
The idea of a canonical microcircuit in the 
mammalian cortex has been a cornerstone 
of neuroscience ever since the discovery of 
columns in the 1950s and 1960s. According 
to this view1, the basic unit of cortical 
organization is a minicolumn, with about 
100 neurons confined vertically across the 
cortical depth, except for the primary visual 
cortex (V1) where the number of neurons 
in a minicolumn is ~2-fold greater. Each 
minicolumn is dedicated to a particular 
neural computation, such as coding a 
particular orientation of visual stimuli 
in V1. A column consists of a number of 
minicolumns, and its horizontal spatial 
extent varies little (ranging 300–600 μm  
in diameter) even between species whose 
brain volumes vary by a factor of 1,000.  
This expansion of cortical volumes 
corresponds to an increased number of 
columns across species2.

For decades, in vitro neurophysiological 
studies of neocortical circuits have largely 
been carried out using slices of primary 
sensory areas, often with the implicit 
assumption that results thus obtained 

cytoarchitecture and myeloarchitecture have 
been measured and utilized as an anatomical 
basis of parcellating the cortex into discrete 
areas and defining cortical hierarchy 
(see refs13,14 for recent reviews).

Modern brain connectomics has 
enabled researchers to quantify cortical 
connectivity15,16. In the framework of graph 
theory, cortical areas are ‘nodes’ connected 
by ‘links’ in a structured graph. Nodes 
are mathematically identical even though 
areas are biologically heterogeneous; thus, 
microscale cellular variations were assessed 
not so much in terms of their dynamical 
implications as correlates of macroscale 
interareal long-​range connections of 
different areas17. Similarly, in studies 
of functional connectivity, such as those 
using functional MRI (fMRI), areas are 
typically assumed to be identical. Functional 
connectivity measured by covariance 
matrices of the activities of pairs of areas is 
interpreted in terms of interareal structural 
connections, but the correlation between 
structural and functional connections is 
modest18–20. Areal differences are by and 
large ignored in current graph-​theoretical 
analysis of the brain connectome, partly 
explaining our limited understanding of 
functional connectivity data, as discussed 
below.

From this perspective, how can one 
explain the different functional capabilities 
of such disparate areas as V1 and the PFC? 
Differential functions of various cortical 
areas could emerge from their proximity to 
sensory peripheries, their input and output 
connections and synaptic plasticity. Take,  
for instance, the primate visual system, 
which is organized in a hierarchy: visual 
information arrives in the retina, and its 
output is sent to the thalamus en route to V1, 
the output of which propagates to visual area  
V2 that in turn connects to V3, MT and V4,  
and so on21–23. The connection patterns 
are determined during development and 
sculpted by plasticity. Step by step along 
the resulting hierarchy, there is a gradual 
enlargement of neuronal receptive-​field 
sizes and a shift towards selectivity for 
increasingly abstract stimulus features, 
ultimately to size- and position-​invariant 
object recognition.

In purely feedforward architectures 
implemented in mathematical models of 

remain valid for all neocortical areas.  
By contrast, a limited number of studies have 
revealed marked differences between V1 
and association areas such as the prefrontal 
cortex (PFC)3–5 as well as between rodent 
and primate species6,7, but these differences 
have not been systematically documented 
and tend to be underappreciated. As it was 
put some years ago: “Our view is that the 
rapid evolutionary expansion of neocortex 
has been made possible by building an 
‘isocortex’ — a structure that uses repeats 
of the same basic local circuits throughout 
a single [cortical] sheet”8.

Of course, it is well known from 
neuroanatomy that spatial heterogeneity 
is a salient characteristic of the mammalian 
cerebral cortex. Neuron density, pyramidal 
cell size, myelin content in the grey matter, 
cortical thickness, laminar differentiation 
and local circuit wiring properties all vary 
across the cerebral cortex9–14. Starting 
with the work of Korbinian Brodmann, 
Constantin von Economo, Cécile Vogt-​
Mugnier and Oskar Vogt at the dawn of 
the twentieth century, these variations in 
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deep networks, there is no connection in 
the opposite direction from a higher to 
a lower area of a hierarchy, nor between 
units within each area. Functional diversity 
arises from training that modifies area-​
to-area connection weights using a machine 
learning protocol. Such feedforward 
architectures have been spectacularly 
successful in the performance of a number 
of tasks, and lie at the heart of the recent 
artificial intelligence revolution24. However, 
the biological cortex, including early sensory 
areas, is endowed with an abundance 
of recurrent synaptic connections25–27. 
Recurrent connections, sometimes also 
called re-​entry connections, denote 
bidirectional interactions between neurons 
either within a local circuit or across 
different brain regions. For instance,  
in V1, a neuron sends a signal to another 
neuron that in turn projects back to the  
first neuron. Such back-​and-forth 
reverberation between many excitatory and 
inhibitory neurons is absent in networks 
devoid of loop connections. Most interareal 
connections (for example, between  
V1 and V2) are reciprocal, in contrast to a 
feedforward architecture.

