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   The well-established role of the prefrontal cortex (PFC) 
in a wide range of executive functions (Fuster, 2008; 
Miller & Cohen, 2001) begs the question: what are 

the key properties that enable the PFC to subserve cognitive 
processes, in contrast to primary sensory or motor systems? 
! e answer, in part, lies in its privileged position in the brain 
network (Averbeck & Seo, 2008; Nauta, 1971; Petrides & 
Pandya, 2002): at the top of the cortical hierarchy, the PFC 
is well situated for representational processing of the highest 
order; and its extensive input-output connections with the 
rest of the brain allow the PFC to combine information from 
various sensory, motor, and limbic areas, provide a top-down 
attention signal to modulate sensory processing, exert inhib-
itory control of motor action, and so on. 

 Equally important is the local circuit, the microcircuit 
operation within each of two dozen subregions of the PFC. 
Whereas sensory neurons are characterized by rapid and 
transient responses to external stimuli, PFC neurons com-
monly exhibit mnemonic persistent neural activity in the 
absence of direct stimulation (Fuster & Alexander, 1971; 
Funahashi, Bruce, & Goldman-Rakic, 1989; Kubota & 
Niki, 1971; Miller, Erickson, & Desimone, 1996; Romo, 
Brody, Hernandez, & Lemus, 1999). Such sustained activ-
ity is a neural correlate of working memory, the brain’s 
ability to internally maintain and manipulate informa-
tion (e.g., across a short time interval between sensory 
stimulation and motor response). ! e persistence time of 
sustained " ring activity during working memory is orders 
of magnitude longer than the biophysical time constants 
(tens of milliseconds) of fast electrical signals in neurons 
and synapses. For this reason, persistent activity is believed 
to be generated by feedback dynamics, or reverberation, 
in a local circuit (Amit, 1995; Arnsten, Paspalas, Gamo, 
Yang, & Wang, 2010; Goldman-Rakic, 1995; Hebb, 1949; 
Lorente de N ó , 1933; Wang, 2001). As Hebb wrote more 
than sixty years ago: “To the extent that anatomical and 
physiological observations establish the possibility of rever-
beratory a# er-e$ ects of a sensory event, it is established 

that such a process would be the physiological basis of a 
transient ‘memory’ of the stimulus” (Hebb, 1949, p. 61). 
! e characteristic horizontal connections found in the 
super" cial layers II–III of the monkey dorsolateral PFC 
may provide the anatomical substrate for such a recurrent 
circuit (Kritzer & Goldman-Rakic, 1995; Levitt, Lewis, 
Yoshioka, & Lund, 1993), and a recent monkey study 
showed that persistent activity in the PFC decreases with 
age and that this decline may be associated with reduced 
recurrent excitation (Wang et al., 2011a). ! e idea of rever-
beration is made precise in theoretical work where persis-
tent activity is described as “dynamical attractors” (Amari, 
1977; Amit, 1995; Wang, 2001). ! e mathematical term 
“attractor” simply means any self-sustained and stable state 
of a dynamic system, such as a neural network. According 
to this picture, in a working memory system, the spontane-
ous state and stimulus-selective memory states are assumed 
to represent multiple attractors, such that a memory state 
can be switched on and o$  by transient inputs. 

 P. Milner (a former colleague of Hebb) expressed 
doubts about the attractor theory on the ground that a 
reverberatory neural assembly is “liable to " re out of con-
trol” (Milner, 1996). Positive feedback could drive neu-
rons to " re at higher and higher rates until saturation is 
reached. ! is would be inconsistent with the observation 
that mnemonic persistent activity in the cortex occurs at 
moderate rates (typically 10 to 50 Hz), signi" cantly above 
the spontaneous " ring rate (a few hertz) but well below 
the maximum " ring capability of cortical neurons. When 
inhibition is incorporated to compensate for feedback 
excitation, inhibitory damping might prevent reverbera-
tion altogether (Milner, 1999). 

 Indeed, quantitative circuit modeling has shown 
that this problem of instability poses a serious challenge. 
However, in the same year that Milner’s words were written, 
it was realized that cortical circuits with multiple attrac-
tor states are dynamically stable if the recurrent excitation 
is slow compared to inhibition—for example, partially 
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mediated by the  N -methyl- d -aspartate (NMDA) recep-
tors (Wang, 1999). Conceptually, this means that working 
memory local circuits do not operate as fast switches with 
millisecond-scale transition times. Instead, neural com-
putation is more like an integration in the sense of calcu-
lus, at least up to a point, converting a brief pulsatile input 
into a persistent output pattern (Figure 15–1, le#  panel). 
Surprisingly, this turns out to be precisely what is needed 
for gradual accumulation over time, in the form of ramping 
activity, of information about choice options in a decision 
process (Figure 15–1, right panel; Wang, 2002). Synaptic 
excitation is balanced by inhibition, which gives rise to 
selectivity and winner-take-all competition—important 
for both working memory and decision making. ! erefore, 
a common local circuit mechanism may be capable of gener-
ating neural signals necessary for decision computations as 
well as working memory (Wang, 2002, 2008). ! is compu-
tational " nding is supported by the observation that delay 
period persistent activity in working memory tasks, and 
decision-related neural signals in perceptual and reward-
based decision tasks, are o# en observed in the same brain 
regions, especially the PFC but also the posterior parietal 
cortex and other areas (Gold & Shadlen, 2007; Heekeren, 
Marrett, & Ungerleider, 2008; Wang, 2008). ! erefore, 
a common “cognitive-type” local circuit mechanism may 
underlie both working memory and decision making.      

 In this chapter, I will expound on the notion of cogni-
tive-type local circuits. First, I will summarize the basic 
features of a working memory/decision circuit and its neu-
romodulation. ! en I will show how such a circuit model 
applies to inhibitory control of behavioral responses and 
how this framework can be extended to coding of behav-
ioral rules in the PFC, which has led to the idea of a “reser-
voir” of randomly connected neurons endowed with mixed 
selectivity. Implications for understanding cognitive de" -
cits in schizophrenia will be brie% y discussed.  

  A  B IOPH YSICALLY  BASED MODEL 
OF WORK ING MEMORY 

 A well-known working memory paradigm is the delayed 
oculomotor response task, in which a subject is required 
to remember a visual cue (a directional angle) across a 
delay period in order to perform a memory-guided sac-
cade (Chafee & Goldman-Rakic, 1998; Constantinidis 
& Goldman-Rakic, 2002; Constantinidis & Wang, 
2004; Funahashi et al., 1989). We have developed a net-
work model for this spatial working memory experiment 
(Figure 16–2A; Compte, Brunel, Goldman-Rakic, & 
Wang, 2000; Renart, Brunel, & Wang, 2003; Tegn é r, 
Compte, & Wang, 2002). ! e key feature is the pre-
eminence of recurrent connections (“loops”) between 
neurons, so that a cell receives not only external stimula-
tion (via a$ erents from upstream neurons) but also inputs 
from other cells within the same microcircuit (via “hori-
zontal” connections). A commonly assumed network 
architecture is the so called “Mexican hat”: localized 
recurrent excitation between pyramidal cells with a similar 
preference for spatial cues and broader inhibition medi-
ated by interneurons. Models of synapses and single cells 
are calibrated quantitatively by cortical electrophysiologi-
cal studies. ! is is important: even though network func-
tion is determined by the collective dynamics of many 
thousands of neurons, the emergent population behav-
ior depends critically on the properties of single cells and 
synapses.      

 Figure 15–2B shows a model simulation of the delayed 
oculomotor task. Initially, the network is in a resting state 
in which all cells " re spontaneously at low rates. A transient 
input (in this case at 180 degrees) drives a subpopulation of 
cells to " re at high rates. As a result, they send recruited 
excitation to each other via horizontal connections. ! is 
internal excitation is large enough to sustain elevated 

 Figure 15–1      Working memory requires neurons to convert a transient input pulse into a self-sustained persistent activity, whereas decision making 
involves neuronal ramping activity for accumulation of sensory information. Both types of time integration can be subserved by slow reverberatory 
dynamics in a recurrent neural network.  
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activity, so that the " ring pattern persists a# er the stimulus 
is withdrawn. Synaptic inhibition ensures that the activ-
ity does not spread to the rest of the network, and persis-
tent activity has a bell shape (“bump attractor”). At the end 
of a mnemonic delay period the cue information can be 
retrieved by reading out the peak location of the persistent 
activity pattern, and the network is reset back to the resting 
state. In di$ erent trials, a cue can be presented at di$ erent 
locations, and the " ring activity of a single cell can be com-
pared with the single-unit recording data from monkey’s 
prefrontal cortex (Funahashi et al., 1989). At the network 
level, each cue triggers a persistent " ring pattern of the 

same bell shape but peaked at a di$ erent location. A spatial 
working memory network thus requires a continuous fam-
ily of bump attractors, each encoding a potential location 
(Ben-Yishai, Lev Bar-Or, & Sompolinsky, 1995; Camperi 
& Wang, 1998; Compte et al., 2000). ! s instantiation 
of such a continuous attractor can be rendered robust by 
regulatory homeostatic mechanisms in a biophysically 
realistic cortical network in spite of cellular heterogene-
ities (Renart et al., 2003). 

 ! us, this biologically constrained model captures 
salient experimental observations from behaving monkeys. 
What lessons have we learned from such a model?  

