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Decision making has recently emerged as a central theme in neurophysiological studies of cognition, and
experimental and computational work has led to the proposal of a cortical circuit mechanism of elemental
decision computations. This mechanism depends on slow recurrent synaptic excitation balanced by fast
feedback inhibition, which not only instantiates attractor states for forming categorical choices but also
long transients for gradually accumulating evidence in favor of or against alternative options. Such a circuit
endowed with reward-dependent synaptic plasticity is able to produce adaptive choice behavior. While de-
cision threshold is a core concept for reaction time tasks, it can be dissociated from a general decision rule.
Moreover, perceptual decisions and value-based economic choices are described within a unified framework
in which probabilistic choices result from irregular neuronal activity as well as iterative interactions of a deci-
sion maker with an uncertain environment or other unpredictable decision makers in a social group.
Introduction
Decision making is a cognitive process of choosing an opinion or

an action among a set of two or more alternatives, with several

defining characteristics. First, choice alternatives are not merely

reflexive responses but involve goal-directed actions for which

the expected outcomes can be assessed to some degree and

taken into account in a decision process. Second, a hallmark

of controlled decisions is the process of information accumula-

tion and deliberate consideration. Third, risk is inherent in virtu-

ally all interesting decisions; indeed, one can say that the

essence of decision making is to make a right choice in the

face of uncertainty about its long-term consequences.

Aside from momentous decisions, such as those on war and

peace, marriage, or judicial verdict, decision making pervades

all aspects of flexible behavior in our daily lives. We decide on

a goal, then make a series of choices in order to achieve that

goal. Voluntary selective attention, in the sense of purposefully

directing sensory processing, relies on decisions about what in

the external world are the most relevant, behaviorally, at any mo-

ment. Perception relies on judgments about the sensory scene,

where conflicting and ambiguous input signals need to be de-

tected, identified, and discriminated. Given the sensory informa-

tion, an organism is faced with the task of selecting a course of

action among available options, based on expected outcomes

and associated risks of these actions. Choice preference and

strategies must be flexibly adaptive when the environment

changes or when the outcome depends on all the choices of in-

teracting decision makers in a social setting.

In spite of a central role of decision making in cognition, little

was known about its neuronal underpinning until recently. The

current decade has witnessed a surge of interest and activity

in this area, thanks to a confluence of animal behavioral physiol-

ogy, human brain imaging, theory, and neural circuit modeling. In

particular, neurophysiologists have begun to undertake studies

of behaving nonhuman primates in a variety of decision tasks, in-

cluding perceptual discrimination (Shadlen and Newsome, 1996,
2001; Romo and Salinas, 2001; Roitman and Shadlen, 2002;

Romo et al., 2004; Heekeren et al., 2008), target selection (Hanes

and Schall, 1996; Schall, 2001, 2004; Cisek and Kalaska, 2005;

Scherberger and Andersen, 2007), economic choice behavior

(Platt and Glimcher, 1999; Sugrue et al., 2004, 2005; Padoa-

Schioppa and Assad, 2006), and competitive games (Barra-

clough et al., 2004; Dorris and Glimcher, 2004; Glimcher, 2003;

Lee, 2008). These experiments have uncovered neural signals

at the single-cell level that are correlated with specific aspects

of decision computation. Yet, in the mammalian brain, a decision

is not made by single cells, but by the collective dynamics of

a neural circuit. How are the observed neural signals generated?

What are the properties of a local cortical area (e.g., in the pre-

frontal or posterior parietal cortex) that enable it to subserve de-

cision computations, in contrast to early processing in primary

sensory areas? How can one establish the chain of causation

linking molecules, circuits to decision behavior?

In close interaction with experiments, realistic neural circuit

modeling provides a valuable tool to address these fundamental

issues. Biophysically based models can help bridge different

levels of description, probing cellular and network mechanisms

that underlie the observed neural spiking activity on one hand

and account for the performance at the behavioral level on the

other hand. Moreover, decision computations depend on corti-

cal circuits endowed with an abundance of positive and negative

feedback loops, the behavior of which is not readily predictable

by intuition alone. Theory of nonlinear dynamical systems offers

a mathematical framework for describing and predicting the be-

havior of such strongly recurrent neural systems.

Cellular-level modeling has proven tremendously useful for

understanding the behavior of single synapses, single neurons,

and sensory processing such as the mechanism of orientation

selectivity in primary visual cortex. On the other hand, cognitive

processes like decision making have largely been described by

abstract mathematical models. The situation has been changing

in recent years. Biophysically based spiking network models
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have been developed and applied to various experimental para-

digms, including perceptual tasks that involve both decision

making and working memory, action selection and preparation,

learning flexible sensorimotor associations, and reward-based

economic choice behaviors such as foraging or interactive

games. These models are similar in their basic assumptions. Re-

current synaptic excitation is assumed to be sufficiently strong to

generate multiple self-sustained stable states of neural popula-

tions, which are mathematically referred to as ‘‘attractor states.’’

Reverberating excitation is instantiated by a slow cellular pro-

cess, giving rise to long ramping of neural activity over time.

Therefore, the network’s behavior is not necessarily dominated

by steady states (representing categorical choices), but slow

transient dynamics provide a neural mechanism for temporal ac-

cumulation of informadtion. On the other hand, feedback inhibi-

tion implements competitive dynamics underlying the formation

of a categorical choice. Furthermore, highly irregular spiking ac-

tivity of neurons plays a key role in generating stochastic choice

behavior. Finally, reward-dependent synaptic plasticity imple-

ments learning that reflects outcomes of past choice history,

leading to choice adaptation in a changing environment or in in-

teraction with other decision makers in a social setting. Because

of their commonalities, these models will be collectively referred

to as ‘‘the recurrent neural circuit model.’’

This article reviews recent electrophysiological findings from

this computational perspective. The focus will be on basic com-

putations: (1) accumulation of evidence (what is the cellular basis

of temporal accumulation of information?), (2) formation of a cat-

egorical choice (what is the termination rule for a deliberation

process in neuronal terms?); (3) reward-based adaptation (are

values of alternative responses learned by neurons or synapses;

what may be the underlying plasticity process?); (4) stochasticity

inherent in choice behavior (how is the uncertainty about the

world represented in the brain? what are the intrinsic neuronal

sources of randomness in choice behavior?). These computa-

tions are at the core of many decision processes, regardless of

their diversity and complexity; therefore, understanding their

neuronal underpinnings is essential for a biological foundation

of decision making.

Neuronal Processes in the Frontoparietal Circuitry
Underlying Accumulation of Information
and Categorical Choice
A hallmark of deliberate decision making is time integration,

a process that enables us to accumulate evidence in favor of

or against alternative propositions and mull over choice options.

Although we are capable of producing rapid responses, rushed

decisions may yield ill effects. There is often a tradeoff between

speed and accuracy: performance improves with slower re-

sponse times (Wickelgren, 1977). Moreover, we typically take

a longer time to ponder a more difficult decision, when informa-

tion provided by the external world is conflicting or when there

are numerous options to consider (Hick, 1952; Vickers, 1970).

At the behavioral level, reaction time (RT) measurements have

provided a powerful tool for probing time integration in percep-

tion, memory, and cognitive processes (Donders, 1969; Posner,

1978; Luce, 1986; Meyer et al., 1988). RT studies have led to the

development of accumulator models, which implement in vari-
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ous ways the idea of stochastic integration of input signals to

a fixed decision threshold. In a race model, accumulators repre-

senting different choice options build up their activities, and

whichever is the first to reach a prescribed threshold produces

the choice (Logan and Cowan, 1984). In a drift diffusion model

for two-alternative forced choices, an accumulator adds evi-

dence in favor of one alternative and subtracts evidence in favor

of the other; a decision is made when it reaches either a positive

threshold or a negative threshold (Stone, 1960; Laming, 1968;

Ratcliff, 1978; Smith and Ratcliff, 2004). A linear leaky competing

accumulator (LCA) model, which mimics a neural network, takes

into account a leakage of integration and assumes competitive

inhibition between accumulators selective for choice alternatives

(Usher and McClelland, 2001). This model is easily extended to

decisions with multiple alternatives (Usher and McClelland,

2001; McMillen and Holmes, 2006; Bogacz et al., 2007), which

is not straightforward for the diffusion model (Niwa and Ditterich,

2008; Churchland et al., 2008). For the two-alternative tasks, the

LCA model is reduced to the diffusion model in the special case

when the leak and inhibition cancel out each other (Usher and

McClelland, 2001). The diffusion model is popular because of

its simplicity yet proven success with fitting behavioral data in

numerous human studies (Ratcliff, 1978; Busemeyer and Town-

send, 1993; Smith and Ratcliff, 2004).

Although the concept of time integration is appealing, it is not

obvious what types of choice behavior engage such accumula-

tion process (a characteristic of deliberate decision making) and

on what timescale (Uchida et al., 2006). Selection among a set of

possible actions is a form of choice that can occur quickly, when

speed is at a premium. This is illustrated by examples from sim-

ple organisms (Real, 1991): a toad produces a prey-catching or

an avoidance behavior, depending on whether an ambiguous

moving object is perceived as prey or a predator (Ewert, 1997);

or an archerfish, by watching a prey’s initial condition, quickly

(within 100 ms) decides on the course of action in order to catch

the prey (Schlegel and Schuster, 2008). In rodents, a study re-

ported that olfactory discrimination is fast (�300 ms) in rats. Per-

formance varied from chance level to near 100% correct, as the

task difficulty was varied by adjusting the relative proportions of

two odorants in a binary mixture, but the RTs were changed only

slightly (by �30 ms) (Uchida and Mainen, 2003). In contrast, an-

other study found that, in mice, olfactory discrimination perfor-

mance was high (�95% correct), regardless of discrimination

difficulty, while RTs increased by �80 ms from the easiest to

the hardest (Abraham et al., 2004), suggesting that in these tasks

rodents exhibit speed-accuracy tradeoff on a timescale of less

than 100 ms. In human studies, mean RTs typically range from

tens of milliseconds to about a second in simple perceptual

tasks (Luce, 1986; Usher and McClelland, 2001).