Moreover, brain areas differ from each 
other not only in inputs and outputs, but 
also in their biological properties. For 
instance, consider the more than 2,400 
brain-​specific genes in humans: are the 
area-​to-area variations of gene expression 
random heterogeneities, or does the 
expression of these genes vary systematically 
along certain well-​defined axes across the 
cortex? The primary goal of this article is 
to discuss recent experimental findings 
in support of the notion of macroscopic 
gradients — namely, that variations of 
synaptic excitation and inhibition across 
the cerebral cortex are not random, but 
display macroscopic gradients primarily 
along a one-​dimensional axis of hierarchy. 
Importantly, strongly recurrent neural 
circuits are described theoretically as 
non-​linear dynamical systems. In such 
systems, quantitative changes of a property 
can lead to the emergence of qualitatively 
different behaviour, through a phenomenon 
mathematically called ‘bifurcation’ that is 
not possible in linear dynamical systems28. 
I argue that the functional importance 
of macroscopic gradients can be better 
appreciated with the help of the theory of 
non-​linear dynamical systems. Bifurcations 
can be viewed as a mathematical engine for 
understanding how novel brain functions 
emerge in the cortex endowed with a 
canonical organization, with macroscopic 
gradients of biological properties shaped 

through biological evolution, brain 
development and synaptic plasticity.

Below, I first present macroscopic 
gradients of synaptic excitation and 
illustrate the idea of bifurcation that arises 
from such a gradient with an example 
of the generation of the self-​sustained 
persistent neural activity that underlies 
working memory. I summarize macroscopic 
gradients of biological properties including 
those recently reported from analyses 
of transcriptomic data from the mouse 
and the human cortex, and differences 
between the two species. Second, I show the 
importance of macroscopic gradients for 
the emergence of a hierarchy of timescales 
and for understanding cortex-​wide 
functional connections. Third, I describe 
how synaptic excitation is balanced by 
inhibition, the latter of which also displays 
macroscopic gradients. Fourth, I briefly 
describe recent evidence that macroscopic 
gradients of synaptic excitation and 
inhibition are aberrant in mental disorders 
such as schizophrenia.

Gradients of synaptic excitation
A well-​established hierarchy is that of the 
visual system in macaque monkey, with  
V1 at the bottom. Starting with the work of 
van Essen and his colleagues21,22, a functional 
hierarchy of visual information processing 
has been substantiated anatomically using 
tract-​tracing analysis. The basic observation 
underlying the definition of cortical  
hierarchy is that a feedforward projection 
tends to originate from neurons in superficial 
layers, whereas neurons that provide  
feedback projections reside in deep layers. 
According to a quantification analysis, each 
area in the macaque visual hierarchy was 
designated a position normalized between  
0 and 1 along a one-​dimensional hierarchy23. 
For instance, a qualitative description asserts 
that V2 is higher than V1, V4 is higher than 
V2, and TEO is higher than V4 along the 
visual hierarchy. Quantitatively, V2, V4 and 
TEO were assigned hierarchical positions 
of 0.17, 0.42 and 0.71 respectively, with 
V1 at the starting position 0. To explore 
whether cellular or synaptic heterogeneities 
vary randomly or systematically along the 
cortical hierarchy, published spine-​count 
data29 were re-​examined. Spines are small 
protrusions of pyramidal dendrites where 
individual excitatory synapses are located; 
therefore, the spine count is a proxy of the 
strength of synaptic excitation per pyramidal 
cell. Remarkably, the spine-​count data 
display a strong positive correlation with 
the hierarchical position of cortical areas30 
(Fig. 1a). In particular, in the macaque brain, 

a pyramidal cell in a prefrontal area has 
about 10-fold more spines than a pyramidal 
cell in V1. By contrast, in mouse, the total 
spine count per pyramidal cell seems to be 
uniform across the cortex31,32, suggesting that 
the macroscopic gradient of spine counts 
may be a relatively recent evolutionary 
development.

Given that 80% of all excitatory 
connections are intrinsic in any cortical 
area33, the spine-​count data imply that there 
are more recurrent excitatory connections 
in the PFC than in V1. This is interesting 
functionally, because sufficiently strong 
excitatory connections are believed to 
be a mechanism for the maintenance of 
persistent activity in the absence of external 
stimulation, a neural substrate of working 
memory representation34–36. Indeed, in a 
biologically realistic local circuit model of 
spiking neurons36,37 (Fig. 1b), the strength 
of recurrent excitation GEE can be varied 
as a parameter. When GEE is relatively low, 
the system has a single stable resting state 
with low spontaneous activity. Neurons 
respond to a presented stimulus, but their 
firing activity rapidly decays back to the 
baseline after stimulation offset. As GEE is 
gradually increased in a moderate range, 
a particular GEE value marks a threshold 
level of excitatory reverberation (indicated 
by the dashed vertical line) at which there 
is a sudden emergence of a new family of 
self-​sustained, stimulus-​selective activity 
states. Thus, for GEE above the threshold, 
the baseline state coexists with a number of 
persistent activity states (attractors), each 
storing a memory item. A transient stimulus 
can bring the system from the resting state 
to one of the information-​selective memory 
states, which then persists after stimulus 
withdrawal.

