractors), mnemonic activity has
been shown to be easily disrupted by distractors in inferotempor-
al neurons but not in prefrontal neurons [51]. Similarly, delay
period activity in posterior parietal cortex appears to be sensitive
to distractors [54,13]. We found that synaptic inhibition provides
a candidate mechanism enabling our model network to resist dis-
tracting stimuli during working memory [10,7]. Interestingly, the
network’s ability to ignore distractors is sensitive to modulation
by dopamine of recurrent excitation and inhibition (Fig.4) [7,18].
Therefore, even a mild impairment of dopaminergic signaling in
prefrontal cortex could be dramatically detrimental to robust
working memory maintenance in spite of ongoing sensory flow.

It is worth noting that, although these types of models were de-
signed for working memory, it turns out that they can account
for decision making processes as well [69,43,53]. Slow reverbera-
tion can serve time integration of information, and inhibition
gives rise to winner-take-all competition, both computations
being of central importance to decision making. In this way, our
model brings together two contrasting views about prefrontal
function, maintenance of internal representation versus cognitive
processes [16,50,75], into an unifying theoretical framework.

Distinct features of prefrontal microcircuit and implications
for schizophrenia

Quantitative differences breed qualitatively different behaviors.
That a cortical area exhibits a new type of behavior does not nec-
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essarily mean that the circuit must possess unique biological
machineries completely different from other areas. Hence, per-
sistent activity may be generated in the prefrontal cortex when
the strength of recurrent excitation (mediated by AMPA+NMDA
receptors combined) exceeds a critical threshold, whereas this
may not be the case for a sensory area such as the primary visual
cortex. Based on our modeling results, we can extend this idea
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Fig.1 (A) Oculomotor delayed response task. The monkey is
required to foveate at a fixation point at the center of the screen
throughout the trial. A spatial cue is subsequently presented, ty-
pically at one of eight locations (inset at left). After a delay peri-
od of a few seconds, the disappearance of the fixation light spot
signals the end of the delay. At that moment the monkey must
make an accurate saccadic eye movement to the location where
the cue was shown before the delay period, in order to collect a
liquid reward. (B) Activity of a single prefrontal neuron, exempli-
fying persistent discharges during working memory. (C) Tuning
curves of mnemonic delay period activity in a reqular spiking pu-
tative pyramidal cell (left) and a fast-spiking putative interneur-
on (right). (A-C) are adopted from Constantinidis and Procyk
[13], Funahashi et al. [20], Constantinidis and Goldman-Rakic
[12] respectively, with permission.
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and propose that, for stable function of a working memory cir-
cuit, the NMDA/AMPA ratio at recurrent synapses should also
be above a critical level. This result is especially relevant to schi-
zophrenia research, in light of the mounting evidence that
NMDA hypofunction underlies certain cognitive deficits in schi-
zophrenia [15]. Interestingly, immunochemical analysis revealed
a significantly larger amount of mRNA expression of NMDA re-



Fig.2 Working memory maintained by a
spatially tuned network activity pattern (a
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“bump attractor”). Top: model architecture.
Excitatory pyramidal cells are labeled by
their preferred locational cues (0 to 360 de-
gree). Pyramidal cells of similar preferred
cues are connected through local E-to-E
connections. Interneurons receive inputs
from excitatory cells and send feedback in-

hibition by broad projections. Middle: a net-
work simulation of delayed oculomotor re-
sponse experiment. C: cue period D: delay
period, R: response period. Pyramidal neu-
rons are labeled along the y-axis according
to their preferred cues. The x axis represents
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time. A dot in the rastergram indicates a
spike of a neuron whose preferred location
is at 'y, at time x. Note the enhanced and lo-
calized neural activity that is triggered by a
transient cue stimulus and persists during
the delay period. The population firing pro-
file, averaged over the delay period, is
shown on the right. Bottom Left: Firing ac
tivities of a single cell when the cue was
shown in one of the 8 locations indicated in
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Gaussian fit of the data. The horizontal line
indicates average inter trial spontaneous ac-
tivity. Data provided by A. Compte.
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ceptor subunits in prefrontal neurons, compared to primary vis-
ual cortical neurons (Fig.5) [66]. Moreover, NMDA subunit
mRNA expressions are abnormal in PFC of schizophrenics [2].
Traditionally, the function of NMDA conductance is almost ex-
clusively emphasized in terms of its role in long-term synaptic
potentiation and depression. Our model presents an alternative
view, namely NMDA receptors directly mediate slow excitatory
synaptic transmission that critically contributes to working
memory and decision making. If proven experimentally, this
model would provide a mechanistic basis for the NMDA hypo-
function hypothesis of schizophrenia; and it would explain why
NMDA receptor antagonists produce working memory impair-
ment in healthy human subjects, similar to that seen in schizo-
phrenia [35].

On the other side of a balancing act, prefrontal cortex is also like-
ly to be endowed with specialized inhibitory circuitry, composed
of multiple cell subtypes (see Markram et al. [47] for a review).