What are the neural processes underlying time integration?

Recently, electrophysiological studies with behaving monkeys

have revealed that reaction times can be related to neural activity

at the single-cell level. In a two-alternative forced-choice visual

random-dot motion (RDM) direction discrimination task, mon-

keys are trained to make a binary judgment about the direction

of motion of a near-threshold stochastic random dot visual mo-

tion stimulus and to report the perceived direction with a sac-

cadic eye movement. The task difficulty can be parametrically
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Figure 1. Neural Mechanism of a Decision in a Monkey Random-Dot Motion Direction Discrimination Experiment
(A) Reaction time (RT) version of the task. The subject views a patch of dynamic random dots and decides the net direction of motion. The decision is indicated by
an eye movement to one of two peripheral targets (representing the two forced choices). In the RT task, the subject controls the viewing duration by terminating
each trial with an eye movement whenever ready. The gray patch shows the location of the response field (RF) of an LIP neuron.
(B) Monkey’s performance (top) and mean RT (bottom) as a function of the motion strength.
(C) Response of a single LIP neuron. Only correct choices at two motion strengths (6.4% and 51.2%) are shown. Spike rasters and response histograms are
aligned to the beginning of the monkey’s eye movement response (vertical line). Carets denote the onset of random-dot motion. Trial rasters are sorted by RT.
(D) Average response of LIP neurons during decision formation, for three levels of difficulty. Responses are grouped by motion strength and direction of choice, as
indicated. (Left) The responses are aligned to onset of random-dot motion. Averages are shown during decision formation (curves truncated at the median RT or
100 ms before the eye movement). Shaded insert shows average responses from direction-selective neurons in area MT to motion in the preferred and antipre-
ferred directions. After a transient, MT responds at a nearly constant rate. (Right) The LIP neural responses are aligned to the eye movement.
(A), (B), and (D) are reproduced with permission from Gold and Shadlen (2007) (insert from online database used in Britten et al. [1992]); (C) is reproduced from
Roitman and Shadlen (2002).
varied by the fraction of dots moving coherently in the same di-

rection, called the motion strength or percent coherence c0. Ex-

tensive physiological and microstimulation studies have shown

that while direction-sensititve neurons in the area MT encode

the motion stimulus (Newsome et al., 1989; Britten et al., 1992,

1993, 1996), the decision process itself occurs downstream of

MT, potentially in the posterior parietal cortex and/or prefrontal

cortex. Shadlen and Newsome found that activity of neurons in

the lateral intraparietal area (LIP) was correlated with monkey’s

perceptual choice in both correct and error trials (Shadlen and

Newsome, 1996, 2001). Moreover, in a reaction time version of
the task (Roitman and Shadlen, 2002; Huk and Shadlen, 2005),

the subject’s response time increased by�400 ms from the eas-

iest (with c0 = 100%) to the hardest (with c0 = 3.2%) (Figures 1A

and 1B). LIP cells exhibited characteristic firing time courses

that reflected the monkey’s response time and perceptual

choice (Figures 1C and 1D). From the onset of a random-dot

motion stimulus until the time the monkey produced a choice re-

sponse by a rapid saccadic eye movement, spike activity of LIP

neurons selective for a particular saccadic target increased for

hundreds of milliseconds. The ramping slope was larger with

a higher c0 (a higher quality of sensory information). Furthermore,
Neuron 60, October 23, 2008 ª2008 Elsevier Inc. 217
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it was observed that the decision choice (as indicated by a sac-

cade) was made when the firing rate of LIP neurons (selective for

that choice response) reached a threshold that was independent

of c0 and the response time. Therefore, these LIP neurons display

stochastic ramping to a set level, as expected for a neural

integrator.

Another physiological study reported that, while monkeys per-

formed a task of detecting the presence of a visual motion stim-

ulus, neurons in ventral intraparietal (VIP) area of the posterior

parietal cortex exhibited ramping activity that was correlated

with the subjective judgment (a higher activity in hit and false-

alarm trials than in miss and correct rejection trials) and response

time (ranging from 400 to 700 ms) (Cook and Maunsell, 2002). MT

neural responses were larger in hits (with successful detection)

and misses (failure), implying that the strength of signals pro-

vided by MT neurons to higher areas was stronger in trials with

ultimately successful detection than in failed trials. In VIP but

not MT, neuronal activity was significantly larger than baseline

in false-alarm trials, suggesting that the subjective judgment

was computed downstream of MT. This study thus supports

the notion that the parietal cortex is part of the brain system un-

derlying accumulation of information and subjective judgment in

visual perception.

Regarding ramping neural activity, so far most recordings

have been limited to one cell at a time, and ramping activity is

usually reported as trial-averaged neural activity (but see Roit-

man and Shadlen, 2002). This leaves the question open as to

whether a spike train in a single trial indeed displays a quasilinear

ramp of firing rate. Alternatively, neurons could actually undergo

a sudden jump from one rate to another, but the jumping time

varies from trial to trial in such a way that the trial average shows

a smooth ramp (Okamoto et al., 2007). Additional experiments,

perhaps with multiple single-unit recording, would help to re-

solve this issue. Moreover, it is still unclear whether the observed

neural activity in the parietal cortex is generated locally or re-

flects inputs from elsewhere.

The posterior parietal cortex plays a major role in selective vi-

sual attention (Colby and Godberg, 1999; Corbetta and Shul-

man, 2002; Sereno and Amador, 2006; Ganguli et al., 2008),

but it seems unlikely that neural signals observed in these per-

ceptual decision experiments can be solely attributed to atten-

tional effects. Attention presumably should be focused on the

RDM stimulus, not the targets, until a choice is made. Even

with divided attention between the motion stimulus and targets,

it is unclear how an attentional account can explain the time

course of neural dynamics, namely target-specific ramping ac-

tivity that reflects the gradual formation of a decision and marks

the end of the process. Another potential interpretation of the

ramping activity is motor intention, as LIP is specifically involved

with planning saccades (Andersen and Buneo, 2002). One way

to test this possibility is to ascertain whether decision-correlated

activity of parietal neurons remains the same regardless of the

modality of the ultimate behavioral response.

Decision-related activity has also been observed in the pre-

frontal cortex, a high-level cognitive area that plays a major

role in time integration and a gamut of other cognitive functions

(Fuster, 2008; Miller and Cohen, 2001; Wang, 2006a). In a fixed-

duration version of the RDM direction discrimination task, the
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monkey was required to maintain fixation through a 1 s viewing

period, the stimulus offset was followed by a delay period,

then the monkey signaled its choice by a saccadic eye move-

ment. In contrast to the RT version, now the activity of recorded

neurons correlated with decision (during motion viewing) and

that with motor response (after the delay) could be temporally

dissociated. Neurons in the lateral prefrontal cortex (Kim and

Shadlen, 1999) and LIP (Shadlen and Newsome, 1996, 2001;

Roitman and Shadlen, 2002) showed a similar activity pattern:

their activity reflected the monkey’s choice, but, while it was

a graded function of the motion strength c0 during motion view-

ing, persistent activity during the delay became insensitive to c0.

The implication was that the subject made the decision during

stimulus viewing and maintained actively the binary choice

across the delay to guide a later behavioral response. These re-

sults suggest that decision making and working memory can be

subserved by the same cortical mechanism, presumably resid-

ing in the parietofrontal circuit. It should be noted that recordings

from prefrontal neurons have not yet been done in the reaction

time version of the RDM discrimination task. Prefrontal neurons

often display ramping activity during a mnemonic delay period,

but this could reflect anticipation and timing of an upcoming re-

sponse rather than decision computation (Fuster, 2008; Chafee

and Goldman-Rakic, 1998; Quintana and Fuster, 1999; Brody

et al., 2003; Miller et al., 2003; Watanabe and Funahashi,

2007). Physiological recordings from the prefrontal cortex using

RT paradigms are needed to assess whether prefrontal neurons

display ramping activity in a way similar to that observed in pari-

etal neurons and, if so, whether ramping activity is generated lo-

cally in one area (and reflected in another) or through a reciprocal

loop between the two areas.

Romo and collaborators carried out a series of experiments,

using a different task paradigm and sensory modality, that pro-

vided ample evidence for the involvement of the prefrontal cortex

in perceptual decisions. In a somatosensory delayed discrimina-

tion task, monkeys report a decision based on the comparison of

two mechanical vibration frequencies f1 and f2 applied sequen-

tially to the fingertips, separated in time by a delay of 3–6 s.

Therefore, the behavioral response (signaling whether f1 is per-

ceived as larger or smaller than f2) requires the animal to hold

in working memory the frequency of the first stimulus across

the delay period (Figure 2A). It was found that neurons in the in-

ferior convexity of the prefrontal cortex and the premotor cortex

showed persistent activity during the delay, with the firing rate of

memory activity increasing (a ‘‘plus cell’’) or decreasing (a ‘‘mi-

nus cell’’) monotonically with the stimulus frequency (Figures

2C and 2D). During comparison decision, neural activity became

binary: a ‘‘plus neuron’’ showed high firing in trials when the mon-

key’s choice was f1 > f2, low firing in trials when the monkey’s

choice was f1 < f2; a ‘‘minus neuron’’ showed the opposite trend.