The abrupt appearance of working 
memory representation is mathematically 
described as a bifurcation. This concept 
is technical, but a sudden change of 
behaviour as a result of graded variation 
of a parameter is not unfamiliar to 
neurophysiologists. Consider the input–
output relationship of a single neuron: 
with a small input current, membrane 
potential is constant over time (a stationary 
attractor). When the intensity of the 
current is increased above a threshold level, 
repetitive firing of action potentials (an 
oscillatory attractor) emerges, representing 
a qualitatively different dynamical 
behaviour from the steady state. The same 
holds true for recurrent neural networks. 
Thus, the presence of persistent neural 
activity in the PFC but not in V1 can be 
theoretically explained by the strength 
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of recurrent excitation being below the 
threshold in V1 and above it in the PFC. 
This example concretely illustrates how  
a modest quantitative difference can 
produce a qualitatively novel functional 
capability.

Furthermore, computational modelling  
predicted that strong recurrent excitation  
is necessary but not sufficient for persistent 
neural activity; in addition, synaptic 
reverberation needs to be slow and dependent 
on NMDA receptors (NMDARs)38. This 
molecular-​level prediction was confirmed 
in a monkey physiological experiment that 
demonstrated a special role of NR2B-​subunit-
containing NMDARs in the maintenance of 
working memory representations39. Moreover, 
modelling work showed that slow, NMDAR-​
dependent reverberation also provides a 
circuit mechanism for decision-​making 
computations40. Is there also a macroscopic 
gradient of NMDAR signalling along the 
cortical hierarchy? The answer is currently 
not available for macaque monkey, but 
relevant evidence is emerging for human and 
mouse. As brain-​wide transcriptomic data 
are becoming available, one approach is to 
examine the expression of genes that encode 
NMDAR subunits — or, more generally, genes 
that encode receptors and other proteins 
of importance for synaptic excitation and 
inhibition — across parcellated cortical areas.

A human cortical hierarchy, as defined 
anatomically by tract-​tracing analysis, 
is currently not available. However, the 
ratio of T1-weighted to T2-weighted MRI 
signal (the T1w/T2w ratio), which has been 
suggested to reflect myelin content in the 
grey matter41,42, was noted to be high in 
human V1 and low in human PFC18. One 
study43 showed that, in macaque monkeys, 
the T1w/T2w ratio is strongly correlated 
negatively (Spearman coefficient of –0.76) 
with the hierarchical position as defined 
independently using layer-​dependent 
connections23, in support of T1w/T2w 
ratio as a non-​invasive index of cortical 
hierarchy.

Do biological properties such as gene 
expression levels vary systematically along 
the hierarchy quantified by the T1w/T2w 
ratio? An analysis43 of published human 
cortical-​RNA microarray data44 revealed 
that multiple genes involved in synaptic 
transmission display macroscopic gradients 
along the T1w/T2w ratio axis. For example, 
expression of the gene GRIN2B (Fig. 1c), 
which encodes the NR2B NMDAR subunit, 
decreases with T1w/T2w ratio and thus 
increases with hierarchy. NMDARs are 
heterotetramers that each contain two copies 
of the obligatory NR1 subunit together with 

two other subunits. In V1, a ‘switch’ occurs 
early in development, starting near the time 
of eyelid opening, from NR2B to NR2A 
dominance in NMDARs45. Interestingly, the 
expression of both NR1 and NR2A decreases 
rather than increases along the T1w/T2w-​
ratio-defined hierarchy43. These results are 
consistent with the converging physiological 
evidence that differences in the abundance 
of NR2B-​containing NMDARs mediate the 
appearance of the more prominent slow 
reverberation in PFC areas than in primary 
sensory areas5,39.

An analysis of genetic data among 
cortical areas ranked along the T1w/T2w 
ratio was also carried out in the mouse 
cortex, for which hierarchy is still a matter 