90° 180°

. 270 o®

cue location

For example, the distributions of three major subtypes of GA-
BAergic cells (expressing parvalbumin, calbindin and calretinin,
respectively) appears to be quite different in macaque monkey
prefrontal cortex (Fig.6B) [11,23] compared to primary visual
cortex [6,48]. To explore differential roles of different interneur-
on subtypes, we have extended our model of spatial working
memory to incorporate three subclasses of interneurons classi-
fied according to their synaptic targets [72]. In this model
(Fig. 6A), in addition to widespread inhibition mediated by peri-
soma-targeting and parvalbumin-containing (PV) interneurons,
dendrite-targeting (calbindin-containing, CB) interneurons re-
ceive inputs from interneuron-targeting (calretinin-containing,
CR) interneurons, leading to an activity-dependent local disin-
hibition of pyramidal cells. We found that the disinhibition
mechanism, mediated by CR inhibition of CB interneurons, con-
tributes significantly to the formation of memory field, as well
as the network’s ability to filter out distracting stimuli [72].
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Fig.3 Gamma oscillations during working
memory, (A) Spatiotemporal firing pattern
of a spatial working memory model same
as in Fig.2 (with slightly different para-
meters) except that firing rates are color-
coded. (B) 500 ms blowup of (A) to show
synchronous oscillations in the spatiotem-
poral activity pattern (top), the local field
potential (middle) and membrane potential
of a single neuron (bottom). On the right is
shown the power spectrum of the local
field, demonstrating a large peak at about
40 Hz. Adopted from Compte et al. [10]
with permission.
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These results have functional implications for the observed pa-
thology of inhibitory circuits associated with schizophrenia
[38]. The model describes quantitatively the network parameters
that control (40 Hz) oscillations, thus could be used to establish a
precise link between abnormal features of rhythm [64,36] and
its underlying cellular substrates. Furthermore, the model points
to an explanation of how a reduced excitation and inhibition
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Fig.4 Resistance against distractors. Behavior of an object working
memory model is shown as a function of dopamine modulation of
NMDAR mediated recurrent excitation and GABAAR inhibition (x-axis)
and amplitude of cue stimulation (y-axis). A very weak stimulus (initial
cue) cannot elicit persistent activity (lower left region), whereas a
strong stimulus (distractor) can override recurrent dynamics and dis-
rupt delay activity (upper left region). The desirable behavior (robust
persistent activity in spite of distractors) (middle right region) is sensi-
tive to dopamine modulations. Adopted from Brunel and Wang [7]
with permission.
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leads to PFC's deficient ability to filter out distracting stimuli,
similar to enhanced distractibility observed in schizophrenic pa-
tients [21,26,49].

Concluding remarks

Computational modeling, in close interplay with laboratory ex-
periments, offers a promising approach to synthesize the stag-
gering amount of data, uncover general principles, and help
identify cellular and network mechanisms. Microcircuitry is at a
level of complexity ideally suited for linking cognitive network
functions and the underlying biophysical substrates; thus ulti-
mately for elucidating how a psychiatric drug really works. An
example par excellence is dopamine, whose actions range from
its bidirectional interaction with NMDA receptor [9,31], target-
ing various ion channels in single cells [61], to modulation of
the ratio of dendritic versus somatic inhibition of pyramidal neu-
rons [24]. A systematic and rational understanding of dopamine
modulation would seem impossible, unless we have a quantita-
tive model within which to examine these disparate (some exci-
tatory, others inhibitory) effects in the context of the delicate
balancing act of excitation and inhibition, at the heart of strongly
nonlinear dynamics that underlies cognitive processes in pre-
frontal cortex. In this sense, microcircuit neurodynamics holds
the key to a theoretical foundation for neuropharmacology and
molecular psychiatry [29].
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Fig.5 mRNA expression of NMDA receptor subunits NR1, NR2A and NR2B in human prefrontal cortex (top) and primary visual cortex (bottom).
Adopted from Scherzer et al. [60] with permission.

Fig.6 (A) A spatial working memory mod-
el with three subclasses of GABAergic inter-

A neurons. Pyramidal (P) neurons are arrang-
o o ed according to their preferred cues (0 to
180 360 360 degrees). There are localized recurrent

excitatory connections, and broad inhibi-
tory projections from perisoma-targeting
(parvalbumin-containing, PV) fast-spiking
neurons to P cells. Within a column, Calbin-
din-containing (CB) interneurons target the
dendrites of P neurons, whereas calretinin-
containing (CR) interneurons preferentially
project to CB cells. Excitation of a group of
pyramidal cells recruits locally CR neurons,
which sends enhanced inhibition to CB neu-
rons, leading to dendritic disinhibition of
the same pyramidal cells. Adopted from
Wang et al. [72] with permission. (B) Propor-
tional distribution of PV, CB and CR expres-
sing GABAergic cells in three subregions of
the prefrontal cortex of the macaque mon-
key. Data taken from Conde et al. [11] with
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