 Figure 15–2      Working memory maintained by a tuned network activity pattern (a bump attractor) (A) Model architecture. Excitatory pyramidal cells are 
labeled by their preferred cues (0 o  to 360 o ). Pyramidal cells with similar preferred cues are connected through local E-to-E connections. Interneurons 
receive inputs from excitatory cells and send feedback inhibition by broad projections. (B) Left: schematic single pyramidal cell model endowed with 
three compartments (soma, proximate, and distal dendrites) and a number of voltage-gated ion channels. Right: spatiotemporal network activity (top) 
and membrane potential of a single cell (bottom) in a simulation of the delayed oculomotor experiment. Middle: a network simulation of the delayed 
oculomotor response experiment. C, cue period; D, delay period; R, response period. Pyramidal neurons are labeled along the  y -axis according to their 
preferred cues. The  x -axis represents time. A dot in the rastergram indicates a spike of a neuron whose preferred location is at y at time x. Elevated 
and localized neural activity is triggered by a transient cue stimulus and persists during the delay period. (C) Left panel: electro-responsiveness of an 
isolated pyramidal cell model with a cation current I CAN . The calcium-dependent activation of I CAN  is slow, leading to a ramping-up time course of the neural 
response. A few action potentials are still ! red after stimulus extinction, in parallel with a slow deactivation of I CAN . Notice that the neuron is not bistable; 
it returns to the stable resting state. Right panel: a slow ionic current (here I CAN ) reduces the minimum level of NMDAR that is required for sustained delay 
activity. A further increase in g CAN  renders the neuron intrinsically bistable (not shown). Source: Adapted from Tegn é r et al. (2002) with permission.  
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  SLOW E XCI TATORY RE VERBER AT ION:  ROLE 
OF NMDA RECEP TORS 

 A system with fast positive and slow negative feed-
backs, both powerful, is prone to dynamic instability 
(Douglas, Koch, Mahowald, Martin, & Suarez, 1995; 
Wang, 1999). In biologically realistic models, persistent 
activity is o# en disrupted in the middle of a delay per-
iod, so the memory is lost (Compte et al., 2000; Renart 
et al., 2003; Tegn é r et al., 2002; Wang, 1999). ! e same 
destabilization problem is present if negative feedback is 
instantiated by spike-frequency adaptation (McCormick, 
Connors, Lighthall, & Prince, 1985) or short-term synap-
tic depression (Abbott & Regehr, 2004; Markram, Wang, 
& Tsodyks, 1998). Such instability does not occur if the 
excitation is su&  ciently slow compared to negative feed-
back, when recurrent synapses are primarily mediated by 
NMDA receptors (time constant 50–100 ms) (Compte 
et al., 2000; Wang, 1999). Moreover, the slow NMDA 
receptor (NMDAR) unbinding to glutamate gives rise 
to saturation of the NMDA synaptic current with repet-
itive stimulation at high frequencies. As a result, a fur-
ther increase in neural " ring rates does not lead to a larger 
excitatory drive, and the explosive positive feedback is 
curtailed. ! erefore, it helps to control the " ring rate in a 
persistent activity state (Wang, 1999). 

 A speci" c suggestion from modeling work, then, 
is that in a working memory microcircuit, if persistent 
activity is sustained primarily by synaptic reverberation, 
local excitatory synapses should have a su&  ciently high 
NMDA/alpha-amino-3-hydroxy-5-methyl-4-isoxazole-
propionic acid (NMDA/AMPA) ratio. How high is high 
enough? ! e answer depends on the details of network 
biophysics and connectivity. For instance, the time con-
stant of a synaptic current depends on the subunit com-
position of its receptors. If gamma-aminobutyric acid A 
(GABA A ) receptor (GABA A R)-mediated inhibition is 
unusually fast in a working memory circuit, instability 
due to the time constant mismatch with AMPA receptor 
(AMPAR)-mediated excitation would be less severe and 
the required NMDA/AMPA ratio would be lower (Tegn é r 
et al., 2002). Recently, the contribution of NMDARs to 
synaptic transmission locally between prefrontal pyrami-
dal cells has been measured using intracellular recording 
from connected pairs of neighboring cells in the rat frontal 
cortex in vitro. It was found that NMDAR-mediated cur-
rents at prefrontal synapses in the adult, but not young, rats 
exhibit a twofold longer decay time constant and tempo-
rally summate a train of stimuli more e$ ectively, compared 
to those in the primary visual cortex, in support of our 
working memory circuit model (Wang, Stradtman, Wang, 
& Gao, 2008). Moreover, importantly, the NMDA model 
prediction has been directly tested in vivo during working 
memory. Preliminary data indicate that iontophoresis of 
a drug that selectively blocks NMDARs in recorded cells 

e$ ectively suppresses stimulus-selective persistent activity 
of PFC neurons in behaving monkeys (Wang et al., 2011b), 
con" rming the model’s prediction. 

 Quantitative di$ erences breed qualitatively di$ erent 
behaviors. ! at a cortical area exhibits a new type of behav-
ior does not necessarily mean that the circuit must possess 
unique biological machineries completely di$ erent from 
those of other areas. Hence, persistent activity may be gen-
erated in the PFC when the strength of recurrent excitation 
(mediated by AMPARs + NMDARs combined) exceeds 
a critical threshold, whereas this may not be the case for 
a sensory area such as the primary visual cortex. Based on 
our modeling results, we can extend this idea and propose 
that, for stable function of a working memory circuit, the 
NMDA/AMPA ratio at recurrent synapses should also 
be above a certain threshold. It is important to emphasize 
that what matters for persistent activity is not the unitary 
amplitude of excitatory postsynaptic currents (EPSCs) at 
resting potential, but the ratio of the average NMDA and 
AMPA synaptic currents during repetitive neural dis-
charges. ! is ratio depends on multiple factors, such as 
presynaptic short-term plasticity, postsynaptic summation 
and saturation, and the voltage dependence of the NMDA 
channel conductance. Further, a relatively high NMDA/
AMPA ratio at local synapses can be compatible with a low 
total NMDA/AMPA ratio in a neuron—for instance, if 
feedforward inputs from outside of the network are pre-
dominantly mediated by AMPARs. Last but not least, 
this ratio can be enhanced by neuromodulators, such as 
dopamine (Seamans & Yang, 2004).  

  MULT IPLE  FEEDBACK PROCESSES 

 In addition to the NMDAR-mediated recurrent excita-
tion, other cellular and synaptic processes may contribute 
to the generation of persistent activity. We have exam-
ined in computational models three such processes, all 
dependent on intracellular calcium signaling. First, single 
neurons exhibit a large repertoire of active ion channels 
(Llin á s, 1988; Magee, Ho$ man, Colbert, & Johnston, 
1998); some could provide intrinsic positive feedback lead-
ing to persistent activity (Camperi & Wang, 1998; Egorov, 
Hamam, Fransen, Hasselmo, & Alonso, 2002; Koulakov, 
Raghavachari, Kepecs, & Lisman, 2002; Loewenstein & 
Sompolinsky, 2003). In rat frontal neurons, accumulation 
of intracellular calcium during spiking activity activates a 
slow inward current, which in turn further increases the 
neuronal excitability, providing a positive feedback loop 
that can lead to spike " ring outlasting a transient stimu-
lus (Haj-Dahmane & Andrade, 1998). When such an 
intrinsic current is added in single pyramidal neurons of 
our network model for spatial working memory, less slow 
NMDAR-mediated synaptic transmission is needed to 
ensure stable persistent activity, as shown in Figure 15–2C 
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(Tegn é r et al., 2002). ! erefore, the principle that a posi-
tive feedback process should not be too fast compared to 
a negative feedback process holds true for intrinsic mem-
brane mechansims of single neurons as well. 

 Second, synapses commonly display short-term plas-
ticity on a time scale of hundreds of milliseconds to sec-
onds (Abbott & Regehr, 2004; Markram et al., 1998). 
Interestingly, it was found that, in rodents, whereas syn-
apses between two neighboring pyramidal cells typically 
show short-term depression in the primary visual cortex, 
local synaptic connections display pronounced short-term 
facilitation in the frontal cortex (Hempel, Hartman, 
Wang, Turrigiano, & Nelson, 2000; Wang et al., 2006). 
Modeling work showed that prominent synaptic facili-
tation can contribute to the maintenance of a short-term 
memory trace (Hempel et al., 2000; Mongillo, Barak, & 
Tsodyks, 2008; Szatmary & Izhikevich, 2010). It should be 
emphasized that both the NMDAR-mediated glutamate 
transmission and facilitation are parts of a synaptic mecha-
nism; they could work together to provide su&  cient recur-
rent excitation underlying persistent activity. 