of investigation46. Using in situ hybridization 
transcriptome data47, several macroscopic 
gradients were identified48. In particular, 
a negative correlation of expression of the 
NR3A-​encoding gene with Tw1/Tw2 ratio 
(Fig. 1d) was found in mice, as in humans. 
By contrast, in the mouse cortex, the 
expression of the gene encoding NR2B 
positively correlates with the T1w/T2w ratio. 
It is worth noting that NR3A-​containing 
NMDARs are mostly found perisynaptically, 
and that the functional role of NR3A in 
NMDAR signalling could be quite different 
from those of NR2A and NR2B subunits49. 
Note that physiological studies in rat 
brain slices showed that there is a stronger 
NR2B-​dependent component of excitatory 
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threshold of synaptic strength, persistent activity appears abruptly as an all-​or-none bifurcation phe-
nomenon. c | Across different areas of the human cortex, the expression of GRIN2B, which encodes the 
NMDA receptor subunit NR2B, negatively correlates with the MRI-​derived T1-weighted signal to 
T2-weighted signal (T1w to T2w) ratio. d | In the mouse cortex, Grin3a, which encodes the NMDA 
receptor NR3A subunit, is expressed as a function of the T1w to T2w ratio. Colours correspond to types 
of cortical area: somatomotor (blue), medial (green), temporal (red), visual (purple), anterolateral (grey) 
and prefrontal (yellow). r2, Pearson correlation coefficient; rs, Spearman rank coefficient; TE, area TE; 
TEO, area TEO; V1, primary visual cortex; V2, visual area 2; V4, visual area 4; 4, 5, 7, 10, 24 and 46 refer 
to Brodmann areas 4, 5, 7, 10, 24 and 46, respectively. Part a is adapted with permission from ref.30, 
Elsevier. Part b is adapted with permission from ref.36, Elsevier. Part c is adapted from ref.43, Springer 
Nature Limited. Part d is adapted with permission from ref.48, PNAS.
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synaptic transmission at local pyramidal 
cell–pyramidal cell connections in frontal 
areas than in V1 (ref.5). Assuming that 
mouse and rat are similar, this result may 
seem to contradict the observation of higher 
NR2B expression in areas lower in the 
hierarchy. However, the relationship between 
the gene expression of a receptor and the 
latter’s physiological function is indirect. 
Furthermore, the overall gene expression 
of a receptor does not provide information 
about the spatial distribution of the encoded 
receptor on the dendrite; thus, it cannot 
inform on whether receptors are located at, 
for example, local excitatory cell–excitatory 

cell connections in a microcircuit or at 
connections between long-​range interareal 
pathways. Nevertheless, generally, NMDAR 
signalling displays macroscopic gradients 
in both mouse and human cortices, with 
some similarities as well as some marked 
differences between species.

Global brain dynamics
How would macroscopic gradients affect 
brain dynamics and functions? This 
question has started to be addressed using 
a combination of experimentation and 
theory. Spatial dependence of network 
connections50 has recently drawn attention 

in brain connectomics studies. In a directed 
and weighted interareal connectivity matrix 
of the macaque monkey cortex33,51,52, the 
connection weight between pairs of areas 
decreases exponentially with their wiring 
distance (the exponential distance rule). 
Inspired by this work, a class of spatially 
embedded structural network models of 
the cortex has been proposed53,54 to better 
describe mesoscopic cortical connectivity 
than purely topological networks that do 
not take into account spatial relationships 
between areas. The cortical network (Fig. 2a) 
endowed with this interareal connectivity 
matrix served as the structural basis of a 

7A

DP

V2

V1

STPc

MT

V4

TEO STPi

TEpd

STPr

PBr ProM

F52

7B

5

7m

F1

F2

F7

8B
8m

8l

9/46v

9/46d
46d

24c

10

a c

0

Fu
nc

ti
on

al
 c

on
ne

ct
iv

it
y

0.3

V1
V2
V4
DP
MT
8m

5
8l

TEO
2

F1
STPc

7A
46d

10
9/46v
9/46d

F5
TEpd

PBr
7m
7B
F2

STPi
ProM

F7
8B

STPr
24c

V1
V2
V4
DP
MT
8m

5
8l

TEO
2

F1
STPc

7A
46d

10
9/46v
9/46d

F5
TEpd

PBr
7m
7B
F2

STPi
ProM

F7
8B

STPr
24c

V
1

V
2

V
4

D
P

M
T

8m
5 8l

TE
O 2 F1

ST
Pc 7A 46

d 10
9/

46
v

9/
46

d F5
TE

pd PB
r

7m 7B F2
ST

Pi
Pr

oM F7 8B
ST

Pr
24

c

10 s

1 s

100 ms

20 ms
Hierarchical position

Ex
tr

ac
te

d 
ti

m
e 

co
ns

ta
nt

V1
V4 
8m 
8l 

1

0
0 Time difference (s)

Au
to

co
rr

el
at

io
n

b

3

TEO 
2
7A 
10 

9/46v
9/46d
TEpd
7m 

7B
24c

Fig. 2 | Timescale hierarchies and their implications for functional con-
nectivity. a | Connections between 29 areas in an anatomically constrained 
dynamical model of macaque cortex. Strong connections are indicated by 
lines, with line thickness determined by the connection strength. b | The 
model shows a hierarchy of timescales, with sensory areas and association 
areas characterized by short and long timescales, respectively. The left graph 
depicts the autocorrelation function of neural activity in each of a subset of 
areas. From these functions, a dominant time constant was extracted (dis-
played as a function of the area’s hierarchical position on the right). c | The 
functional connectivity matrix of the macaque cortex model where areas 
are assumed to be identical (top) is compared with the matrix when the 
model includes a macroscopic gradient (bottom). A gradient of synaptic 
excitation enhances functional connectivity especially for association areas 

with slow time constants, whereas the functional connectivity of early visual 
areas (upper left corner of the matrix) is similar with or without a macroscopic 
gradient. 2, somatosensory area 2; 5, somatosensory area 5; 7A , area 7A ; 7B, 
area 7B; 7m, area 7m; 8B, area 8B; 8l, lateral part of area 8; 8m, medial part  
of area 8; 9/46d, dorsal part of area 9/46; 9/46v, ventral part of area 9/46; 10, 
area 10; 24c, area 24c; 46d, dorsal part of area 46; DP, dorsal prelunate area; 
F1, frontal area F1; F2, frontal area F2; F5, frontal area F5; F7 , frontal area F7; 
MT, middle temporal area; PBr, rostral part of the parabelt area; ProM, area 
ProM; STPc, caudal part of the superior temporal polysensory area; STPi, 
intermediate part of the superior temporal polysensory area; STPr, rostral 
part of the superior temporal polysensory area; TEO, area TEO; TEpd, 
posterior-​dorsal part of area TE; V1, primary visual cortex; V2, visual area 2; 
V4, visual area 4. Adapted with permission from ref.30, Elsevier.