In this task, working memory precedes decision making, but

again the same circuit is engaged in both processes. In a modi-

fied version of the task, the decision report is postponed a few

seconds after the comparison period, and medial premotor neu-

rons were found to retain the monkey’s choice and past sensory

information in the form of persistent activity across the second

delay (Lemus et al., 2007), reinforcing the point that the same cir-

cuit is involved in both working memory and decision making. A
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Figure 2. Delayed Vibrotactile Discrimination Task and Neuronal
Responses in the Prefrontal Cortex
(A) Schematic diagram of the task, where two mechanical vibration stimuli with
frequencies f1 and f2 are applied sequentially (separately by a delay) to the tip
of a monkey’s finger, and the subject has to decide whether f1 is larger than f2.
(B) Typical stimulus set used in the neurophysiological studies. Each colored
box indicates a (f1, f2) stimulus pair. For each pair, monkeys made the correct
response more than 91% of the time.
(C and D) Neuronal responses. The rainbow color code at the upper left indi-
cates the f1 value applied during each type of trial. Y/N color code indicates
the push button pressed by the monkey at the end of each trial. (C) and (D)
show smoothed firing rates of two different PFC neurons recorded over
many trials. (C) shows a positively monotonic (plus) neuron and (D) shows
a negatively monotonic (minus) neuron.
remarkable accomplishment of Romo’s work is to systematically

explore neural activity during the same task across a number of

cortical areas (primary and secondary somatosensory areas,

premotor and lateral prefrontal areas), which yielded a rich pic-

ture of neural dynamics in these areas as the process unfolds

in time (Hernández et al., 2002; Romo et al., 2004). Additional ev-

idence for a role of the frontal lobe in subjective decisions was

reported in a detection task using near-threshold vibrotactile

stimuli. de Lafuente and Romo showed that activity of premotor

neurons in the frontal lobe, but not that of primary somatosen-

sory neurons, covaried with trial-by-trial subjective reports

(whether a stimulus was present or absent) (de Lafuente and

Romo, 2005). Similar detection psychometric functions were ob-

tained with premotor cortex miscrostimulation or mechanical

stimulation, suggesting that the stimulated frontal site may be

causally related to this decision behavior.

Human studies on the physiological correlates of RTs in per-

ceptual discrimination tasks began in the 1980s, with the devel-

opment of event-related potential measurements (Gratton et al.,

1988). Interestingly, it was found that the time-to-peak of the

P300 component recorded in the parietal cortical area increased

with the difficulty of stimulus discriminability and RT but was in-

different to the stimulus-response compatibility (Kutas et al.,

1977; McCarthy and Donchin, 1981). Electroencephalographic

recordings, however, lack sufficient spatial resolution to localize

brain areas critically involved in time integration. Recently, hu-

man functional magnetic resonance imaging is beginning to be

applied to studies of evidence accumulation. In one study

(Binder et al., 2004), a subject was asked to identify a speech

sound in a noisy auditory stimulus, blood-oxygen-level-depen-

dent (BOLD) functional magnetic resonance imaging (fMRI) of

the auditory cortex was found to reflect the signal-to-noise ratio

(the quality of sensory information), whereas that of the inferior

frontal cortex increased linearly with the reaction time (an index

of decision process). In another study (Ploran et al., 2007), as

a subject viewed pictures that were revealed from a blank screen

gradually in eight steps (2 s each), the areas that exhibited a grad-

ual buildup in activity peaking in correspondence with the time of

recognition were the parietal and frontal areas as well as the in-

ferior temporal area. Moreover, a recent study showed that a free

motor decision could be decoded from BOLD signals in the fron-

tal and parietal cortex long (seconds) before it entered aware-

ness (Soon et al., 2008).

Therefore, growing evidence from human neuroimaging and

monkey single-neuron physiology suggests that the parietal

and frontal cortices form a core brain system for temporal accu-

mulation of data and categorical choice formation in perceptual

judgments. These areas may provide top-down signals to

(E) One-dimensional dynamical algorithm for two-stimulus interval discrimina-
tion. Abcissa: The state variable (e.g., the difference in the firing rates of the
plus and minus neurons shown in [C] and [D]). Ordinate: A computational en-
ergy function (with minima corresponding to stable attractor states). During the
loading period, the first stimulus creates a unique attractor state located at
a point along the horizontal axis that encodes the f1 value. The energy land-
scape is flat during the delay period, so the memory of f1 is maintained inter-
nally in the form of parametric persistent activity. During the comparison
period, the system is again reconfigurated, the second stimulus f2 in interplay
with the internal memory state gives rise to a categorical decision f1 > f2 or f1 <
f2. Reproduced with permission from Machens et al. (2005).
Neuron 60, October 23, 2008 ª2008 Elsevier Inc. 219
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sensory neurons, whose spiking activity commonly displays

weak trial-to-trial correlated variability with monkeys’ choices

(Britten et al., 1996; Shadlen and Newsome, 1996; Parker and

Krug, 2003; Law and Gold, 2008).

A challenge for future work is to elucidate precisely how the

parietal and frontal circuits work together, potentially playing dif-

ferential and complementary roles, in decision making. Rather

than proceeding strictly in serial stages, a decision is likely to in-

volve parallel processing across brain regions. Such a scenario

has been advocated in a model where action selection and re-

sponse preparation take place simultaneously in diverse cortical

areas (Cisek, 2006). Empirical evidence, however, is scarce. One

promising approach to this outstanding issue is to examine inter-

areal interactions by recording simultaneously single units and

local field potentials from two or more areas in behaving animals

(Pesaran et al., 2008).

Recurrent Cortical Circuit Mechanism
How are decision computations instantiated in a cortical circuit?

A clue came with the observation that decision-related neural ac-

tivity has been reported in cortical areas that typically exhibit

mnemonic persistent activity during working memory mainte-

nance. For instance, in an oculomotor delayed response task,

neurons in both LIP and prefrontal cortex display directionally

tuned persistent activity (Gnadt and Andersen, 1988; Funahashi

et al., 1989). Motivated by this observation, it has been proposed

that this is not a mere coincidence, but suggests a common

circuit mechanism underlying decision making and working

memory (Wang, 2002). A leading candidate mechanism for the

generation of persistent activity is strong recurrent excitation in

a local cortical circuit that gives rise to stimulus-selective attrac-

tor states—self-sustained population activity patterns of a neural

network (Amit, 1995; Goldman-Rakic, 1995; Wang, 2001). Can

such an attractor network model also account for decision-

making computations?

To address this question, a biophysically based model origi-

nally developed for working memory (Brunel and Wang, 2001)

was applied to simulate the RDM discrimination experiment

(Wang, 2002). It is worth emphasizing that this local circuit model

stresses shared characteristics of the prefrontal and parietal

areas and does not speak to the issue of whether memory or de-

cision-related neural activity is generated in one of these areas or

both. ‘‘Biophysically based models’’ generally refer to models

with an anatomically plausible architecture, in which not only sin-

gle spiking neurons are described biophysically with a reason-

able level of accuracy but also synaptic interactions are

calibrated by quantitative neurophysiology (which turned out to

be critically important).

Figure 3 illustrates such a recurrent neural circuit model

(Wang, 2002; Wong and Wang, 2006; Wong et al., 2007). In

a two-pool version of the model, subpopulations of spiking neu-

rons are selective for two-choice alternatives (e.g., A = left mo-

tion, B = right motion). Within each pyramidal neural group,

strong recurrent excitatory connections can sustain persistent

activity triggered by a transient preferred stimulus. The two neu-

ral groups compete through feedback inhibition from interneu-

rons. Conflicting sensory inputs are fed into both neural pools

in the circuit, with the motion strength c0 implemented as the rel-
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ative difference in the inputs (Figure 3A). Figure 3B shows a sim-

ulation with zero motion strength. At the stimulus onset, the firing

rates (rA and rB) of the two competing neural populations initially

ramp up together for hundreds of milliseconds before diverging

from each other when one increases (by virtue of recurrent exci-

tation within that neural pool) while the other declines (due to

winner-take-all competition mediated by feedback inhibition).

The perceptual choice is decided based on which of the two neu-

ral populations wins the competition. With a varying c0, the ramp-

ing activity is faster when the quality of sensory data is higher

(Figure 3C). The model captures important features of activity

of LIP cells recorded from behaving monkeys. First, neural activ-

ity is primarily correlated with the decision choice (even in error

trials or when the motion strength is zero). Second, the neural

decision process proceeds in two steps: sensory data are first

integrated over time in a graded fashion, followed by winner-

take-all competition leading to a binary choice. Third, after

the stimulus is withdrawn, the network stores the decision

choice in working memory, in the form of persistent activity

that is insensitive to c0.

The ‘‘attractor landscape’’ can be illustrated in the decision

space, where rA is plotted against rB (Figure 3D). In this example,

the sensory evidence is in favor of the choice A, so attractor A

has a larger basin of attraction (orange) than that of attractor B

(brown). The system is initially in the spontaneous state, which

falls in the basin of attraction A, and evolves toward the decision

state A in a correct trial (blue). However, at low c0 the bias is not

strong, and noise can induce the system’s trajectory to travel

across the boundary of the two attraction basins, in which

case the system eventually evolves to the decision state B in

an error trial (red). The crossing of a boundary between attraction

basins is slow, which explains why the reaction times are longer

in error trials than in correct trials, as was observed in the monkey

experiment (Roitman and Shadlen, 2002). This decision-space

analysis hammers home the point that the system is not rigid

but is flexible in response to external signals. Attractor states

can be created or destroyed by inputs; hence, the same network

can subserve different functions, such as decision making during

stimulus presentation followed by active memory of the choice

across a delay in the fixed-duration RDM task. This conclusion

is supported by other recent modeling studies of the RDM exper-

iment (Roxin and Ledberg, 2008; Grossberg and Pilly, 2008).