 ! ird, depolarization-induced suppression of inhibi-
tion (DSI) refers to the phenomenon in which depolariza-
tion of pyramidal neurons induces a reduced inhibition of 
the same neurons by a subclass of GABAergic cells through 
a process mediated by endogenous cannabinoids (Freund, 
Katona, & Piomelli, 2003; Wilson & Nicoll, 2001). As a 
result, the more active pyramidal cells are, the more they 
are disinhibited, leading to enhanced reverberation. A 
modeling study (Fig. 15–3A) that incorporates DSI fur-
ther revealed the balancing acts of positive and negative 
feedbacks in the complex dynamics of a working memory 
system (Carter & Wang, 2007). Pyramidal neurons com-
monly display spike-frequency adaptation: spiking activity 
triggers a negative feedback process (with a time constant 
of ~100 ms) leading to a reduced " ring rate (McCormick 
et al., 1985; Wang, 1998). In a working memory model 
where pyramidal cells show spike-frequency adaptation, a 
“bump” activity pattern (like that in Figure 15–2B) o# en 
becomes unstable as persistently active cells become less 
excitable over time (Hansel & Sompolinsky, 1998; Laing 
& Chow, 2001). ! is instability might still be present in 
a working memory circuit dominated by the NMDA 
mechanism, which has a time constant comparable to that 
of the adaptation process, but the addition of DSI with a 
slower time constant (seconds) could restore the stability 
and ensure robust working memory function (Carter & 
Wang, 2007). Furthermore, DSI reduces noise-induced 
random dri# s of a persistent activity pattern during a delay 
period, so the readout of a remembered cue at the end of 
a delay period is reliable (Figure 15–3B,C). Interestingly, 
a simulated agonist for cannabinoid receptors leads to the 
opposite e$ ect: random dri# s are larger, and the informa-
tion decoded from persistent population activity deterio-
rates over time (Figure 15–3D). ! is is because the action 

of a cannabinoid agonist is not activity dependent. Hence, 
disinhibition is not selective only for those pyramidal cells 
that are active (for their preferred cue) but globally in the 
entire network, which is detrimental to stable, persistent 
activity. ! is model thus provides an explanation for the 
observation that the use of marijuana reduces the accu-
racy of readout from working memory in human subjects 
(Ploner et al., 2002).      

 Taken together, our modeling work has led to the “slow 
reverberation hypothesis” about strongly positive feedback 
mechanisms required for the generation of persistent activ-
ity in a working memory circuit. In addition to ensuring 
circuit stability, slow reverberating neural activity also pro-
vides a time integration mechanism of critical importance 
for decision computations (see below). It is worth noting 
that very slow cellular processes with a time scale of seconds 
should not be predominant; otherwise, it would be di&  cult 
to switch on and o$  persistent activity with relatively brief 
(hundreds of milliseconds) external inputs. Instead, these 
processes could aid the NMDA-mediated synaptic mechan-
ism, which we hypothesize is the workhorse of reverberating 
neural dynamics in a working memory circuit.  

  E XC I TAT ION- INHIBI T ION BAL ANCE 

 A general principle of cortical circuit organization is a 
dynamic balance between synaptic excitation and inhibi-
tion. We found that such a balance is important for nor-
mal functions of a PFC network model for several reasons. 
Some are in common with sensory systems; others are more 
specially relevant to working memory. 

  D Y N A M I C  S T A B I L I T Y 

 A conspicuous feature of our network model is multista-
bility: a resting state coexists with a number of stimulus-
selective memory states, so that transient inputs lead to 
switching between self-sustained network " ring patterns, 
or “attractors.” ! e resting state should be stable to small 
perturbations due to noisy spontaneous neural " ring, in 
spite of strong excitatory recurrency. ! is is achieved by a 
tight balance between excitation and inhibition (E-I bal-
ance). In fact, in the resting state, feedback inhibition is 
slightly greater than excitation; hence, the overall recurrent 
input to a neuron is inhibitory and spontaneous spike " r-
ing is driven by random background external inputs (Amit 
& Brunel, 1997). Interestingly, in a memory state in which 
stronger reverberatory excitation is recruited to sustain an 
elevated " ring rate, synaptic inhibition increases propor-
tionally with excitation; this dynamically maintained E-I 
balance contributes to the control of the " ring rates and 
prevent runaway excitation (Brunel & Wang, 2001). Other 
experimental and theoretical work suggests that a " xed E-I 
balance, regardless of changing neuronal " ring rates, may 
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be a general characteristic of cortical network dynamics 
(Compte et al., 2003b; Shadlen & Newsome, 1994; Shu, 
Hasenstaub, & McCormick, 2003; van Vreeswijk and 
Sompolinsky 1996). ! e balancing act of recurrent exci-
tation and inhibition may contribute to an explanation 
for the highly irregular spike discharges in prefrontal cells 
(Compte et al., 2003a).  

  S T I M U L U S  S E L E C T I V I T Y 

 Synaptic inhibition plays a critical role in sculpting the stim-
ulus selectivity of mnemonic persistent " ring patterns, in 
consonance with the observation that GABA A R antagonists 
result in the loss of spatial tuning of prefrontal neurons dur-
ing a delayed oculomotor task (Rao, Williams, & Goldman-
Rakic, et al., 2000).  

 Figure 15–3      Computer simulation of the spatial working memory model schematically shown in Figure 15–4A and comparison with recorded PFC neuronal 
tuning curves (A) Rastergrams for the pyramidal cells and the three (PV, CB, and CR) inhibitory neuron populations during the cue and delay periods. 
Instantaneous ! ring rates are color-coded. (B) Observed neuronal tuning curves (solid lines) during the delay period in the model simulations. Eight 
different cue positions are used. Dashed lines, spontaneous ! ring rate during the resting state. (C) Three kinds of recorded tuning curves in monkey 
dorsolateral PFC during a spatial working task, with the same conventions as in (B). Solid line, the best Gaussian ! t; dotted line, average ! ring rate during 
the last second of ! xation prior to stimulus cue. Note that the putative fast-spiking PV cell (center) has a higher spontaneous ! ring rate and wider tuning 
than the regular-spiking putative pyramidal cell (left), similar to what is found in the network simulations (B). An example of the inverted tuning curve is 
shown (right), with high baseline activity (dashed horizontal line), strong reduced delay period activity for some cues, and slightly increased delay period 
activity for other cues. About 5% of recorded neurons show these properties, which the model predicts to be putative CB interneurons that preferentially 
target pyramidal dendrites. Consistent with slice physiology (Figure 15–3C), the spike width is shortest for putative PV cells, longest for putative 
pyramidal cells, and intermediate between the two for putative CB interneurons. Source: Reproduced from Wang et al. (2004) with permission.  

Time (seconds)
0

0

–30
–20
–10

10
20
30

0º

90º

N
eu

ro
n 

la
be

l

180º

270º

360º

0º

90º
180º

270º

(B)

(A)

(C)
(D)

2s 0.03
0.97

1.00

0

35

70

70 Hz

D

N
eu

ro
n 

la
be

l

360º

360º180º0º

E E E E

I

E E
DSIDSIDSIDSIDSI

W‘ODSI W‘DSI

0

1 2 3 4

W‘o DSi
W‘ DSi

5 6 0 1 2 3 4 5 6

wi‘agonist w‘oagonist

wi‘agonist
w‘oagonist

0

20

Va
ria

nc
e 

(d
eg

re
es

)
En

co
de

d 
an

gl
e 

(d
eg

re
es

)

40

60

80

100

B
Time during delay period (secs) Time during delay period (secs)

0
20
40
60
80

100
120
140
160
180

1 2 3 4 5 6 0 2 4 6 8 10 12

Time (seconds)

18_Stuss_C15.indd   231 8/28/2012   8:40:59 PM



232 P R I N C I P L E S  O F  F R O N T A L  L O B E  F U N C T I O N

  R E S I S T A N C E  A G A I N S T  D I S T R A C T O R S 

 A key aspect of memory maintenance, in which inhibition 
plays an important role, is resistance against distractors: 
while behaviorally relevant information is actively held in 
mind, irrelevant sensory stimuli should be denied entrance 
to the working memory system. In delayed response exper-
iments using intervening stimuli (distractors), mnemonic 
activity has been shown to be easily disrupted by distrac-
tors in inferotemporal neurons but not in prefrontal neu-
rons (Miller et al., 1996). Similarly, delay period activity in 
posterior parietal cortex appears to be sensitive to distrac-
tors (Constantinidis & Wang, 2004; Powell & Goldberg, 
2000). ! erefore, the evidence suggests that although mul-
tiple cortical areas exhibit delay period activity, mnemonic 
neural signals in PFC may persist when those in the tem-
poral lobe and parietal lobe are lost, so that behaviorally 
relevant information is maintained in the brain in spite of 
distractors. ! is observation at the single-cell level suggests 
that PFC is a pivotal part of the attention network that 
focuses brain resources on selective information (Corbetta 
& Shulman, 2002; Desimone & Duncan, 1995; Mesulam, 
2000; Zanto, Rubens, ! angavel, Gazzaley, 2011). 

 What enables PFC to resist distracting stimuli? A gat-
ing mechanism may be involved in deciding which stimulus 
is behaviorally relevant and thus should be held in working 
memory (Cohen, Braver, & Brown, 2002; Cohen, Braver, 
& O’Reilly, 1996). On the other hand, it is desirable that 
a working memory circuit be endowed with mechanisms 
to " lter out, “by default,” external inputs that constantly 
bombard the senses. We found that synaptic inhibition 
naturally gives rise to this capability (Brunel & Wang, 
2001; Compte et al., 2000). ! is is because, in a memory 
delay period, active neurons recruit inhibition that proj-
ects to the rest of the network. Consequently, those cells 
not encoding the initial cue are less excitable than when 
they are in the resting state (see Figure 15–2B) and, hence, 
are less responsive to distracting stimuli presented during 
the delay. For working memory, the impact of a distractor 
depends on its strength (saliency) and the distance to the 
memorized cue (Compte et al., 2000), and the network’s 
ability to ignore distractors is sensitive to modulation 
of recurrent excitation and inhibition (Brunel & Wang, 
2001; Compte et al., 2000; Durstewitz, Seamans, & 
Sejnowski, 2000a).  