172 | March 2020 | volume 21	 www.nature.com/nrn

P e r s p e c t i v e s



large-​scale dynamical model of the macaque 
cortex, which incorporated a macroscopic 
gradient of synaptic excitation calibrated 
by the previously described spine-​count 
data30,55,56. In this model, spontaneous neural 
activity fluctuates rapidly in an early sensory 
area like V1, and much more slowly in a 
PFC area such as Brodmann area 9 and the 
dorsal part of area 46 (area 9/46d). Activity 
time series from each area were quantified 
using the autocorrelation function, which 
describes how the correlation between 
the values of a neural signal at two time 
points decays with the temporal separation 
interval. A dominant time constant was 
extracted from each area, revealing a wide 
range of timescales of dynamical operation 
that increase from sensory to association 
areas (Fig. 2b).

This theoretically predicted hierarchy of 
time constants has gained empirical support 
in analyses of single-​unit activity from 
the monkey cortex57 and mouse brain58. 
It is also functionally desirable for early 
sensory areas to operate on fast timescales 
to process rapidly changing external stimuli, 
whereas association areas such as the PFC 
display slow ramping neural activity that 
is appropriate for temporal integration 
of information in decision-​making40,59–61. 
The gradually expanding temporal  
response windows, also found in the  
human cortex62–64, mirror the well-​known 
increases of spatial receptive field size  
along the visual hierarchy65. It is worth 
noting, however, that the dominant 
time constant is not a monotonically 
increasing function of the hierarchical 
position; it depends on the macroscopic 
gradient of synaptic excitation and the 
specific statistical properties of interareal 
connectivity, including that of numerous 
feedback loops66.

The existence of macroscopic 
gradients implies that cortical areas 
are not the same, in contrast to the 
assumption of commonly practised 
graph theoretic analysis of functional 
connectivities. Intuitively, one expects that 
functional connectivity, be it measured 
by fMRI, magnetoencephalography or 
electrocorticography, would show greater 
correlation with anatomical connectivity 
if nodes were indeed identical, because 
in that case the global dynamics would 
be predominantly determined by 
the interactions between nodes. This 
was confirmed in simulations of the 
multiregional macaque cortex model30 in 
which functional connectivity was defined 
by covariance of the activity of pairs of 
areas (Fig. 2c). Notably, the functional 

connectivity was dramatically altered in 
the absence of the macroscopic gradient, 
when the area-​to-area variation of synaptic 
excitation based on the spine-​count data 
was removed from the model (compare 
top and bottom panels of Fig. 2c). This is 
because the slow dynamics in association 
areas have a large impact on the global 
neurodynamical pattern. Importantly, the 
correlation between functional connectivity 
and anatomical connectivity was smaller 
in the presence of a macroscopic gradient 
(r2 = 0.53) than without it (r2 = 0.83)30. 
It follows from this finding that long-​range 
connections alone cannot predict global 
brain-​activity patterns. Indeed, a recent 
study of the human cortex showed that the 
correlation between functional connectivity 
and structural connectivity (measured 
by diffusion tensor imaging) gradually 
decreases from unimodal sensory areas to 
transmodal or association areas67. Therefore, 
functional connectivity analyses that take 
into account a heterogeneous distribution 
of properties in the cortex, notably in 
the form of macroscopic gradients, are 
predicted to yield a better understanding 
of the relationship between functional and 
structural connectivity.

One study68 addressed this matter by 
comparing a computational model of the 
human cortex with functional imaging 
measurements from more than 300 healthy 
participants. In this model, the interareal 
connectivity was based on the structural 
MRI data from the Human Connectome 
Project. As in previous work69,70, the 
dynamics of each local area was described 
by a population firing rate model adopted 
from ref.71 and the BOLD (blood oxygen 
level-​dependent) signal was extracted 
from neural activity using the Balloon 
model72. The global brain connectivity for 
each parcellated area was defined as the 
average of its functional connectivities with 
all the other cortical areas, and the global 
brain connectivity values (one for each 
area) of the model were compared with 
those measured using human resting-​state 
fMRI. With areas differing only in their 
connection patterns, the correlation (r) 
between the global connectivity values from 
the computational model and from the fMRI 
data was about 0.48, which is comparable 
to that of a previous study73. However, 
when a linear gradient of strength for local 
synaptic excitation as well as inhibition was 
introduced along the T1w/T2w axis, the 
correlation between the global functional 
connectivity from the computational 
model and that from the fMRI data was 
substantially higher (~0.74).