As illustrated by the above example, an attractor network is

not just limited to steady-state behavior but can use long tran-

sients to perform interesting computations. As initially proposed

for working memory, one candidate cellular substrate for slow

reverberation is the NMDA receptors at local recurrent excitatory

synapses (Wang, 1999). A simple estimate of the network’s time

constant is given by tnetwork = tsyn/(j1 � wrecj) (where tsyn is the

synaptic time constant, and wrec is the strength of recurrent con-

nections), which is longer than tsyn in the presence of wrec

(Seung, 1996; Wang, 2001). For instance, if tsyn = 100 ms for

the NMDA receptor-mediated synapses (Hestrin et al., 1990),

and wrec = 0.9, then tnetwork = 1 s. Thus, the network displays

transient dynamics of ramping activity on a timescale of up to

1 s, and this ability critically depends on the NMDA receptors

(Wang, 2002; Wong and Wang, 2006). Note that this mechanism

relies on the slow kinetics of NMDA receptor-mediated channel
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Figure 3. A Cortical Circuit Model of Spiking
Neurons for Two-Alternative Forced-
Choice Tasks
(A) Model scheme. There are two (purple and
green) pyramidal cell subpopulations, selective to
the two directions (A or B), respectively, of random
moving dots in a visual motion discrimination ex-
periment. A third (orange) neural subpopulation
represents inhibitory interneurons. Each of the
three subpopulations consists of a few hundreds
of spiking neurons. The circuit is endowed with
strong recurrent excitation (mediated by AMPA
and NMDA receptors) among pyramidal cells
within each selective subpopulation and competi-
tive inhibition (mediated by GABAA receptors)
through shared feedback inhibition. The motion
coherence is expressed as c0 = (IA � IB)/(IA + IB),
where IA and IB are the mean inputs. For nonzero
c0, one of the choices is correct, the other is errone-
ous, the resulting outcome may lead to reward-de-
pendent plastic changes of some input synapses.
(B) A sample simulation of the spiking network
model with zero coherence. Top to bottom: Net-
work spiking raster, population firing rates rA and
rB, stochastic inputs. Note the initial slow ramping
(time integration) and eventual divergence of rA
and rB (categorical choice).
(C) Trial-averaged neural activity for different mo-
tion strengths, with the inclusion of target inputs.
Solid curves: Winning neural population. Dashed
curves:Losing neural population. Note the transient
dip at the onset of the RDM stimulus.
(D) Phase-plane plot for the two selective neural
populations in a fixed-duration version of the
task, without external input (left panel), in the pres-
ence of a motion stimulus with c0 = 6.4% (middle
panel) or 51.2% (right panel). In the absence of
stimulation (left panel), three attractors coexist
(white circles): a spontaneous state (when both rA

and rB are low), and two persistent activity states
(with a high rA and a low rB or vice versa). Upon
the presentation of a stimulus (middle panel with
c0 = 6.4%), the attractor landscape is altered, and
the spontaneous steady state disappears, so that
the system is forced to evolve toward one of the
two active states that represent perceptual deci-
sions (A or B), as shown by the network’s trajectory
in two individual trials (blue and red). After the offset
of the stimulus, the system’s configuration reverts
back to that in the left panel. Because a persistently
active state is self-sustained, the perceptual
choice (A or B) can be stored in working memory
for later use, to guide behavior. Colored regions

correspond to the basins of attraction for the coexisting attractor states. In the absence of noise, the system starting in one of the basins converges to the corre-
sponding attractor state. Note that the basin for the correct choice state is much larger at a high (right panel) than a low (middle panel) motion strength.
(A) and (B) were reproduced with permission from Wang (2002), (C) from Wong et al. (2007), (D) was computed using the model of Wong and Wang (2006).
and emphasizes the importance of NMDA receptors for online

cognition (rather than its well-known role in long-term synaptic

plasticity). Other slow biophysical mechanisms, such as short-

term synaptic facilitation (Abbott and Regehr, 2004) or calcium-

dependent processes in single cells (Major and Tank, 2004), may

also contribute to time integration. These candidate scenarios,

all positive-feedback mechanisms, can be experimentally tested

with behaving monkeys (using pharmacological means) as well

as rodent and other simpler animal systems.

Is the recurrent neural circuit model simply an implementation

of the diffusion model? Interestingly, in contrast to the one-

dimensional diffusion model, a ‘‘decision-space’’ analysis (Fig-

ure 3D) showed that the dynamics of the attractor neural network
is inherently two dimensional (Wong and Wang, 2006). This is

consistent with the finding that, in the LIP data recorded from

the RDM experiment (Roitman and Shadlen, 2002), the dynamics

within each of the two selective neural pools is dominated by

a slow mode (Ganguli et al., 2008); thus, the description of two

competing neural pools requires two dynamical variables. A

two-variable model is needed to explain the observation that

LIP neuronal activity displays a biphasic time course, with neu-

rons selective for the two opposite targets first ramping up to-

gether before diverging away from each other (Roitman and

Shadlen, 2002; Huk and Shadlen, 2005). The same type of

behavior was also observed in a free motor decision task

(Scherberger and Andersen, 2007).
Neuron 60, October 23, 2008 ª2008 Elsevier Inc. 221



Neuron

Review
Furthermore, importantly, the diffusion model and the recur-

rent neural circuit model have distinct predictions at the behav-

ioral level. First, the recurrent circuit model produces longer

response times in error trials than in correct trials (Wong and

Wang, 2006), consistent with the monkey experiment (Roitman

and Shadlen, 2002). By contrast, a neural implementation of

the diffusion model yields the opposite effect (Mazurek et al.,

2003). Longer RTs in error trials can be realized in the diffusion

model with the additional assumption that the starting point

varies stochastically from trial to trial (Ratcliff and Rouder,

1998). Second, the diffusion model never reaches a steady state

and predicts that performance can potentially improve indefi-

nitely with a longer duration of stimulus viewing, e.g., by raising

the decision bound. In the recurrent circuit model, ramping activ-

ity eventually stops as an attractor state is reached (Figure 3D).

Consequently performance plateaus at sufficiently long stimu-

lus-viewing times (Wang, 2002). This model prediction is con-

firmed by a recent monkey experiment (Kiani et al., 2008). Third,

the attractor network model has been shown to be able to sub-

tract negative signals as well as add positive evidence about

choice alternatives, but the influence of newly arriving inputs di-

minishes over time, as the network converges toward one of

the attractor states representing the alternative choices (Wang,

2002). This prediction is also confirmed by the monkey experi-

ment, which showed that the impact of a brief motion pulse in ad-

dition to the random-dot stimulus was greater with an earlier on-

set time (Huk and Shadlen, 2005; Wong et al., 2007). This violation

of time-shift invariance cannot be accounted for by the inclusion

of a leak. In fact, in contrast to the recurrent circuit model, the LCA

model actually predicts that later, not earlier, signals influence

more the ultimate decision, because an earlier pulse is gradually

‘‘forgotten’’ due to the leak and does not affect significantly the

decision that occurs much later (Wong et al., 2007).

Recurrent excitation must be balanced by feedback inhibition

(Brunel and Wang, 2001). The diffusion model assumes that a dif-

ference signal about the conflicting inputs is computed occurs at

the input level (Ratcliff, 1978; Mazurek et al., 2003). This idea has

been taken seriously in a human fMRI experiment, in which the

task was to discriminate whether an ambiguous image is

a face or a house, and the BOLD signal in the dorsolateral pre-

frontal cortex was found to covary with the difference signal be-

tween the face- and house-selective regions in the ventral tem-

poral cortex (Heekeren et al., 2004). This work suggests that

some brain region(s) may encode difference signals in discrimi-

nation of categorically distinct signals. The situation is likely to

be different for discrimination between options in the same di-

mension, such as left versus right motion direction, which is likely

to occur within a local network. In the recurrent circuit model,

competition between neural pools selective for choice alterna-

tives is instantiated by lateral synaptic inhibition (Wang, 2002;

Wong and Wang, 2006). This feedback mechanism, not the feed-

forward subtraction, is supported by the observation that micro-

stimulation of one neural pool in LIP not only sped up the deci-

sions in its preferred direction but also slowed down the

decisions in the antipreferred direction (Hanks et al., 2006). In an-

other relevant analysis, Ditterich (2006) found that a diffusion

model produced reaction time histograms with long right tails

(reflecting unusually long RTs), inconsistent with the monkey ex-
222 Neuron 60, October 23, 2008 ª2008 Elsevier Inc.
periment. The inclusion of lateral inhibition worsened the prob-

lem, resulting in even longer right tails, especially at low coher-

ence levels. This is not the case in the recurrent neural circuit

model, which produces decision-time distributions that do not

show pronounced right tails and are similar to those observed

in the monkey experiment (X.-J. Wang, 2006, Soc. Neurosci., ab-

stract). A distinguishing feature of the nonlinear attractor model

is strong recurrent excitation, which is absent in linear accumu-

lator models. The positive-feedback mechanism ultimately leads

to an acceleration of the ramping neural activity toward a deci-

sion bound, preventing excessively long decision times. Indeed,

Ditterich showed that monkey’s reaction-time distributions

could be well fitted by an accumulator model, with the additional

assumption that the decision bound decreased over time. This is

functionally similar to a hypothesized ‘‘urgency signal’’ that

grows over time (T.D. Hanks et al., 2007, Soc. Neurosci., ab-

stract). Equivalently, the desired effect can be accomplished

by a temporally increasing ramping slope, which naturally occurs

in the recurrent circuit model without additional assumptions. On

the other hand, human studies commonly report skewed RT

distributions with a long right tail, which is well captured by the

diffusion model (Ratcliff, 1978; Luce, 1986; Ratcliff and Rouder,

1998; Usher and McClelland, 2001; Sigman and Dehaene, 2005)

but not the existing neural circuit model. It will be interesting to

identify, in animal as well as human studies, conditions under

which RT distributions do or do not display a prominent tail,

and to come up with a neural mechanistic account of this

phenomenon.

Recurrent circuit models have also been developed for the so-

matosensory discrimination experiment (Romo et al., 2002,

2004). Miller et al. (Miller et al., 2003) showed that fine-tuning

of connectivity in this model yields a line attractor capable of

parametric working memory, similar to the one in the gaze-

control system (Seung et al., 2000). Moreover, two such neural

populations coupled by reciprocal inhibition exhibit persistent

activity that is positively and negatively, respectively, monotoni-

cally tuned to the first frequency f1, as observed in prefrontal

neurons in this task (Romo et al., 1999; Brody et al., 2003; Miller

et al., 2003). This circuit is thus capable of storing f1 across the

delay period. Machens et al. (2005) showed that such a circuit

could also perform discrimination computation (f1 > f2 or f1 < f2)

during the comparison period (Figure 2E), provided that a switch-

ing mechanism was posited for the afferent stimuli, such that the

second stimulus reached the memory/decision circuit with the

opposite sign of tuning to the first stimulus. In an alternative sce-

nario, an integral feedback mechanism instantiates comparison

computation without requiring input switching (Miller and Wang,

2006a). Using a phase-plane analysis, Machens et al. showed el-

egantly how the attractor landscape is differentially reconfigured

by external signals for each of the task epochs (cue loading,

memory maintenance, comparison); hence, the same circuit

can subserve both working memory and decision computation

(Machens et al., 2005). The model predicts positive trial-by-trial

correlation between neural pairs of the same (positively or nega-

tively monotonic) tuning type, and negative correlation between

neural pairs of opposite tuning. This prediction is confirmed by

neural data recorded from the prefrontal cortex. Interestingly,

in contrast to the fixed-duration version of the RDM
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discrimination task, where decision precedes a delayed re-

sponse that requires working memory of a binary chosen option,

in the vibrotactile discrimination task, parametric working mem-

ory of an analog quantity (f1) precedes a two-choice decision

process. Nevertheless, models for these two kinds of behavioral

tasks display striking similarities (including phase-plane plots).