  S Y N C H R O N I Z E D  N E T W O R K  F A S T  O S C I L L A T I O N S 

 ! e E-I balance o# en manifests itself in the form of coher-
ent network oscillations, typically in the gamma (40 Hz) 
frequency range (Compte et al., 2000; Tegn é r et al., 2002; 
Wang, 1999). ! is is because fast excitation followed by 
slower inhibition is a common recipe for rhythmogenesis 
in neural networks (Wang, 2010; Wilson & Cowan, 1972). 
Synaptic inhibition mediated by GABA A Rs is typically 

about three to " ve times slower than fast synaptic excita-
tion mediated by AMPARs, the latter having a decay time 
constant of a few milliseconds (Hestrin, Sah, & Nicoll, 
1990; Xiang, Huguenard, & Prince, 1998). Modeling 
studies showed that coherent oscillations resulting from 
an interplay between AMPAR-mediated excitation and 
GABA A R-mediated inhibition have a preferred frequency 
range around 40 Hz (Brunel & Wang, 2003; Geisler, 
Brunel, & Wang, 2005). ! is theoretical result suggests 
that synchronous 40 Hz oscillations may be observed in 
mnemonic persistent activity, a notion that has found some 
experimental support (Pesaran, Pezaris, Sahani, Mitra, & 
Andersen, 2002). 

 According to this view, fast  γ  rhythms may be a char-
acteristic sign of the engagement of strongly reverbera-
tory cortical circuits (Wang, 2010). In particular, selective 
attention involves top-down signals to sensory neurons 
that originate from the parieto-prefrontal circuit largely 
overlapping with the working memory system. Hence, 
enhanced  γ  oscillations and synchrony associated with 
selective attention (Fries, Reynolds, Rorie, & Desimone, 
2001; Gregoriou, Gotts, Zhou, & Desimone, 2009; 
Womelsdorf, Fries, Mitra, & Desimone 2006) could be 
explained by this mechanism, as demonstrated by a two-
module model of spiking neurons that consists of a recip-
rocal loop between a sensory network and a working 
memory (e.g., PFC) network (Ardid, Wang, & Compte, 
2007; Ardid, Wang, Gomez-Cabrero, & Compte, 2010).   

  CONTRIBUT IONS OF DIFFERENT GABAERGIC 
CELL SUBT Y PES 

 Traditionally, fast-spiking, perisomatic targeting basket 
cells have been the focus of studies of synaptic inhibition. 
However, in the cortex, there is a wide range of GABAergic 
interneurons with regard to their morphology, electrophys-
iology, chemical markers, synaptic connections, short-term 
plasticity, and molecular characteristics (Buzs á ki, Geisler, 
Henze, & Wang, 2004; Cauli et al., 1997; DeFelipe, 1997; 
Freund & Buzs á ki, 1996; Kawaguchi, 1997; Markram et al., 
2004; Somogyi, Tamas, Lujan, & Buhl, 1998). ! ree largely 
nonoverlapping subclasses of inhibitory cells can be iden-
ti" ed according to the expression of the calcium-binding 
proteins parvalbumin (PV), calbindin (CB), and calreti-
nin (CR). Interestingly, in the macaque monkey, the distri-
butions of PV, CB, and CR interneurons appear to be quite 
di$ erent in PFC compared to V1. In primary visual cor-
tex, PV-containing interneurons (including fast-spiking 
basket cells) are prevalent (~75%), whereas the other two 
(CB- and CR-containing) interneuron types constitute 
about 10% each of the total GABAergic neural population 
(Brederode, Mulligan, & Hendrickson, 1990; Meskenaite, 
1997). By contrast, in the PFC, the proportions are about 
24% (PV), 24% (CB), and 45% (CR), respectively (Cond é , 
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Lund, Jacobowitz, Baimbridge, & Lewis, 1994; Gabbott 
& Bacon, 1996). Other studies (Dombrowski, Hilgetag, 
& Barbas, 2001; Elston & Gonzalez-Albo, 2003; Kondo, 
Tanaka, Hashikawa, & Jones, 1999) also found that CB 
and CR interneurons are predominant in PFC areas, espe-
cially in the super" cial layer 2/3, but the precise percentage 
estimates di$ er among studies presumably due to method-
ological di$ erences. 

 A circuit model (Wang et al., 2004) suggests how these 
di$ erent interneuron types may work together in the 
PFC (Figure 15–4). ! is model incorporates three sub-
types of interneurons classi" ed according to their synap-
tic targets and their prevalent interconnections. First, PV 
interneurons project widely and preferentially target the 
perisomatic region of pyramidal neurons, thereby con-
trolling the spike output of principal cells and sculpturing 
the tuning of the network activity pattern. Second, CB 
interneurons act locally within a cortical column. ! ey 
predominantly target dendritic sites of pyramidal neurons, 
hence controlling the inputs onto principal cells. ! ird, 
CR interneurons also act locally and project preferentially 
to CB interneurons. Note that the three interneuron types 
in the model should be more appropriately interpreted 
according to their synaptic targets rather than their cal-
cium-binding protein expressions. For example, PV cells 
display a variety of axonal arbors, among which the large 
basket cells are likely candidates for the widely projecting 
perisoma-targeting cells (Kisvarday et al., 2003; Krimer & 
Goldman-Rakic, 2001). Similarly, CB interneurons show 
a high degree of heterogeneity, but some of them (such as 
double bouquet cells or Martinotti cells) are known to act 
locally and preferentially target dendritic spines and sha# s 
of pyramidal cells (DeFelipe, 1997; Somogyi et al., 1998). 
Finally, although many CR interneurons do project to 
pyramidal cells, anatomical studies show that a subset of 
CR cells avoid pyramidal cells (Guly á s, Haj ó s, & Freund, 
1996), at least in the same cortical layer (Meskenaite, 1997) 
and preferentially target CB interneurons (DeFelipe, 
Gonzalez-Albo, Del Rio, & Elston, 1999). It is also possible 
that axonal innervations of a CR cell project onto pyram-
idal cells in a di$ erent cortical layer while selectively tar-
geting inhibitory neurons in the same layer (Gonchar & 
Burkhalter, 1999; Meskenaite, 1997).      

 Figure 15–5A-B shows a computer simulation of a bio-
physically detailed implementation of this circuit model 
for a spatial working memory task. When pyramidal cells 
in a column are excited by a transient extrinsic input, they 
excite each other through interconnections. At the same 
time, activated CR interneurons suppress CB interneu-
rons within the same column, leading to reduced inhibi-
tion (disinhibition) of the dendrites of the same pyramidal 
cells. ! e concerted action of recurrent excitation and CR 
interneuron-mediated disinhibition could generate self-sus-
tained persistent activity in these neurons, and the network 
activity pattern is shaped by synaptic inhibition from PV 

interneurons. Moreover, CB interneurons in other columns 
might be driven to enhance their " ring activity. ! erefore, 
pyramidal cells in the rest of the network would become 
less sensitive to external inputs, ensuring that working 
memory storage is not vulnerable to behaviorally irrelevant 
distracters. In the model, fast-spiking PV interneurons have 
broader spatial tuning curves than pyramidal cells, consist-
ent with physiological observations from monkey experi-
ments (Constantinidis & Goldman-Rakic, 2002). Another 
prediction of this model is that a small fraction of (putative 
CB) PFC neurons recorded from a behaving monkey should 
show a reduced " ring rate during the delay relative to spon-
taneous activity selectively for some sensory cues (inverted 
tuning of mnemonic delay period activity). ! is prediction 
was con" rmed in data analysis from a monkey spatial work-
ing memory task (Figure 15–5C). Roughly 5% of recorded 
neurons in that experiment showed behavior that was pre-
dicted by the model for dendrite-targeting CB interneu-
rons, consistent with the crude estimate of CB-containing 
interneurons (~24% of GABAergic cells, which, in turn, 
represent ~20% of all neurons). Future physiological work 
is needed to test the hypothesized disinhibition mechanism 
and assess whether it may be especially prominent in work-
ing memory circuits.       

  DECIS ION MAK ING 

 Unexpectedly, the same model originally developed for 
working memory turned out to be well suited to account for 
decision-making processes as well (Wang, 2002). In retro-
spect, this is because both working memory and decision 
making rely on slow reverberatory excitation for time integra-
tion of noisy inputs and persistent activity, as well as inhibi-
tion to sculpt the selectivity and winner-take-all competition 
underlying categorical choice formation. Consider percep-
tual decision making (Newsome, Britten, & Movshon, 1989; 
Parker & Newsome, 1998). In a two-alternative forced-choice 
task, subjects are trained to make a judgment about the direc-
tion of motion (say, le#  or right) in a near-threshold stochas-
tic random dot display and to report the perceived direction 
with a saccadic eye movement. Neurons in posterior parietal 
cortex (Roitman & Shadlen, 2002; Shadlen & Newsome, 
2001) and PFC (Kim & Shadlen, 1999) were found to exhibit 
" ring activity correlated with the animal’s perceptual choice. 
In particular, in a reaction time version of the task, neurons in 
the posterior parietal cortex are correlated with the subject’s 
choice, and display quasi-linear ramping activity over time 
that is slower in more di&  cult trials when motion coherence 
is lower and the subject’s reaction times are longer. ! is neural 
activity pattern is reminiscent of the noisy integrator (or dri#  
di$ usion) model known in cognitive psychology (Bogacz, 
Brown, Moehlis, Holmes, & Cohen, 2006; Gold & Shadlen, 
2007; Usher & McClelland, 2001; Smith & Ratcli$ , 2004; 
Wang, 2008). 
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 Figure 15–4      Network model of spatial working memory endowed with cannabinoid mediated disinihibition (DSI) (A) Schematic network architecture. 
The model scheme is the same as that in Figure 15–2A, with DSI implemented as a cell-speci! c reduction in inhibitory input conductance. (B) 
Spatiotemporal network activity with DSI. Top: ! ring rate activity; Bottom: DSI signal (the smaller is D; the more reduced is inhibition). The white line 
represents the dip location of the D population pattern. The D pro! le (on the right) was calculated by averaging D over the last half-second of the 
delay period. Note the slow buildup and decay of the DSI effect at the same location as the neural spiking activity. (C) DSI enhances the accuracy of 
memory-guided responses by reducing random drifts of persistent activity. Top panel: Time course of the remembered cue location (determined by 
the population vector) throughout a delay period of 6 s for 50 trials. Left: without DSI. Right: with DSI. Bottom panel: Variability of the remembered cue 
location as a function of time, calculated as the variance of the population vector across 50 trials from the top panel. Without DSI the variance of the 
population vector grows in time (gray line). DSI creates a privileged locus to stabilize a mnemonic activity pattern, so that after an initial increase in the 
! rst 2 s, the variance plateaus and remains constant (black line). (D) Application of an exogenous global agonist impairs working memory function. Top 
panel: endpoints of simulated memory-guided saccades at the end of a 12-s delay period. Saccades that fall outside of the large circles surrounding the 
sensory cue locations are considered to be erroneous responses. Saccade endpoints are color-coded by the cue location. Bottom panel: variance of the 
remembered location during the delay period, calculated from 50 trials, with (red) and without (black) a global agonist. In the presence of an exogenous 
agonist, disinhibition is activity-independent and global, so the accuracy of memory-guided saccades deteriorates. Source: Adapted from Carter and 
Wang (2007) with permission.  
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 We used the same model designed for working memory 
to simulate this decision experiment. ! e only di$ erence 
is that for the delayed response task only one stimulus is 
presented, whereas for the perceptual discrimination task 
con% icting sensory inputs are fed into competing neural 