In a separate work, the strength of 
recurrent connections in a modelled 
cortical network was allowed to vary from 
area to area and was optimized to fit the 
model to functional connectivity data from 
human resting-​state fMRI. The resulting 
model parameters revealed a macroscopic 
gradient of local recurrent excitation74. 
However, surprisingly, the gradient that 
emerged from model fitting decreased 
rather than increased along the hierarchy. 
The discrepancy between the two studies68,74 
may arise from differences in the details 
of experimentation and modelling, and 
its resolution warrants future research. 
Regardless, these works highlight the 
importance of considering macroscopic 
gradients in network studies of large-​scale 
brain dynamics30.

Gradients of inhibition
A hallmark of cortical organization is the 
balance between synaptic excitation and 
inhibition75. Does synaptic inhibition also 
display a macroscopic gradient?

Cortical GABAergic cells display 
remarkable diversity76–79, and the density of 
various inhibitory cell types is heterogeneous 
across the cortex. These diverse interneuron 
types can be labelled with different markers. 
Conventionally, three major interneuron 
classes have been defined based on their 
expression of the calcium-​binding proteins 
parvalbumin (PV+), calbindin (CB+) 
or calretinin (CR+), and their relative 
proportions are quite different in V1 versus 
the PFC80,81. More recent studies in rodents 
commonly divide most interneurons into 
three types according to their mutually 
exclusive expression of PV, somatostatin 
(SST) or vasoactive intestinal peptide 
(VIP); there is a large overlap between 
SST+ interneurons and CB+ interneurons 
(collectively referred to hereafter as  
SST+/CB+ neurons), as well as between  
VIP+ interneurons and CR+ interneurons  
(VIP+/CR+ neurons). In a disinhibitory 
motif initially proposed theoretically82 and 
later supported by experiments (for reviews, 
see refs83,84), PV+ interneurons target 
the perisomatic region of pyramidal cells 
and control their spiking output, whereas 
SST+/CB+ interneurons target pyramidal 
dendrites and gate synaptic input flow. The 
third interneuron subpopulation, VIP+/CR+ 
neurons, preferentially project to SST+/CB+ 
interneurons (Fig. 3a).

A comprehensive cell-​count analysis 
of GABAergic cells in the mouse brain 
revealed that the ratio of input-​controlling 
SST+ cells and output-​controlling PV+ cells 
varies considerably across cortical areas85. 
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When areas were plotted by rank order 
of the SST+ cell to PV+ cell ratio value, it 
became clear that the ratio of SST+ neurons 
to PV+ neurons is generally low in early 
sensory areas and motor areas, and high 
in association areas including frontal areas 
(Fig. 3b), revealing a macroscopic gradient 
of synaptic inhibition in the mouse cortex. 
Notably, PV+ cells are twice as abundant as 
SST+/CB+ cells in V1, but SST+/CB+ cells 
are 4-fold more numerous than PV+ cells in 
frontal areas. This gradient of the ratio of 
input-​controlling inhibition versus output-​
controlling inhibition holds for primates81. 

Indeed, using an entirely different 
methodology, a separate study43 found that 
the expression of the genes encoding PV, 
CB and CR all display strong correlations 
with the T1w/T2w ratio in the human 
cortex (Fig. 3c).

Synaptic inhibition is crucial for 
processes such as stimulus selectivity86,87 
and synchronous oscillations88,89; thus, the 
functional implications of a macroscopic 
gradient of inhibition remains to be 
elucidated in future research. A particularly 
relevant idea is that the disinhibitory motif 
could serve to gate inputs into pyramidal 

dendrites flexibly according to behavioural 
demands. Specifically, when VIP+/CR+ 
inhibitory neurons are activated, SST+/CB+  
neurons would be suppressed, thereby 
opening the gate for inputs into pyramidal 
dendrites82,90,91. The need for such pathway 
gating is probably greater in association 
areas (as recipients of converging inputs) 
than in primary sensory areas along a 
cortical hierarchy, and I propose that 
this need is subserved by a macroscopic 
gradient in the ratio of input-​controlling 
versus output-​controlling inhibitory 
neurons. Moreover, different GABAergic 
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cell types are differentially modulated 
by neuromodulators in different brain 
states. The identification of macroscopic 
gradients of synaptic inhibition represents 
an important clue for extending our 
understanding of the role of inhibitory 
neurons, from local circuits towards 
multiregional large-​scale cortical systems.

Gradients and mental disorders
The notion of macroscopic gradients has 
begun to be applied to studies of mental 
disorders. For instance, schizophrenia 
is characterized by large-​scale cortical 
dysconnectivity (abnormally reduced or 
increased connectivity, depending on brain 
regions and task conditions, compared 
with healthy individuals)92. Interestingly, 
dysconnectivity is mostly implicated in the 
PFC and other association areas, raising 
the question of how such differential 
impairment can be explained if biological 
abnormalities are common across the 
neocortex.