The near-threshold detection experiment (de Lafuente and

Romo, 2005) has also been modeled by a similar attractor net-

work model (Deco et al., 2007a). Taken together, these results

further support slow reverberating dynamics as a general mech-

anism for both working memory as well as decision making.

Termination Rule for a Decision Process
How do we know precisely when a graded accumulation pro-

cess ends and a categorical decision is formed? In an RT task,

a decision time can be deduced from measured reaction time

(minus motor response latency), which has been shown to be

correlated with threshold crossing of LIP neuronal activity (Roit-

man and Shadlen, 2002). If so, what would be the biological sub-

strate of such a decision threshold? The answer may lie down-

stream. A plausible scenario is that, when decision neurons

integrate inputs and reach a particular firing rate level, this event

triggers an all-or-none response in downstream neurons and

leads to the generation of a behavioral output. In the case of oc-

ulomotor tasks, a natural candidate is movement neurons in the

frontal eye field (FEF) and superior colliculus (SC), which are

brain regions essential for selecting, preparing, and initiating

Figure 4. A Multiple-Module Network
Mechanism for Two-Alternative Forced-
Choice Tasks
(A) Schematic model architecture. Neural pools in
the cortical network integrate sensory information
and also compete against each other. They project
to both the superior colliculus (SC) and the caudate
nucleus (CD) in the basal ganglia. CD sends inhib-
itory projection to the substantia nigra pars reticu-
lata (SNr), which through inhibitory synapses con-
nect with movement neurons in the SC. Each
population consists of noisy spiking neurons.
(B) A single trial simulation of the model, showing
spike trains from single cells and population firing
rates of Cxe, SNr and CD, and SCe. A burst of
spikes in movement neurons (SCe) is triggered
when their synaptic inputs exceed a threshold
level, which results from both direct excitation by
cortical neurons and disinhibition from SNr via
the cortico-striatal projection. Time zero corre-
sponds to stimulus onset.
(C) The ramping slope of Cxe firing rate is inversely
related to decision time on a trial-by-trial basis
(each data point corresponds to an individual trial).
The red curve is 12,000/(decision time).
(D) Performance (percentage of correct choices)
and mean response time as a function of the mo-
tion coherence c0. Reproduced with permission
from Lo and Wang (2006).

saccadic eye movements. These neu-

rons are selective for saccade amplitude

and direction and fire a stereotypical

burst of spikes immediately before a sac-

cade is initiated (Hanes and Schall, 1996;

Munoz and Fecteau, 2002). While here we focus on response ex-

ecution, FEF and SC, like LIP, are also involved in other aspects

of oculomotor decision and response selection.

To test this scenario for a decision threshold, we considered

an extended, multiple-circuit model (Lo and Wang, 2006). Deci-

sion neurons in the cortex (as described above) project to move-

ment neurons in the SC (Figure 4A). This model also includes a di-

rect pathway in the basal ganglia, with an input layer (caudate,

CD) and an output layer (substantia nigra pars reticulata, SNr),

which is known to play a major role in controlling voluntary move-

ments (Hikosaka et al., 2000). As a neural pool in the cortex

ramps up in time, so do their synaptic inputs to the correspond-

ing pool of SC movement neurons as well as CD neurons. When

this input exceeds a well-defined threshold level, an all-or-none

burst of spikes is triggered in the SC movement cells, signaling

a particular (A or B) motor output. In this scenario, a decision

threshold (as a bound of firing rate of decision neurons) is instan-

tiated by a hard threshold of synaptic input for triggering a special

event in downstream motor neurons. Figure 4B shows a sample

trial of such a model simulation for the visual motion direction

discrimination experiment. The rate of ramping activity fluctuates

from trial to trial, as a result of stochastic firing dynamics in the

cortex, and is inversely related to the decision time (as defined

by the time when a burst is triggered in the SC) on a trial-by-trial

basis (Figure 4C). Moreover, when the task is more difficult (with

a lower motion coherence), ramping activity is slower, leading to

longer reaction times. However, the threshold of cortical firing
Neuron 60, October 23, 2008 ª2008 Elsevier Inc. 223
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activity that is read out by the downstream motion system has

the same narrow distribution (insert in Figure 4C), regardless of

the ramping speed or reaction times. Therefore, the variability

of reaction times is mostly attributed to the irregular ramping of

neural activity itself rather than trial-to-trial variability of the deci-

sion bound. This model reproduced the monkey’s behavioral

performance and reaction times quantitatively (Figure 4D).

Can a decision threshold be adaptively tuned in this circuit? In

a speed-accuracy tradeoff, too low a threshold leads to quicker

responses but more errors, whereas too high a threshold im-

proves the accuracy but prolongs response times. Neither of

these yields maximal rewards. A commonly held idea is that op-

timality can be achieved by adaptively tuning the decision

threshold (Gold and Shadlen, 2002; Bogacz et al., 2006). Since

in the neural circuit model the decision threshold is defined as

the minimum cortical firing needed to induce a burst response

in the downstream SC neurons, one would expect that this

threshold could be adjusted by plastic changes in the cortico-

collicular pathway: with an enhanced synaptic strength, the

same level of cortical input to the superior colliculus could be

achieved with less firing of cortical neurons. Interestingly, this

is not the case when the system is gated by the basal ganglia.

This is because neurons in SNr normally fire tonically at a high

rate (Figure 4B) and provide a sustained inhibition to SC move-

ment neurons (Hikosaka et al., 2000). This inhibition must be re-

leased (as ramping activity in the cortex activates CD neurons,

which in turn suppresses the activity in the SNr), in order for

SC neurons to produce a burst output. This highly nonlinear dis-

inhibition mechanism implies that the decision threshold is much

more readily adjustable by tuning the synaptic strength of cor-

tico-striatal pathway than by changes of the cortico-collicular

synaptic strength (Lo and Wang, 2006). This finding is particu-

larly appealing in light of the fact that cortico-striatal synapses

represent a prominent target of innervations by dopamine neu-

rons. Given that dopamine neurons signal rewards or reward-

prediction errors (Schultz, 1998) and that long-term potentiation

and depression of the cortico-striatal synapses depend on the

dopamine signals (Reynolds et al., 2001; Shen et al., 2008), our

work suggests that dopamine-dependent plasticity of cortico-

striatal synapses represents a candidate neural locus for adap-

tive tuning of a decision threshold in the brain, a prediction that

is testable experimentally. More generally, it remains to be

seen whether a decision threshold (defined neurophysiologically

in terms of a neural activity bound), or some other attributes like

the onset time or ramping slope of putative decision neurons, is

actually dynamically adjusted in a speed-accuracy tradeoff.

Although decision threshold is a critical element in reaction-

time tasks, it should not be equated to a general decision rule

that terminates an accumulation process. This is clearly illus-

trated in the fixed-duration version of the RDM task in which

the viewing time is controlled externally and the subject is re-

quired to refrain from making an overt response until either at

the stimulus offset (Britten et al., 1992; Kiani et al., 2008) or after

a mnemonic delay period (Shadlen and Newsome, 2001; Roit-

man and Shadlen, 2002). The subjects, and LIP neurons, do

not appear to integrate sensory information through the whole

stimulus presentation period (provided it is sufficiently long),

which was suggested to indicate that threshold crossing may still
224 Neuron 60, October 23, 2008 ª2008 Elsevier Inc.
be the rule for terminating the decision process in these situa-

tions (Kiani et al., 2008). Such a scenario would require a readout

system (that detects the event of threshold crossing) to send

a feedback signal to stop the integration process in decision

neurons. In contrast, in the recurrent neural circuit model, inte-

gration stops naturally when the system has reached a steady

state. This can occur without triggering an overt behavioral re-

sponse, presumably because downstream movement neurons

(in FEF and SC) are inhibited by virtue of an external cue (e.g.,

the fixation signal) and/or internally generated control signals.

Conceptually, the recurrent neural network suggests that cate-

gorical choice is determined naturally by which of the alternative

attractors wins the competition. The response time is interpreted

in terms of the time at which neural signals from a decision circuit

are read out by the motor system, which can be flexibly adjusted

and differently controlled in a reaction-time task or a fixed-

duration task.

This general idea not only applies to perceptual decisions but

also action control. Indeed, a recurrent circuit approach has

been used to build models for action selection and movement

preparation (Wilimzig et al., 2006; Cisek, 2006; Heinzle et al.,

2007). The timing of a movement, or even whether a response

is ultimately produced, is potently controlled by inhibitory pro-

cesses, such as suppressive gating of movement neurons by

‘‘holding’’ neurons ( Hanes and Schall, 1996; McPeek and Keller,

2002; Narayanan and Laubach, 2006; Boucher et al., 2007), and

by the basal ganglia (Hikosaka et al., 2000). Therefore, selection

of an action may not be casually linked to the reaction time, at

least under some circumstances. In a popular model for inhibi-

tory control of action, there is a race between a GO process

and a STOP process, whichever crosses a threshold first wins

the race and determines whether a response is inhibited or not

(Logan and Cowan, 1984; Boucher et al., 2007). In a recurrent

neural circuit model of countermanding action, the decision is

described as a bistable dynamics, similar to the two forced-

choice perceptual decision, except that now the attractor states

correspond to cancelled versus noncancelled response (C.C. Lo

and X.-J. Wang, 2007, Soc. Neurosci., abstract). In this view, the

outcome of a decision process is to some extent insensitive to

the precise value of the decision threshold, e.g., raising the

threshold beyond a certain level does not necessarily improve

the performance. Hence, again, categorical choice can be disso-

ciated from a decision threshold.