subpopulations in a decision circuit (Furman & Wang, 
2008; Liu & Wang, 2008; Wang, 2002; Wong, Huk, 
Shadlen, & Wang, et al., 2007; Wong & Wang, 2006). 
Speci" cally, in a two-pool version of the model, subpop-
ulations of spiking neurons are selective for two choice 
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alternatives (e.g., A = le#  motion, B = right motion). Within 
each pyramidal neural group, strong recurrent excitatory 
connections can sustain persistent activity triggered by a 
transient preferred stimulus. ! e two neural groups com-
pete through feedback inhibition from interneurons. 
Con% icting sensory inputs are fed into both neural pools 
in the circuit, with the motion strength c ’  implemented as 
the relative di$ erence in the inputs. Our model accounts 
not only for salient characteristics of the observed deci-
sion-correlated neural activity, but also quantitatively for 
the animal’s behavioral performance (psychometric func-
tion and reaction times; Wang 2002; Wong et al., 2007; 
Wong & Wang 2006). Figure 15–6A shows an extended 
circuit model (Lo & Wang 2006) with a cortical deci-
sion circuit and a downstream motor circuit (superior 

colliculus, SC). Also included is the direct pathway in the 
basal ganglia, with an input layer (caudate, CD) and an out-
put layer (substantia nigra pars reticulata, SNr), which is 
known to play a major role in controlling voluntary move-
ments (Hikosaka, Takikawa, & Kawagoe, 2000). As a neu-
ral pool in the cortex ramps up in time, so does its synaptic 
inputs to the corresponding pool of SC movement neurons 
as well as CD neurons. When this input exceeds a well-
de" ned threshold level, an all-or-none burst of spikes is trig-
gered in the SC movement cells, signaling a particular (A 
or B) motor output. In this scenario, a decision threshold 
(as a bound of the " ring rate of decision neurons) is instan-
tiated by a hard threshold of synaptic input for trigger-
ing a special event in downstream motor neurons. Figure 
15–6B shows a sample trial of such a model simulation for 

 Figure 15–5      (A) A spatial working memory model with three subclasses of GABAergic interneurons. The scheme is the same as that in Figure 15–2A, 
with two additional inhibitory cell subclasses besides the perisoma-targeting (PV), broadly projecting, fast-spiking neurons to P cells. Within a column, 
CB interneurons target the dendrites of P neurons, whereas CR interneurons preferentially project to CB cells. Excitation of a group of pyramidal cells 
locally recruits CR neurons, sending enhanced inhibition to CB neurons, leading to dendritic disinhibition of the same pyramidal cells. (B) Proportional 
distribution of PV-, CB-, and CR-expressing GABAergic cells in three subregions of the monkey PFC. (C) Half-peak spike width for pyramidal neurons 
and three types of interneurons of macaque monkey prefrontal cortex. Source: Adapted from Wang et al. (2004) with permission. B reproduced with 
permission from Cond é  et al. (1994). C reproduced from Zaitsev et al. (2005) and Povysheva et al. (2006) with permission.  
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the visual motion direction discrimination experiment. 
! e rate of ramping activity % uctuates from trial to trial, 
as a result of stochastic " ring dynamics in the cortex, and is 
inversely related to the decision time (as de" ned by the time 
when a burst is triggered in the SC) on a trial-by-trial basis 
(Figure 15–6C). Moreover, when the task is more di&  cult 
(with lower motion coherence), ramping activity is slower, 
leading to longer reaction times. However, the threshold of 
cortical " ring activity that is read out by the downstream 
motion system has the same narrow distribution (inserts in 
Figure 15–6C), regardless of the ramping speed or reaction 
times. ! erefore, the variability of reaction times is mostly 
attributed to the irregular ramping of neural activity itself 
rather than to the trial-to-trial variability of the decision 
bound. ! is model reproduced the monkey’s behavioral 
performance and reaction times quantitatively (Figure 
15–6D). Interestingly, it was found that, in this model, the 
decision threshold can be most e$ ectively adjusted (e.g., 
in a speed-accuracy trade-o$ ) by tuning the strength of 
projections from the cortex to the striatum, suggesting a 

speci" c role of reward-dependent plasticity at the corticos-
triatal synapses in % exible decision making (Lo & Wang, 
2006). ! is attractor network model has also been applied 
to a number of other decision experiments, especially a 
two-interval discrimination task with vibrotactile stimuli 
(Deco, P é rez-Sanagust í n, de Lafuente, & Romo, et al., 
2007a; Deco, Scarano, & Soto-Faracos, 2007b; Machens, 
Romo, & Brody, 2005).      

 Furthermore, our model endowed with learning can 
describe adaptive choice behavior in reward-seeking 
tasks. Consider the neural network shown in Figure 
15–6A. Recall that the network’s behavior is described 
by a softmax decision criterion: in a single trial, the prob-
ability of choosing A versus B is a sigmoid function of 
the difference in the inputs to the two competing neu-
ral pools (Figure 15–6D, upper panel). Suppose that the 
strengths of the two synaptic connections are plastic; then 
synaptic modifications will alter the network’s decision 
behavior over time. Specifically, we used binary synapses 
that undergo Hebbian learning, namely, that synaptic 

 Figure 15–6      Decision making in a multiple-module neural circuit (A) Schematic architecture of the model for two-alternative forced-choice tasks. Excitatory 
neural pools in the cortical network (Cxe) integrate sensory information in favor of two choice options, A and B, and compete against each other. They 
project to both excitatory movement neurons in the superior colliculus (SCe) and the caudate nucleus (CD) in the basal ganglia. The CD sends inhibitory 
projection to the substantia nigra pars reticulata (SNr), which through inhibitory synapses connect with movement neurons in the SC. Each population 
consists of noisy spiking neurons. (B) A single-trial simulation of the model, showing spike trains from single cells and population ! ring rates of Cxe, 
SNr and CD, and SCe. A burst of spikes in movement neurons (SCe) is triggered when their synaptic inputs exceed a threshold level, which results from 
both direct excitation by cortical neurons and disinhibition from SNr via the corticostriatal projection. Time zero corresponds to stimulus onset. (C) The 
ramping slope of the Cxe ! ring rate is inversely related to decision time on a trial-by-trial basis (each data point corresponds to an individual trial). The red 
curve is 12,000 / (decision time). (D) Performance (percentage of correct choices) and mean response time as a function of the relative input difference; 
c’ = (µ A  − µ B ) / (µ A  + µ B ), where µ A  and µ B  are the mean values of inputs to cortical neural pools A and B. Source: Adapted from Lo and Wang (2006) with 
permission.  