This question motivated a study of 
brain dysconnectivity in schizophrenia 
that combined fMRI with a large-​scale 
cortical network model of the human 
cortex93. In the model and the data analysis, 
parcellated cortical areas were divided 
into association areas and sensory areas. 
Functional connectivity between a pair of 
areas was defined by the covariance of their 
activity, and ‘within-​network connectivity’ 
was computed by the average of functional 
connectivities between association areas, 
or between sensory areas, separately. The 
computational model was used to simulate 
the effect of low-​dose ketamine injection, 
which, in healthy humans, produces 
symptoms of schizophrenia94. The effect of 
ketamine was assumed to reduce NMDAR-​
dependent drive to inhibitory neurons, 
leading to weakened inhibition (the effect 
of ketamine on excitatory-​to-excitatory 
connections was not included in this study). 
In the model, local recurrent excitation 
strength was scaled by the parameter WA 
for association areas and WS for sensory 
areas. The existence of a macroscopic 
gradient was incorporated in a simple way 
by assuming a higher recurrent excitation 
in association areas than in sensory areas 
(WA > WS). Reducing the strength of the 
excitatory-​to-inhibitory connection 
throughout the cortex, mimicking ketamine 
application, produced an increase of 
functional connectivity in the association 
network, but no noticeable change of 
functional connectivity in the sensory 
network. By contrast, when there was 
no heterogeneity in recurrent excitation 

between association areas and sensory areas 
(WA = WS), simulated ketamine results in 
increased functional connectivity similarly 
for the sensory network and the association 
network. Concomitantly, resting-​state 
fMRI measurements were carried out in 
164 healthy individuals and 161 individuals 
with schizophrenia. The experiment 
revealed a differential increase of functional 
connectivity in association areas of 
individuals with schizophrenia compared 
with healthy individuals, but no difference 
in the functional connectivity of sensory 
areas between the two participant groups, 
supporting the presence of a macroscopic 
gradient. Therefore, macroscopic gradients 
offer a potential explanation for selective 
impairments centred around the PFC and 
other association areas, even if biological 
alterations may be widespread and uniform 
over the entire cortex95.

Are macroscopic gradients themselves 
deficient in mental illness? A recent 
transcriptomics study96 examined the 
expression of key markers of glutamate 
and GABA neurotransmission from 
post-​mortem cortical tissues of healthy 
individuals and individuals afflicted with 
schizophrenia. Four areas (V1, V2, posterior 
parietal cortex and dorsolateral PFC) were 
chosen because of their contributions to 
visuospatial working memory, a cardinal 
cognitive function that is impaired in 
schizophrenia. The expression of genes 
encoding receptors, enzymes that  
synthesize transmitters, vesicular transmitter 
transporters, and so on, were combined 
into two composite measures, for glutamate 
signalling and GABA signalling. In the 
healthy controls, there were pronounced 
macroscopic gradients for both synaptic 

excitation and inhibition (Fig. 4). By sharp 
contrast, in individuals with schizophrenia, 
the gradient of glutamatergic signalling was 
blunted, whereas the gradient of GABAergic 
signalling was accentuated (Fig. 4). Although 
this study was limited to four areas, it 
suggests that macroscopic gradients of 
synaptic excitation and inhibition across 
the cortical hierarchy are aberrant in 
schizophrenia. Future research is needed 
to dissect functional consequences of 
abnormal macroscopic gradients associated 
with schizophrenia and other mental 
disorders, including autism97. For instance, 
how does the absence of a graded increase 
of glutamatergic signalling along the 
hierarchy contribute to distributed working 
memory deficits? The answer requires a 
more complete description of differential 
distributions of transcripts in pyramidal 
neurons and various interneuron types,  
as well as across cortical laminae47,98,99. 
Our efforts to achieve an understanding 
across levels from transcripts to circuits and 
behaviour would benefit from continued 
collaborations between experiments and 
theoretical modelling, in a nascent field 
known as computational psychiatry100.

Concluding remarks
Above, I have discussed work giving rise 
to the idea of macroscopic gradients of 
synaptic excitation and inhibition, which 
can be viewed as variations on the common 
theme of a canonical cortical circuit. Thus, 
structural differences not only serve as 
anatomical markers but also have important 
implications for understanding distributed 
brain dynamics and functions. A priori, 
variations of biological properties in the 
cortical tissue could be high dimensional. 
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for the GABA-​signalling measure (part b). Error bars represent variability across each group of 20 indi-
viduals. DLPFC, dorsolateral prefrontal cortex; PPC, posterior parietal cortex; V1, primary visual  
cortex; V2, visual area 2. Reprinted with permission from ref.96, Elsevier.
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Consider, for instance, a large number 
(N in the thousands) of brain-​specific genes 
in the cortex, whose expression levels in 
different parcellated cortical areas can be 
plotted as points in N-​dimensional space. 
Analyses have revealed that variations in 
gene expression in the brain are not random 
in a space with thousands of dimensions; 
instead, they can be accounted for largely 
in a low-​dimensional (~10-dimensional) 
space of principal components, with the 
largest component aligned with the axis 
of the T1w/T2w-​ratio-defined hierarchy43,48. 
Macroscopic gradients represent an 
emerging principle of large-​scale cortical 
organization.