Value-Based Economic Choice
To make the ‘‘right’’ decision is ultimately about achieving a be-

havioral goal. In laboratory experiments, the goal is often to gar-

ner maximum rewards. This type of decision making relies on the

brain’s ability to evaluate the desirabilities of available options as

a prerequisite to choosing and to adaptively change decision

strategies when choice outcomes do not meet expectations.

This field, a fusion of reinforcement learning theory and neuroe-

conomics, has been the topic of several recent reviews (Sugrue

et al., 2005; Rushworth and Behrens, 2008; Loewenstein et al.,

2008; Soltani and Wang, 2008).

Significant progress has been made on neural representation

of reward signals and reward expectations. A seminal finding

was that phasic activity of dopamine neurons in the ventral
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tegmental area (VTA) encodes a reward prediction error (the dif-

ference between the expected and actual reward) (Schultz et al.,

1997; Schultz, 1998; Roesch et al., 2007). Consistent with a pre-

diction error signal, spiking activity of dopamine neurons in-

creases with both reward magnitude and probability (Fiorillo

et al., 2003; Tobler et al., 2005; Roesch et al., 2007). Moreover,

a recent study found that neurons in the primate lateral habenula

reflect reward-prediction errors with an opposite sign from do-

pamine neurons (exhibiting a strong increase in spiking activity

when the actual reward is smaller than the expected outcome),

suggesting that the lateral habenula is a source for negative pre-

diction error signal (Matsumoto and Hikosaka, 2007). On the

other hand, neural signals correlated with reward expectation

have been consistently observed in the striatum, amygdala, orbi-

tofrontal cortex (OFC), and anterior cingulate cortex (ACC) in

single-unit recording from behaving animals (reviewed in Rush-

worth and Behrens, 2008). The expected value is often charac-

terized as a leaky integrator of experienced rewards. For in-

stance, neural firing in ACC of behaving monkeys has been

described as a temporal filter of past rewards, on a timescale

of several trials (or tens of seconds) (Kennerley et al., 2006;

Seo and Lee, 2007). In reinforcement learning theory, the error

signal is postulated to update the reward expectation, which in

turn is used to compute the error signal (Sutton and Barto,

1998; Bayer and Glimcher, 2005; Rushworth and Behrens,

2008). Thus, the reward expectation and the prediction error de-

pend on each other and must be computed iteratively, possibly

in different brain regions connected in a reciprocal loop. For in-

stance, through a learning process that depends on dopaminer-

gic inputs, reward expectation may be evaluated in a circuit in-

cluding the striatum and frontal cortex. This signal is then fed

back to midbrain dopamine cells to be compared with the actual

reward to yield a prediction error. However, reward expectation

and prediction error signals are mixed in multiple brain areas and

are often difficult to disentangle.

It is useful to distinguish a brain system for reward valuation

and those neural circuits that use this information to guide choice

behavior. Brain structures activated in decision making and

modulated by reward signals include caudate (Samejima et al.,

2005; Hikosaka et al., 2006), lateral parietal cortex area LIP (Platt

and Glimcher, 1999; Sugrue et al., 2004), and prefrontal cortex

(Watanabe, 1996; Roesch and Olson, 2003). Reinforcement

learning models suggest that action values are learned at synap-

ses onto neurons in a decision circuit, thereby influencing choice

behavior (Seung, 2003; Wörgötter and Porr, 2005). To illustrate

this point, consider a neural network shown in Figure 2A. Recall

that the network behavior is described by a softmax decision cri-

terion, that is, the probability of choosing A versus B is a sigmoid

function of the difference in the inputs (DI) to the two competing

neural pools (Figure 4D, upper panel). Suppose that the

strengths of the two synaptic connections cA and cB are plastic,

then synaptic modifications will alter the network decision be-

havior over time. Specifically, we used binary synapses that un-

dergo a stochastic Hebbian learning rule, namely that synaptic

plasticity depends on coactivation of presynaptic and postsyn-

aptic neurons and takes place probabilistically (Fusi, 2002;

Fusi et al., 2007). In addition, it is assumed that synaptic learning

depends on reward signals, based on the observation that dopa-
mine signal is known to gate synaptic plasticity in the striatum

(Wickens et al., 2003; Shen et al., 2008) and prefrontal cortex

(Otani et al., 2003; Matsuda et al., 2006). For instance, synapses

for inputs to decision neurons are potentiated only if the choice is

rewarded, and depressed otherwise. Therefore, in a learning

process, synapses acquire information about reward outcomes

of chosen responses, i.e., action-specific values. As a result of

synaptic modifications, the input strengths for the competing

neural groups of the decision network vary from trial to trial, lead-

ing to adaptive dynamics of choice behavior.

Such a model was tested by applying it to a foraging task in

which a subject makes a sequence of choices adaptively in an

unpredictable environment. In a monkey experiment (Sugrue

et al., 2004; Lau and Glimcher, 2005, 2008), rewards were deliv-

ered to two (A and B) response options stochastically at baiting

rates lA and lB, respectively, according to a concurrent variable-

interval reinforcement schedule, in which choice targets are

baited with rewards probabilistically and remain baited until the

subject chooses the target and collects the reward. The studies

found that monkey’s behavior conformed to the matching law,

which states that a subject allocates her or his choices in a pro-

portion which matches the relative reinforcement obtained from

these choices (Herrnstein et al., 1997) (Figures 5A and 5B). More-

over, neural activity of LIP neurons selective for a saccadic re-

sponse was modulated by a representation of the outcome

value, which was defined behaviorally as a leaky integration of

past rewards on that target (Sugrue et al., 2004). Interestingly,

the monkey’s choice behavior is fit well by a softmax function

of the difference in the two incomes (Corrado et al., 2005)

(Figure 5C). These behavioral and neurophysiological observa-

tions were reproduced in the neural circuit model of decision

making endowed with reward-dependent plasticity (Soltani and

Wang, 2006) (Figures 5D–5G). It turns out that, in the model,

the synaptic strengths (cA and cB) are proportional to the returns

(the average reward per choice) rather than the incomes (the av-

erage reward per trial) of the two targets (Figure 5D). Note that

matching implies that the two returns are equalized, thus encod-

ing reward values in terms of returns is especially suited for

matching computation. Moreover, because synapses are poten-

tiated or weakened stochastically over time, they are forgetful

and behave like a leaky integrator of past choice outcomes,

with a time constant determined by the learning rate as well as

the reward statistics in the environment (Soltani and Wang,

2006). Hence, the decision behavior is influenced by past re-

wards harvested locally in time, in agreement with the observed

monkey’s behavior (Sugrue et al., 2004; Lau and Glimcher,

2005). As observed in LIP, in the model, neurons are modulated

by the values of the response options (Figure 5E), even though

they are not directly responsible for valuation itself. The model

reproduces the matching behavior: as the reward rate lA/lB

varies from one block of trials to the next block, the model’s be-

havior changes quickly, so that the probability of choosing A ver-

sus B matches approximately lA/lB (Figure 5F). Further, the

model also accounts for the observation that, in the monkey ex-

periment, matching is not perfect, and the relative probability of

choosing the more rewarding option is slightly smaller than the

relative reward rate (‘‘undermatching’’) (Figure 5G). A model

analysis showed that undermatching is a natural consequence
Neuron 60, October 23, 2008 ª2008 Elsevier Inc. 225
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Figure 5. Neural Basis of Matching Law in
Foraging Behavior
(A) Dynamic matching behavior of a monkey dur-
ing a single experimental session. Continuous
blue curve shows cumulative choices of the
red and green targets. Black lines show average
ratio of incomes (red:green) within each block
(here, 1:1, 1:3, 3:1, 1:1, 1:6, and 6:1). Matching
predicts that the blue and black curves are
parallel.
(B) Block-wise matching behavior. Each data
point represents a block of trials with the baiting
probabilities for each target held constant. Re-
ward and choice fractions are shown for the
red target (those for the green target are given
by one minus the fraction for the red target). Per-
fect matching corresponds to data points along
the diagonal line. Deviations (undermatching)
are apparent, as the choice probability is lower
than reward probability when the latter is larger
than 0.5.
(C) In a linear-nonlinear model, past rewards are
integrated across previous trials with a filter time
constant of approximately five to ten trials, yield-
ing estimated values for the two targets nr and
ng. Choice probability as a function of nr and ng

is modeled as either a softmax rule (left panel)
or a fractional rule (middle panel). Monkey’s be-
havioral data are fitted better by the softmax
(sigmoid) decision criterion (right panel).
(D) In a recurrent neural circuit model endowed
with reward-dependent plasticity (Figure 3A) ap-
plied to the foraging task, the average synaptic
strength is a linear function of the return from
each choice (the reward probability per choice
on a target). Red and green data points are for
the synaptic strengths cA (for red target) and cB

(for green target), respectively.
(E) Graded activity of neurons in the two selective
neural populations. The activity of decision neu-
rons shows a graded pattern if single-trial firing
rates are sorted and averaged according to the
choice and the difference between synaptic
strengths. Activity is aligned by the onset of
two targets, and it is shown separately for the
choice that is the preferred (red) or nonpreferred
(blue) target of the neurons. In addition, trials are
subdivided into four groups according to the dif-
ference between the values encoded by the syn-
aptic strength onto the two competing neural
populations (cA � cB = �0.05 to �0.14 [dashed],
0 to �0.05 [thin], 0 to 0.05 [normal], 0.05 to 0.14
[thick]).
(F) For one session of the model simulation of the
foraging experiment, the cumulative choice on
target A is plotted versus the cumulative choice
on target B (blue). The black straight lines show
the baiting probability ratio in each block. The
same baiting probability ratios are used as in
the monkey’s experiment (A).