200ms

200Hz

100Hz

30Hz

20Hz

Background
Excitation

Visual input

Saccade command output

A

LL

SCe SCeSCi

Ganglia
Basal

Superior
Colliculus

Cxe Cxe Cxi

Cortex

B

A

A

B

B

B

CD CD

A

SNr SNr

400 800 1200
Decision time (ms)

0

10

20

30

40

50

10 20 30
Threshold (Hz)

1 10 100
Relative input difference

400

600

800

R
es

po
ns

e
ti

m
e 

(m
s)

50
60
70
80
90

100

P
er

fo
rm

an
ce

(%
)

(A) (B)

SNr

SC

Cx

CD

(D)(C)

R
am

pi
ng

(s
pi

ke
s 

sl
op

e 
pe

r 
s2

)

18_Stuss_C15.indd   236 8/28/2012   8:41:02 PM



1 5 .  W O R K I N G  M E M O R Y  A N D  D E C I S I O N  M A K I N G  237

plasticity depends on coactivation of presynaptic and 
postsynaptic neurons (Engel & Wang, 2011; Fusi, 2002; 
Fusi, Asaad, Miller, & Wang, 2007; Soltani & Wang, 
2006). In addition, it is assumed that synaptic learning 
depends on reward signals, based on the observation 
that the dopamine signal could gate synaptic plasticity 
in the striatum (Shen, Flajolet, Greengard, & Surmeier, 
2008; Wickens, Reynolds, & Hyland, 2003) and PFC 
(Matsuda, Marzo, & Otani, 2006; Otani, Daniel, Roisin, 
& Cr é pel, 2003; Xu & Yao, 2010). This is a synaptic 
implementation of reinforcement learning (Glimcher, 
2011; Montague, Dayan, & Sejnowski, 1996; Schultz, 
1998; Sutton & Barto, 1998), which is a driving force for 
valuation of choice options through experienced choice-
outcome associations (Glimcher, 2003; Rushworth & 
Behrens, 2008; Sugrue, Corrado, & Newsome, 2005). 
For instance, synapses for inputs to decision neurons 
are potentiated only if the choice is rewarded; other-
wise, they are depressed. Therefore, in a learning process, 
synapses acquire information about reward outcomes 
of chosen responses (action-specific values). As a result 
of synaptic modifications, the input strengths for the 
competing neural groups of the decision network vary 
from trial to trial, leading to adaptive dynamics of choice 
behavior (Figure 15–7A). Such a model has been shown 
to account for behavioral data and single-neuron physi-
ological data in several experimental paradigms, such 
as foraging with probabilistic reward delivery on choice 
options (Lau & Glimcher, 2005; Soltani & Wang, 2006; 
Sugrue, Corrado, & Newsome, 2004;), competitive 
games (Barraclough, Conroy, & Lee, 2004; Dorris & 

Glimcher, 2004; Glimcher, 2003; Soltani, Lee, & Wang, 
2006), arbitrary sensorimotor mapping (Asaad, Rainer, 
& Miller, 1998; Fusi et al., 2007; Wise & Murray, 2000), 
and probabilistic inference in a weather prediction task 
(Soltani & Wang, 2010; Yang & Shadlen, 2007).      

 Figure 15–7 shows the performance of such a model for 
probabilistic inference in the weather prediction task. In 
this task, several (say, four) sensory cues are shown; each 
is associated with a weight of evidence (WOE), de" ned by 
log likelihood odds, that one of the two outcomes A (rain) 
or B (shine) is true. ! e subject is required to make a deci-
sion (rain or shine) based on the combined evidence, the 
sum of the WOEs of the four cues presented in a single trial 
(Gluck, Shohamy, & Myers, 2002). We found (Soltani & 
Wang, 2010) that summing log posterior odds, a seemingly 
complicated calculation, can be readily achieved, through 
approximations, by a plausible plasticity mechanism 
with bounded synapses in a decision circuit. A biophysi-
cally based neural network model implementation of the 
monkey weather-prediction task (Yang & Shadlen, 2007) 
quantitatively accounted for many behavioral and single-
unit neurophysiological observations. Furthermore, when 
the choice alternatives have unequal priors, the model pre-
dicts deviations from the Bayes decision rule that are akin 
to an e$ ect called “base-rate neglect” commonly observed 
in human studies, namely, there is an overestimate of the 
predictive power of each cue for the less probable outcome 
(Soltani & Wang, 2010). ! erefore, the core mechanisms 
in our model might be su&  ciently general to describe not 
only simple reward-seeking tasks, but also more complex 
probabilistic problem solving.  

 Figure 15–7      Probabilistic inference in a decision-making circuit endowed with reinforcement learning (A) Schematic of the three-layer model for a weather 
prediction task. The ! rst layer consists of cue-selective neural populations; each is activated upon the presentation of a cue. The sensory cue-selective 
neurons provide, through synapses that undergo reward-dependent Hebbian plasticity, inputs to two neural populations in an intermediate layer that 
encode reward values of two choice alternatives (action values). Combination of cues is accomplished through convergence of cue-selective neurons 
onto action value-encoding neurons. The latter project to a decision-making circuit (gray box, same as the cortical circuit in Figure 15–6A). The choice (A 
or B) is determined by which of the two decision neural populations wins the competition on a trial. Depending on the reward schedule, a chosen action 
may be rewarded or not. The presence (or absence) of a modulatory reward signal leads to potentiation (or depression) of plastic synapses. (B) Choice 
behavior of the model in the weather prediction task. This is the probability of choosing alternative A as a function of the sensory evidence favoring this 
option, de! ned by the sum of log likelihood odds of four cues. Source: Adapted from Soltani and Wang (2010) with permission.  
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  PROAC T IVE CONTROL OF MOTOR RESPONSES 

 More recently, we extended our recurrent network to 
inhibitory control of behavioral responses, an important 
executive function that depends on the PFC (Aron, 2007) 
and is impaired in psychiatric illnesses such as attention-
de" cit hyperactivity disorder (ADHD; Armstrong & 
Munoz, 2003; Schachar, Tannock, & Logan, 1993). In a 
countermanding (or stop-signal) task, a subject has to with-
hold the response to a go signal when an infrequent and 
delayed stop signal appears (Boucher, Palmeri, Logan, & 
Schall, 2007; Logan & Cowan, 1984). Neurophysiological 
recordings from the frontal eye " eld and the superior colli-
culus of rhesus monkeys suggested that the GO and STOP 
processes may be instantiated by movement and " xation 
neurons, respectively, and that the antagonistic interplay 
between them may be responsible for the interruption 
of the GO process (Hanes, Patterson, & Schall, 1998). 
We used the recurrent (attractor) network approach to 
build a spiking network model for countermanding, in 
which a population of movement (GO) neurons interacts 
with a population of " xation (STOP) neurons through a 
shared population of inhibitory GABAergic cells (Figure 
15–8A; Lo, Boucher, Pare, Schall, & Wang, 2009). We 
found that this model can capture quantitatively the mon-
key’s performance in a stop-signal task, such as the inhibi-
tion function (the probability that a planned response is not 
canceled by a stop signal as a function of the delay between 
the go and stop signals) and reaction times (Figure 15–8B).      

 Figure 15–8C shows the neural dynamics of two sam-
ple stop-signal trials, where an external stop input (to the 
STOP neural population) is presented 160 ms a# er a go 
input (to the GO neural population). Importantly, " xa-
tion neurons display high baseline activity from the start, 
as observed in physiological studies (Hanes et al., 1998), 
unlike in the conventional race model for the stop-signal 
task, where the STOP process is zero until a stop signal is 
presented (Boucher et al., 2007; Logan & Cowan, 1984). 
A# er the go signal onset, while " ring activity of move-
ment neurons ramps up, " ring activity of " xation neu-
rons decreases (due to e$ ectively inhibitory interactions 
between the two and the withdrawal of external input) but 
remains at a relatively high level. ! is internally maintained 
tonic activity of " xation neurons, observed experimentally 
(Hanes et al., 1998), tends to be higher or longer-lasting in 
a trial when the planned response is successfully canceled 
by a stop signal (top) than otherwise (bottom). Critically, 
this proactive component of an inhibitory control signal, 
and the reciprocal interactions between the GO and STOP 
processes, are present even in go trials when no stop sig-
nal is presented. ! is idea is further illustrated in Figure 
15–8D, where the " ring rates of movement neurons (r MOV ) 
and " xation neurons (r FIX ) are plotted against each other 
in a two-dimensional “phase-plane.” A# er the go signal 
onset (Figure 15–8D, top panel), the system moves from its 

initial state toward an attractor state corresponding to the 
generation of a motor response (indicated by the black " l-
led circle, with high r MOV  and low r FIX ). When a stop signal 
is presented (Figure 15–8D, bottom panel), the phase plane 
landscape is changed, with the creation of another attrac-
tor state corresponding to response cancellation (with high 
r FIX  and low r MOV ). ! e yellow and gray regions de" ne the 
“basins of attraction” of these two attractors: in the absence 
of noise, the system would converge to one of the attractors, 
depending on whether its internal state at the stop-signal 
onset is within one or the other basins of attraction (green 
and gray " lled circles). In this sense, inhibitory control is 
proactive: to a large extent (depending on the amount of 
noise present), whether a planned response is ultimately 
canceled in a stop-signal trial is determined by the internal 
state and network dynamics before any external stop input 
is shown. 

 ! is model suggests that a possible way to adjust the 
amount of inhibitory control depending on behavioral 
demands is to tune the baseline activity level of " xation 
neurons (STOP process) by top-down signaling presuma-
bly from the PFC (Aron, 2007). Generally, this work dem-
onstrates that the framework of strongly recurrent circuit 
models is applicable to inhibitory control of behavior.  

  REPRESENTAT ION OF TASK RULES:  NEUR AL 
HE TEROGENEI T Y  AND MIXED SELEC T IV I T Y 

 So far, we have discussed persistent activity underlying 
working memory of sensory stimuli. However, internal 
representation is not limited to sensory information but 
can be more abstract. In particular, behavioral rules, pre-
scribed guides for actions and problem solving, must be 
actively maintained in order to carry out tasks in our daily 
lives, and the PFC is known to play a major role in rule rep-
resentation and rule learning (Buckley et al., 2009; Bunge, 
2004; Goldman-Rakic, 1987; Miller & Cohen, 2001; 
Milner, 1963; Wallis, Anderson, & Miller, 2001). Can 
our attractor network models be generalized to represent 
task rules? 