The main findings from the discussion 
above are twofold. First, there is an 
increasing gradient of synaptic excitation 
along the cortical hierarchy, which can be 
measured in various ways including the 
number of spines per pyramidal neuron,  
and the expression of level of NMDAR 
subunit-​encoding genes. Functionally, 
modelling38 and experiments5,39 point to 
a crucial role in cognition of NMDAR-​
dependent recurrent excitation, but a  
gradient of NMDAR-​dependent excitation 
in a multiregional cortex remains to be  

elucidated in future research. Second, the 
proportion of input-​controlling SST+/CB+ 
interneurons versus output-​controlling 
PV+ interneurons increases along the cortical 
hierarchy. The density of PV+ cells may 
correlate with the density of pyramidal cells, 
but whether their ratio is constant across the 
cortex remains to be assessed. An increase 
of SST+/CB+ neuronal density with hierarchy 
is in line with the demand of areas higher 
in the hierarchy to receive more converging 
inputs from different domains. SST+/CB+ 
cell density is layer-​dependent, and these 
neurons subdivide into subgroups of cells 
with different targets. A comprehensive 
characterization of cell-​type-specific 
connections is needed to fully understand 
the functional implications of this gradient 
of synaptic inhibition. This article covers 
recent analyses of gene expression, but 
linking gene expression to function is 
indirect. An important intermediate step 
is to quantify the labelling of receptors or 
their subunits that are involved in synaptic 
excitation and inhibition101.

The best descriptor for defining 
quantitatively a one-​dimensional hierarchy 
in different species22,23,43,46,102 that can also 
be confirmed by physiology55,103–105 is a 

topic of active current research. Moreover, 
conventionally defined hierarchies are steep 
across sensory areas but become rather 
shallow in the PFC. An alternative approach 
to quantify a hierarchy, initially derived 
from the analysis of PFC subregions, is 
based on the observation that parcellated 
areas show varying degrees of laminar 
differentiation14,106,107. Classification on the 
basis of laminar differentiation has been 
shown to predict afferent and efferent 
patterns of parcellated cortical areas. The 
hierarchy within the PFC established this 
way seems to be broadly consistent with a 
functionally revealed gradient of processing 
along the rostro-​caudal axis of the frontal 
lobe, in terms of an increasingly abstract 
representation of behavioural rules and 
action control108–111.

The concept of macroscopic gradients 
can be extended to more than one 
dimension. As a matter of fact, it should be 
extended, because defining a single one-​
dimensional hierarchy tends to be vision-​
centric and does not fairly consider different 
sensory modalities. In addition, motor areas 
are not readily placed in a linear framework 
from sensory to association areas. Decades 
ago, a two-​dimensional diagram of cortical 
organization was proposed112, with the radial 
direction along the hierarchy and the 
polar direction covering different sensory 
modalities and motor domains. This view 
was recently confirmed by a sophisticated 
analysis of interareal functional correlations 
of the human cortex42,113, according to the 
seven-​network parcellation114 (Fig. 5a). A 
two-​dimensional organization of cortical areas 
was also reported for macaque monkey30,  
with the radial direction defined by hierarchy 
and the angular distance between areas 
defined by the inverse of their interareal 
connection strength (Fig. 5b).

In recurrent neural networks described 
by non-​linear dynamical systems, 
a quantitative difference in the network’s 
properties can lead to qualitatively 
different dynamical behaviour by virtue 
of bifurcations. The concept of bifurcations, 
here illustrated with a local circuit model 
of working memory (Fig. 1b), is widely 
applicable in the field of neural-​network 
modelling115–118. In a multiregional large-​
scale system of the brain, bifurcations could 
arise at certain locations in space, as a result 
of macroscopic gradients of biological 
properties. This possibility points to an 
appealing mechanism for the generation 
of novel and diverse functions in different 
subnetworks of brain areas. It potentially 
offers a theoretical account of distributed 
cognitive processes such as working 
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memory, which can be tested rigorously 
using multiregional neurophysiology119 in 
behaving animals. Importantly, variations of  
biological properties, including macroscopic 
gradients themselves, are partly determined  
genetically, shaped during brain development 
and modifiable through plasticity in adulthood.

Variations of a canonical circuit 
architecture, in the form of macroscopic 
gradients, provide a promising approach 
towards understanding the vastly diverse 
brain functions at the biological and 
computational levels. The time is ripe 
to tackle distributed dynamics in the 
brain58,120–124. Progress in this direction 
would help to bridge circuit neurobiology 
and cognitive psychology, the latter of 
which emphasizes the diversity of mental 
faculties: “Faculty psychology is impressed 
by such prima facie differences as between, 
say, sensation and perception, volition and 
cognition, learning and remembering, 
or language and thought”125. A marriage 
of the biological concept of macroscopic 
gradients and the mathematical concept 
of bifurcations, in close interplay with 
experimentation, offers a concrete 
dynamical systems perspective in our quest 
to understand distributed yet modularly 
organized cognitive processes in the complex 
large-​scale neural circuits of the brain.
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