(G) Each point shows the blockwise choice fraction as a function of the blockwise reward fraction for a block of trials on which the baiting probabilities are held
constant. The model reproduces the matching behavior as well as the undermatching phenomenon.
(A) is reproduced with permission from Sugrue et al. (2004), (B) and (C) from Corrado et al. (2005), and (D)–(G) from Soltani and Wang (2006).
of fluctuating network dynamics (Soltani and Wang, 2006). With-

out neural variability, decision behavior tends to get stuck with

the more rewarding alternative; stochastic spiking activity ren-

ders the network more exploratory and produces undermatching

as a consequence.

The same type of model is also applicable to competitive

games, where several decision makers interact according to

a payoff matrix. Specifically, model simulations have been car-
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ried out for the experiment of Barraclough et al. (2004), in which

monkeys played matching pennies with a computer opponent.

The model reproduced salient behavioral observations (Soltani

et al., 2006). Similar to monkey’s behavior, when the opponent

is fully interactive according to the rules of matching pennies,

the model behavior becomes quasirandom. For instance, if ini-

tially cA is larger than cB, and the system chooses target A

more frequently, it would be exploited by the opponent, and
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the unrewarded outcomes from choosing A induce depression

of the synapses to the neural pool A, so that the difference

cA � cB decreases over time, and the system gradually chooses

B more frequently (Soltani et al., 2006; Lee and Wang, 2008).

Therefore, although activity of decision neurons depends on

values of response options, valuation may occur elsewhere, per-

haps at the synaptic level. It remains to be seen how such a learn-

ing rule works when the outcome (reward or not) is revealed only

long after the behavioral response, by incorporating either per-

sistent neural activity that bridges the temporal gap between

the two events or an ‘‘eligibility trace’’ in the synapses (Sutton

and Barto, 1998; Seung, 2003; Izhikevich, 2007). Virtually noth-

ing is known empirically on this important issue, and new exper-

iments in this direction would be highly desirable. Another key

factor is cost (punishment, loss, and effort), the flip side of re-

ward, which is poorly understood at the neural level. Further-

more, for the sake of simplicity, most biophysically based

models have so far been limited to considerations of a local net-

work and remain agnostic about the actual site of synaptic plas-

ticity underlying valuation. Candidate loci include the cortico-

striatal connections in the basal ganglia or synaptic pathways

within the orbitofrontal cortex, which have been explored in con-

nectionist neural network models (Cohen et al., 1996; Frank and

Claus, 2006) and reinforcement learning models (Samejima and

Doya, 2007). Thus, it is likely that reward-dependent synaptic

plasticity occurs in specific brain areas (or subpopulations of

neurons in those areas) dedicated to signaling action values,

whereas others are more directly involved with the generation

of behavioral choice (Samejima and Doya, 2007; Rushworth

and Behrens, 2008). Elucidation of the inner working of such

large-scale decision circuits represents a major challenge in

the field.

Uncertainty and Stochastic Neural Dynamics
Decisions are often fraught with risk because the sensory

world and choice outcomes, as well as intentions of interactive

decision agents, are known only with varying levels of probabil-

ity. This is illustrated by the aforementioned monkey experi-

ments: sensory information is meager and conflicting in a near-

threshold discrimination task; whereas in a foraging task, the

possible outcomes of response options are given by reward

probabilities that change unpredictably over time. And in

a matching pennies game task, agents must decide without

knowing each other’s intended actions, but the outcome de-

pends on all the agents’ choices. Uncertainty is considered

a key factor for explaining economic choice behavior (Kahne-

man, 2002), and decision making under risk represents a central

point of converging interest for economists and neuroscientists.

Recently, human studies using a combination of gambling tasks

and functional neuroimaging and neurophysiological studies

with behaving animals have been carried out to examine

neural representations of uncertainty. Some studies aimed at

identifying distinct brain systems that are recruited by different

types of uncertainty (Yu and Dayan, 2005; Hsu et al., 2005; Huet-

tel et al., 2006; Behrens et al., 2007). Other studies quantified

uncertainty-correlated neural signals in terms of probabilities

(Fiorillo et al., 2003) or the variance of a probability distribution

(Tobler et al., 2007). Yet others examined estimation of confi-
dence about a probabilistic decision (Grinband et al., 2006;

Kepecs et al., 2008).

The origin of randomness in decision making has been an is-

sue pertaining to the debate on whether the same core mecha-

nisms could underlie perceptual decisions and valued-based

choice behavior (Glimcher, 2005; Gold and Shadlen, 2007).

Gold and Shadlen (2007) described decision making as a pro-

cess in which ‘‘the decision variable (DV) represents the accrual

of all sources of priors, evidence, and value into a quantity that is

interpreted by the decision rule to produces a choice.’’ Thus, in

accumulator models of perceptual decision, randomness origi-

nates from noise in the external input, so the DV is stochastic

but the decision rule (the bound) is fixed. The computational ben-

efit of time integration is understood in terms of the signal-to-

noise ratio, which increases over time (�Ot in the diffusion

model). On the other hand, in reinforcement models for re-

ward-dependent choice (Barraclough et al., 2004; Sugrue

et al., 2004, 2005; Lau and Glimcher, 2005), the DV is defined

by values of response options which are deterministically up-

dated according to past rewards, whereas the choice is gener-

ated by a probabilistic decision rule (e.g., a softmax criterion)

based on the DV. The source of stochasticity is thus interpreted

as internal. Glimcher (2005) argued that intrinsic indeterminacy

may be essential for unpredictable behavior. For example, in in-

teractive games like matching pennies or rock-paper-scissors,

any trend that deviates from random choice by an agent could

be exploited to his or her opponent’s advantage.

The recurrent neural circuit model offers a way to reconcile

these two seemingly contrasting views. In this model, there is

no fundamental distinction between the DV and the decision

rule, insofar as the same recurrent neural dynamics instantiate

the accrual process as well as categorical choice. We interpret

neural activity in a putative decision network as the DV in both re-

ward-based choice tasks and perceptual tasks. Reward or value

signals modulate neural firing through synaptic inputs, just like

sensory stimuli, in consonance with the view of Gold and Shad-

len (2007). The neural dynamics give rise to stochastic decisions,

with the aggregate behavior characterized by a softmax function

of the difference DI in the inputs to the competing decision neu-

rons. This softmax is simply a description of behavioral statistics,

not the decision criterion used to produce individual choices in

single trials. The smaller is the absolute value of DI, the more ran-

dom is the network behavior. In a foraging task, the serial re-

sponses and outcomes lead to changes in the synaptic strengths

so that DI reflects the difference in the values of the choice op-

tions. When the amount of reward uncertainty is varied, DI is ad-

justed through synaptic plasticity so that the system behaves

more, or less, randomly in compliance with the matching law

(Soltani and Wang, 2006). In a competitive game, the interplay

with the opponent induces reward-dependent synaptic plasticity

that forces DI to be close to zero, resulting in random behavior.

Therefore, a decision maker does not have a goal to play ran-

domly, but simply tries to play at its best, given the environment

or other decision agents in an interactive game (Soltani et al.,

2006; Lee and Wang, 2008). This conclusion is consistent with

behavioral studies demonstrating an indispensible role of feed-

back in producing random patterns of responses (Rapoport

and Budescu, 1992; Camerer, 2003; Glimcher, 2005). In this
Neuron 60, October 23, 2008 ª2008 Elsevier Inc. 227
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view, a decision circuit produces random-choice behavior, not

necessarily because the system relies on a ‘‘random number

generator,’’ but because the trial-to-trial interplay between a de-

cision maker with a volatile environment or with other decision

makers leads to adaptive and seemingly random decision

patterns.

This perspective, emphasizing intrinsic stochastic neural dy-

namics, also applies to perceptual decisions, where DI measures

the relative input strength (such as the coherence of an RDM

stimulus). To appreciate this point, it is worth noting that even de-

terminant choices are associated with some behavioral variabil-

ity, notably the trial-to-trial variability of response times. Con-

sider the simple act of saccading (a ballistic eye movement) to

a suddenly appearing visual target. There is no sensory uncer-

tainty, and the behavioral response is always the same. How-

ever, saccade response time (the time between target onset

and saccadic eye movement) fluctuates considerably from trial

to trial (Carpenter, 1981). In monkey physiological experiments,

Hanes and Schall found that a saccade was initiated when the

firing activity reached a threshold level of movement neurons in

the FEF (Hanes and Schall, 1996; Schall, 2001). Trial-to-trial var-

iability of saccade response time was shown to be inversely cor-

related with the slope of the buildup activity of movement-related

neurons, whereas the threshold level remained constant inde-

pendent of the response time (Hanes and Schall, 1996). There

is also evidence for a trial-to-trial correlation between the re-

sponse latency and the preparatory activity of cortical movement

neurons, before the target onset, in saccade and other sensory-

motor tasks (Dorris et al., 1997; Churchland et al., 2006; Naka-

hara et al., 2006). In situations when there is a conflict, for in-

stance when the subject has to inhibit a planned saccade by

a stop signal introduced with a short delay after the target onset,

the behavior becomes probabilistic (the saccade is suppressed

on some trials, but not on other trials) (Logan and Cowan, 1984;

Boucher et al., 2007). Therefore, in some sense, the stochasticity

inherent in a neural system reveals itself by external uncertainty.

The signal-detection theory of perception explains behavioral

indeterminacy in terms of noisy input (Green and Swets, 1966).