 We found that our existing models are inadequate 
for describing rule-based behavior. ! e di&  culty arises 
from the fact that % exible context or rule-based behav-
iors involve neural computations akin to logic operations 
like exclusive Or (XOR). For example, consider a simpli-
" ed version of the Wisconsin Card Sorting Test. Given 
a sensory cue (a colored shape, e.g., a red circle), a subject 
selects one of two test stimuli that matches the cue either in 
color or shape, depending on the task rule (color or shape; 
Mansouri, Matsumoto, & Tanaka, 2006). Presumably, the 
rule currently in play, say color, is represented internally 
by persistent activity of “color rule cells,” which must be 
maintained across trials but switched o$  when the rule has 
changed—for example, from color to shape. As explained in 
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 Figure 15–8      A spiking neural network model of inhibitory control for the countermanding task (A) The schematic model architecture. The premovement 
module consists of two populations of movement (GO) neurons, a population of ! xation (STOP) neurons, and a population of inhibitory interneurons. The 
! xation neurons receive a top-down signal for proactive inhibitory control. (B) The model quantitatively ! ts to the behavioral data from a rhesus monkey 
(Boucher et al., 2007). Top panel: the inhibition function shows the probability of a noncanceled response in stop-signal trials as a function of stop-signal 
delay (SSD, the difference in the go and stop signal onset times). Bottom panel: cumulative reaction time distributions of nostop-signal trials (rightmost) 
and noncanceled stop-signal trials for different SSDs. (C) Simulated population ! ring rates of MOV (black lines) and FIX (gray lines) neurons on top of 
corresponding spike rasters (color-matched dots) from two trials of the model simulation (top, a canceled trial; bottom, a noncanceled trial). Each row in the 
rastergrams represents the spike train from one neuron. The vertical dashed line indicates the onset of the stop signal (SSD of 160 ms). Arrows indicate 
the offset of the top-down control signal. The model suggests that a quicker offset of the top-down control results in faster ramping-down activity of ! xation 
neurons and faster ramping-up activity of movement neurons, thus increases the probability of making a saccade to the target. (D) Phase plane plots 
demonstrate the attractor dynamics of the model network. Black and red curves represent the nullclines for the MOV and FIX neurons, respectively, and 
the interceptions between the nullclines determine the equilibrium points (black circles: stable; gray circles: unstable) of the network. The brown curves 
(canceled trials) and green curves (noncanceled trials) depict the trajectories of eight trials. Depending on the state of the system at the moment when the 
stop-signal input starts (indicated by the color-matched circles in the top panel), the network may continue converging into the GO attractor and trigger a 
response or may turn back into the STOP attractor and cancel the response (bottom panel). Dashed lines mark the threshold for the saccade response. 
Insets: schematic plots illustrating how the one-dimensional “action landscape” changes with stimulus inputs. Source: Adapted from Lo et al. (2009) with 
permission.  
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Figure 15–9A, the required state transitions of a color rule 
cell as a function of its recurrent input and feedback input 
amounts to an XOR operation. ! is problem is equiva-
lent to the known problem of nonlinear separability of the 
Boolean operation of XOR, and it plagues most neural net-
works implementing context-dependent tasks.      

 We proposed a solution to this problem (Rigotti, Rubin, 
Wang, & Fusi, 2010) by adding to a decision-making circuit 
a large “reservoir” of randomly connected neurons (RCNs; 
Figure 15–9B). ! e basic idea is that by virtue of random 
connections, RCNs are naturally activated by a combina-
tion of synaptic inputs from external stimuli as well as rule-
coding neurons (e.g., the color rule is currently in play and 
the network receives a negative feedback signal), and such 
mixed selectivity is exactly what is needed to perform the 
task (see also Dayan, 2007). ! is model provides a general 
framework for describing context- or rule-dependent tasks 
(Rigotti et al., 2010). Figure 15–9C-D shows an imple-
mentation of such a network for the simpli" ed Wisconsin 
Card Sort Test. Notable is the high degree of variability of 
" ring activity, across cells and for a single neuron across 
task epochs. Heterogeneity and mixed selectivity are sali-
ent yet puzzling characteristics of frontal cortical neu-
rons recorded from behaving animals (Asaad et al., 1998; 
Lapish, Durstewitz, Chandler, & Seamans, 2008; Miller 
& Cohen, 2001; Sigala, Kusunoki, Nimmo-Smith, Ga$ an, 
& Duncan, 2008). Our model suggests that mixed selec-
tivity is computationally desirable, as it allows the network 
to encode a large number of facts, memories, events, and, 
importantly, their combinations that are critically impor-
tant for enabling the PFC to subserve context- and rule-
dependent % exible behavior.  

  INSIGHTS IN TO PREFRONTAL DYSFUNC T ION 
IN MENTAL ILLNESS 

 Inasmuch as the PFC is central to multiple facets of cogni-
tion and executive control, it is a major focus of basic and 
clinic research on the brain mechanisms of cognitive de" -
cits associated with neuropsychiatric disorders, including 
schizophrenia (Goldman-Rakic, 1999), autism (Amaral, 
Schumann, & Nordahl, 2008; Shalom, 2009), ADHD 
(Casey, Nigg, & Durston, 2007), and obsessive-compulsive 
behavior (Sachdev & Malhi, 2005). 

 Recurrent network modeling has given rise to a num-
ber of speci" c candidate explanations for the frontal lobe 
dysfunction associated with mental disorders, especially 
schizophrenia (Durstewitz & Seamans, 2008; Rolls, 
Deco, & Winterer, 2008; Wang, 2006b). Traditionally, 
the function of NMDA conductance is almost exclusively 
emphasized in terms of its role in long-term synaptic poten-
tiation and depression. ! us, an abundance of NMDARs 
(Scherzer et al., 1998) could re% ect a high degree of plas-
ticity of prefrontal microcircuits, which could subserve 

learning of % exible and adaptive behaviors (Fusi et al., 2007; 
Miller & Cohen, 2001). ! at may be, but we propose that 
NMDARs also directly mediate the slow excitatory synap-
tic transmission critically important to working memory 
and decision-making processes. If so, e$ ects on cogni-
tive behavior due to NMDA signaling alternations may 
also be partly accounted for by impaired working 
memory and decision-making functions in addition to 
long-term memory. 

 We showed that hypofunction of NMDARs at intrin-
sic prefrontal synapses is detrimental to the persistent 
activity underlying working memory. ! ese results pro-
vide a mechanistic explanation for why working memory 
dysfunction similar to that observed in schizophrenic 
patients can be induced in healthy subjects by subanes-
thetic doses of ketamine, a noncompetitive NMDAR 
antagonist; and such impairment presumably does not 
involve learning and long-term plasticity (Krystal et al., 
1994). Postmortem studies showed signi" cant alterations 
in NMDAR mRNA expression (Akbarian et al., 1996), 
but revealed either no abnormality (Healy et al., 1998) or 
a slight increase (Dracheva, McGurk, & Haroutunian, 
2005) in the AMPAR level. Available information does 
not yet permit a more precise explanation for why and how 
impairment of the NMDAR system causes the cognitive 
de" cits associated with schizophrenia. It was previously 
suggested that impairment can occur outside of PFC, such 
as in hippocampus (Grunze et al., 1996; Jodo et al., 2005; 
Rowland et al., 2005) or in the dopamine system (Carlsson 
et al., 2001). Again, functional implications tend to be dis-
cussed in the realms of learning and synaptic modi" cation. 
By contrast, our modeling work suggests a novel scenario 
focused on the role of NMDARs in persistent activity. Of 
course, this scenario is compatible with other proposals, 
given that impairment of NMDARs may not be restricted 
to a single pathway and that NMDARs play a major role 
in long-term synaptic plasticity (Stephan, Friston, & Frith, 
2009). ! ese di$ erent facets of NMDAR function are 
also under the in% uence of dopamine modulation (Chen, 
Greengard, & Yan, 2004; Huang et al., 2004). 

 On the other hand, there is mounting evidence that 
the dorsolateral PFC of schizophrenic patients shows an 
abnormality of selective interneuron subtypes, especially 
fast-spiking basket and chandelier cells (Lewis, Hashimoto, 
& Volk, 2005). Our model suggests that this may be the 
case for two reasons. Modeling work (Brunel & Wang, 
2001; Compte et al., 2000; Wang, Tegn é r, Constantinidis, 
& Goldman-Rakic, 2004), in concordance with physiologi-
cal experiments (Constantinidis & Goldman-Rakic, 2002; 
Rao et al., 2000), demonstrates that inhibition mediated 
by fast-spiking and broadly projecting interneurons is 
critical to the stimulus selectivity, and hence information 
speci" city, of mnemonic persistent activity. Moreover, 
fast-spiking GABAergic cells are critical to the generation 
of coherent gamma (40 Hz) oscillations (Traub, Bibbig, 
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LeBeau, Buhl, & Whittington, 2004; Traub, Whittington, 
Collins, Buzs á ki, & Je$ erys, 1996; Wang, 2010; Wang & 
Buzs á ki, 1996), which may contribute to a variety of cog-
nitive processes (Wang, 2010). Revealingly, gamma oscil-
lations appear to be decreased in schizophrenic brains 

compared to those of control subjects (Lee, 2003; Spencer 
et al., 2004; Uhlhaas, Haenschel, Nikoli ć , & Singer, 2008). 
! us, de" cits in synaptic inhibition could impair the qual-
ity of information stored in working memory as well as neu-
ral communication across brain areas. 