However, precious little is known physiologically about the iden-

tities and relative weights of various sources that contribute to

randomness in a decision process. In a monkey RDM discrimina-

tion experiment, there are at least three components of noise

that influence a decision circuit like LIP: the stochastic spatio-

temporal dot pattern presented in a trial, the trial-to-trial stimulus

variation, and fluctuating dynamics intrinsic in the nervous sys-

tem. Interestingly, it was found that the trial-to-trial stimulus var-

iation had no discernible effect on the trial-to-trial variance of

firing activity in MT neurons (Britten et al., 1993), nor on the rela-

tionship between MT neural responses and behavioral choice

(Britten et al., 1996). Similarly, in the recurrent neural circuit

model, the probabilistic decision behavior, measured by the psy-

chometric function and the variability of response time, was

found to be the same in simulations when the external inputs var-

ied from trial to trial or remained fixed across trials, suggesting

that the main source of variability may not be the sensory stimu-

lus but within the neural system itself (Wang, 2002). In addition,

Deco et al. applied this model to the monkey somatosensory dis-

crimination experiment and showed that the intrinsically sto-
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chastic decision circuit dynamics could account for Weber’s

law, which states that the ratio of just-noticeable input difference

to absolute input intensity is constant (Deco and Rolls, 2006;

Deco et al., 2007b). These examples illustrate the potential of

how statistical behavioral laws can ultimately be explained in

neuronal terms.

Both for models of perceptual decisions and value-based

choice behavior, intrinsic stochasticity arises from highly irregu-

lar neural firing (Amit and Brunel, 1997; Brunel and Wang, 2001),

a characteristic of cortical neuronal firing (Softky and Koch,

1993; Shadlen and Newsome, 1994). Evidence suggests that

this randomness is inherent within cortical circuits. For instance,

Poisson-like statistics is a characteristic of delay-period persis-

tent activity of prefrontal neurons recorded from behaving mon-

keys, even in the absence of external stimulus during working

memory (Compte et al., 2003). Theoretically proposed mecha-

nisms for highly irregular neural activity in the cortex posit recur-

rent cortical circuit dynamics endowed with balanced synaptic

excitation and inhibition (van Vreeswijk and Sompolinsky,

1996; Amit and Brunel, 1997; Mattia and Del Giudice, 2004; Re-

nart et al., 2007; Barbieri and Brunel, 2008). Unlike the diffusion

model in which the input is given and integrated by the DV, in a re-

current circuit a substantial component of the synaptic input

comes ‘‘from within’’ and builds up over time in parallel with

the spiking activity. Therefore, time integration is over the total

(external and recurrent) input, rather than sensory stimulus

alone. If neurons in a putative decision circuit like LIP exhibit

Poisson statistics through a ramping time course, then the sig-

nal-to-noise ratio improves over time simply as a consequence

of the increased mean firing rate (true for any Poisson process),

rather than because noise in the external stimulus is averaged

out. Furthermore, it is not a foregone conclusion that the sig-

nal-to-noise ratio indeed decays over time for decision neurons,

because a neural accumulator, due to its lack of a significant

leak, is expected to display unusual fluctuations, e.g., the Fano

factor of spike trains (the ratio of the variance over the mean of

the spike count) may actually grow over time (Miller and Wang,

2006b).

The phase-plane analysis (Figure 3D) offers a new look at the

issue of signal-to-noise ratio. At any given time, define signal as

the distance d(t) between the current network state (given by the

two neural pool firing rates rA and rB) and the boundary that sep-

arates the basins of attraction of the two choice attractors. Noise

can be quantified by the trial-to-trial standard deviation [s(t)] of

the network state. The signal-to-noise ratio is d(t)/s(t). At the on-

set of a RDM stimulus, the initial signal d(t = 0) depends on the

motion strength c0; it is zero if c0 = 0, but is positive for nonzero

c0 because the network already starts inside the basin of the cor-

rect choice attractor (cf. Figure 3D). However, the network re-

mains ‘‘undecided’’ as long as d(t)/s(t) is small. As the network

evolves further into one of the basins of attraction, both d(t)

and s(t) may increase over time, but the ratio d(t)/s(t) grows,

therefore it becomes increasingly unlikely that noise can ‘‘bring

back’’ the network across the boundary to the other, alternative,

attraction basin. In this sense, one may say that a categorical

choice is reached when d(t) becomes much larger than s(t),

even though the network may be still far away from the actual at-

tractor state or neither of the two firing rates have reached
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a prescribed decision threshold. According to this state dynam-

ics perspective on signal-to-noise ratio, there is no need to sep-

arately treat external noisy stimulus and internal neuronal

stochasticity. The computational benefit of time integration is

understood through the network dynamics in an attractor land-

scape, rather than in terms of a traditional time domain analysis.

Note that the network does not directly ‘‘see’’ the motion coher-

ence c0, only the RDM stimulus, but the decision-space land-

scape is sensitive to the mean input that reflects c0. For a higher

c0 (Figure 3D, c0 = 51.2% versus 6.4%), the network starts out

deeper in the territory of the correct choice attractor, d is larger

at the stimulus onset, and the time point of a categorical choice

is earlier. With a sufficiently large c0, the performance is 100%

because, as soon as the stimulus is presented, d(t)/s(t) is already

so large that switching to the alternative choice attractor (an

error) is impossible. One can say that the system has already

‘‘made up its mind’’ at the stimulus onset, even though it takes

sometime for neural activity to reach a threshold level. Note

that each state-based depiction corresponds to a (sufficiently

long) stationary input. It does not mean that the decision is irre-

versible; a change in the external input (e.g., reversing the direc-

tion of the motion stimulus) can radically alter the attractor land-

scape, leading to a different choice.

It has been proposed that in a single trial, neural population

activity patterns explicitly represent probability density func-

tions (Ma et al., 2006). Applied to the RDM discrimination exper-

iment, ramping spiking activity of LIP neurons has been inter-

preted as a temporal summation of the logarithm of the

likelihood ratio (Gold and Shadlen, 2001; Jazayeri and Movshon,

2006), or of the posteriors (that combine evidence with prior in-

formation) (Ma et al., 2006; Jazayeri and Movshon, 2006), about

the two alternatives. Such models require a Bayesian decoder

that uses a nonlinear process to readout the categorical choice.

The recurrent neural circuit model offers a different perspective

in which the same decision circuit performs both temporal inte-

gration of data and categorical choice by attractor dynamics.

Furthermore, decision making in single trials is based on ran-

dom sampling of fluctuating neural network activity; probabilis-

tic distributions appear only in the aggregated statistics across

trials. Future research will help us to understand these different

modes of operation, possibly deployed differentially in distinct

brain regions.

Concluding Remarks
Decision making has recently attracted increasing attention not

only in the neurobiological studies of cognition but also in psychi-

atry with the recognition that impaired decision making is prom-

inently associated with various mental disorders (Fellows, 2004;

Sachdev and Malhi, 2005). In this review, I have marshaled ex-

perimental findings on the basis of which a recurrent neural cir-

cuit theory for decision making has been developed. As it has

now become possible to investigate decision making across

species, from flies, rats, and monkeys to human subjects, the

time is ripe to investigate the underlying mechanisms in terms

of the biophysics of single neurons (Llinás, 1988; Magee et al.,

1998), the dynamics of synaptic connections (Abbott and Re-

gehr, 2004), and the microcircuit wiring connectivity (Somogyi

et al., 1998; Douglas and Martin, 2004). An insight from a nonlin-
ear dynamical systems perspective is that quantitative differ-

ences give rise to qualitatively different functions. Thus, while

the posterior parietal and prefrontal cortex may have qualita-

tively the same architecture layout as sensory cortices, suffi-

ciently strong synaptic recurrence (provided that it is slow) can

naturally lead to the generation of persistent activity and ramping

activity suitable for subserving cognitive-type computations

(Wang, 2006a). Conversely, relatively modest reductions of re-

current excitation and inhibition could produce marked impair-

ments of cognitive functions (Wang, 2006b; Durstewitz and

Seamans, 2008; Rolls et al., 2008).

A key neural computation in both working memory and deci-

sion making can be conceptualized as the time integral of inputs:

working memory relies on neurons that convert a transient input

pulse into a self-sustained persistent activity, whereas decision

making involves quasilinear ramping activity in response to

a constant input for accumulation of information. Perceptual dis-

crimination (Pasternak and Greenlee, 2005) and action selection

(Tanji and Hoshi, 2008) tasks often also depend working mem-

ory, in order to retain information useful for a future decision or

to remember a choice made previously. However, it is still un-

clear whether the underlying circuit mechanism is necessarily

the same for stimulus-selective persistent activity in working

memory and accumulation of evidence in a decision process.

In RDM discrimination experiments, recorded LIP neurons

were preselected using the criterion that they displayed direc-

tionally tuned mnemonic activity in a delayed oculomotor re-

sponse task (Shadlen and Newsome, 1996, 2001; Roitman and

Shadlen, 2002; Huk and Shadlen, 2005). It would be interesting

to examine whether other neurons that do not show persistent

activity also display slow ramping activity in the RDM discrimina-

tion task. Furthermore, the cellular and synaptic mechanisms of

neural ramping activity remain to be elucidated experimentally.

Whether LIP indeed acts as an attractor network has also been

questioned on the ground that certain aspects of neural re-

sponses in LIP during selective attention have not been repro-

duced by existing attractor models (Ganguli et al., 2008).

Choice behavior is commonly formulated in terms of value-

based optimization. One challenge is thus toelucidate how various

dimensions of valuation are represented in the brain (Sugrue et al.,

2005; Rushworth and Behrens, 2008). Another is to understand

the neural metrics of uncertainty and risk and how it influences de-

cision making. In an uncertain world, reinforcement sometimes

needs to be counterbalanced by exploratory decisions. It will be

interesting to study how, according to behavioral demands, the

brain can exploit a known environment or explore optimal options

in a volatile world (Daw et al., 2006; Behrens et al., 2007).

Although the present article is centered on simple behavioral

tasks, elemental building blocks of decision computation and

their neural mechanisms are likely to be relevant to more com-

plex cognitive processes as well. Even in spoken-language pro-

cessing, there is evidence that a spoken word elicits multiple

lexical representations, and spoken-word recognition proceeds

from real-time integration of information sources to categorical

choice among phonological competitors (Spivey et al., 2005). It

is thus hoped that understanding higher-level decisions can ben-

efit from detailed neurophysiological studies of simpler percep-

tual and economic decisions.
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