 Figure 15–9      A decision-making network with the addition of RCNs for context- or rule-based behavior. (A) Exclusive or (XOR) computation by a cell that 
encodes the rule “color” in a simple variant of the Wisconsin Card Sorting Test (see text for more details). To illustrate the problem, assume that the 
neural activity (high or low, H or L) is determined by two types of inputs: recurrent drive, which is high or low, depending on whether the neuron is active 
or not (i.e., the internally maintained rule is color or shape), and feedback signal, which is positive (in which case the activity should stay) or negative 
(in which case the activity should switch). The required input-output mapping amounts to an XOR operation. (B) Neural network architecture: RCNs are 
connected both to a standard decision network of recurrent neurons and to external neurons encoding sensory and feedback inputs by ! xed random 
weights (brown). Each RCN projects back to the recurrent network by means of plastic synapses (black). Not all connections are shown. (C) Simulation 
of a Wisconsin Card Sorting-type Test after a rule shift. Simulated activity is shown as a function of time of sample neurons of the recurrent network that 
are rule selective (top panel) and three RCNs (bottom panel). The neuron in red is selective to the color rule and the neuron in green to the shape rule. 
The events and the mental states for some of the epochs of the two trials are reported above the traces. (D) The rule selectivity pattern is heterogeneous 
over time and across neurons. Left panel: rule selectivity for 70 simulated cells in the model: for every trial epoch ( x -axis) we plotted a black bar when 
the neuron had a signi! cantly different activity in shape and in color rule blocks. The neurons are sorted according to the ! rst trial epoch in which they 
show rule selectivity. Right panel: rule selectivity for spiking activity of single units recorded in PFC of monkeys performing an analog of the Wisconsin 
Card Sorting Test (Mansouri et al., 2006). Source: Adapted from Rigotti et al. (2010) with permission, except the left panel in (D) which is adapted from 
Mansouri et al (2006) with permission.  
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presently unknown. Certain subtypes of inhibitory neu-
rons have signi" cant NMDARs, whereas others do not 
(Wang & Gao, 2009), and dopamine D1 and D2 receptors 
modulate a number of synaptic and ion channel targets 
(Arnsten et al., 2010; Seamans & Yang, 2004).      

 Furthermore, according to the disinhibition mech-
anism (Figures 15–4 and 15–5), dendritic inhibition is 
reduced locally in activated pyramidal cells but increased 
in those pyramidal cells not engaged in encoding the shown 
stimulus. ! is mechanism, mediated by CB interneu-
rons, could serve to " lter out distracting stimuli, and it is 
enhanced with a larger dendritic/somatic inhibition ratio 
(Wang et al., 2004). A high dendritic/somatic inhibition 
ratio can be achieved in a working memory circuit be hard-
wired, for example with a large proportion of CB cells in 
PFC. Alternatively, it can also be dynamically controlled 
by neuromodulators such as dopamine. Interestingly, an 
in vitro work suggests that dopamine D1 receptor acti-
vation precisely increases the ratio of dendritic/somatic 
inhibition onto pyramidal cells in PFC (Gao, Wang, & 
Goldman-Rakic, 2003). Using double intracellular record-
ing in PFC slices and morphological reconstruction, it 
was found that bath application of dopamine had a dual 
e$ ect on inhibitory synaptic transmission in a pyramidal 
cell of the PFC. Dopamine was found to reduce the e&  -
cacy of inhibitory synapses onto the perisomatic domains 
of a pyramidal cell, mediated by fast-spiking interneurons, 
whereas it enhanced inhibition at synapses from accommo-
dating or low-threshold spiking interneurons that target 
the dendritic domains of a pyramidal cell (Gao et al., 2003). 
Our model predicts a speci" c function for such a dual dop-
amine action: it could boost the ability of a working mem-
ory network to " lter out behaviorally irrelevant distracting 
stimuli. Our modeling work (Brunel & Wang, 2001), as 
well as brain imaging (Sakai, Rowe, & Passingham, 2002), 
points to a possible physiological basis of the clinical litera-
ture documenting distractibility as a common symptom of 
frontal lobe damage (Fuster, 2008; Goldman-Rakic, 1987; 
Mesulam, 2000).  

  CONCLUDING REMARKS 

 In this chapter, I discussed biophysically based neural mod-
eling that, in concert with experiments, provides a powerful 
tool for investigating the cellular and circuit mechanisms 
of mnemonic persistent activity in delayed response tasks. 
! is approach has been used to assess whether the attrac-
tor model for working memory and decision making can 
be instantiated by biologically plausible mechanisms. 
! eoretical work suggests that slow excitatory reverbera-
tion underlies persistent activity in working memory and 
time integration in decision making. A candidate cellu-
lar substrate is the NMDARs at local recurrent synapses; 
an alternative/complementary scenario involves intrinsic 

 We found that inhibition is also crucial for robust 
working memory despite ongoing sensory % ow. ! is " nd-
ing provides another insight into how dopamine may a$ ect 
prefrontal functions (Brunel & Wang, 2001; Durstewitz, 
Seamans, & Sejnowski, 2000b). It is known that dopamine 
acts on PFC partly through modulation of glutamatergic 
and GABAergic synaptic transmissions (Seamans & Yang, 
2004). 

 Modeling work suggests several ways in which dop-
amine modulation might a$ ect a cognitive circuit func-
tion. First, a relatively small increase by dopamine of 
recurrent connections (while preserving the E-I balance) 
can lead to signi" cant enhancement of the network’s 
resistance against distractors (Brunel & Wang, 2001; 
Durstewitz et al., 2000a). Conversely, mild impairment of 
dopamine signaling in the PFC can result in the behavioral 
distractibility associated with mental disorders such as 
schizophrenia. Second, if dopamine D1 receptor activa-
tion modulates NMDARs with a higher sensitivity in 
pyramidal cells than in inhibitory cells (Muly, Szigeti, & 
Goldman-Rakic, 1998), then too little dopamine might 
imply insu&  cient excitation and too much dopamine 
might lead to excessive inhibition, resulting an inverted 
U-shaped dopamine dependence (Figure 15–10), as 
observed experimentally (see Arnsten et al., 2010, for a 
review). Caution is warranted here, as the actual biological 
mechanism underlying the inverted-U dopamine action is 

 Figure 15–10      Inverted-U dopamine action implemented by differential 
D1 modulation of NMDA conductances in pyramidal neurons and 
interneurons. The state diagram shows that persistent activity is the 
highest in an intermediate range of D1 modulation. Three simulations at 
different levels of D1 modulation, indicated by ! lled circles, are shown 
in the upper panels, demonstrating that too high or too low D1 activation 
would be suboptimal or detrimental to working memory behavior. 
Source: Adapted from Brunel and Wang (2001) with permission.  
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channels and calcium dynamics in single cells. Recurrent 
excitation must be balanced by feedback inhibition, which 
is mediated by several types of GABAergic interneurons. 
We found that inhibitory circuitry plays a key role in stim-
ulus selectivity (similar to that in sensory areas) and net-
work resistance against distracting stimuli (a cardinal 
requirement for robust working memory), as well as in 
winner-take-all competition in decision making. 

 We have con" ned ourselves to models in which work-
ing memory storage is maintained by roughly tonic (con-
stant) spike discharges in a neural assembly across a delay 
period. However, many cortical cells exhibit delay activ-
ity that is not stationary but ramps up or down over time 
(Barak, Tsodyks, & Romo, 2010; Brody, Hern á ndez, 
Zainos, & Romo, 2003; Chafee & Goldman-Rakic, 1998; 
Fuster, 2008). Such ramping activity can conceivably be 
achieved in a two-layer network, in which " rst-layer neu-
rons show tonic delay activity and second-layer neurons 
slowly integrate inputs from the " rst-layer neurons in the 
form of ramping activity (Miller, Brody, Romo, & Wang, 
2003), or it can result from a very slow biophysical process 
such as DSI (Carter & Wang, 2007). Functionally, such 
ramping activity may represent elapsed time during the 
delay period (Brody et al., 2003; Machens, Romo, & Brody, 
2010). Moreover, persistent activity patterns can exhibit 
chaotic dynamics, or occur as a " ring pattern that moves 
from one neural group to another in a circuit (Baeg et al., 
2003). A challenge in the " eld is to understand the hetero-
geneity and temporal variations of mnemonic activity and 
how the speci" city of stored information can be preserved 
in dynamically moving neural activities. It is worth stress-
ing that rich temporal behavior does not necessarily con-
tradict the attractor network paradigm, since an attractor 
state does not have to be a steady state and can be a com-
plex spatiotemporal pattern. ! e more basic question is 
whether there exist multiple stable persistent states (each 
with potentially very complex dynamics) or, alternatively, 
whether there is no multistability and memory traces are 
transient events that can be decoded long a# er stimu-
lus presentation (Ganguli, Huh, & Sompolinsky, 2008; 
Goldman, 2009). 

 Our emphasis on internal representations by no 
means underestimates the importance of processes such as 
action selection. Rather, we propose that PFC does not 
simply send out nonspeci" c “control signals” and that rep-
resentational information is indispensable to processes. As 
it turns out, our model is capable of both working mem-
ory maintenance and decision-making computations. 
! ese results suggest that it may not be a coincidence that 
decision-related neural activity has been found in the same 
cortical areas that also exhibit persistent activity dur-
ing working memory (Gold & Shadlen, 2007; Romo & 
Salinas, 2001; Schall, 2001; Wang, 2008). In our model, 
both working memory and decision making rely on slow 
reverberatory dynamics that gives rise to persistent activity 

and time integration, and inhibitory circuitry that leads 
to selectivity and winner-take-all competition. ! us, we 
are beginning to unravel the microcircuit properties of a 
“cognitive” cortical area (such as PFC in contrast to, say, 
primary visual cortex) that enable it to serve multiple cog-
nitive functions. At a fundamental level, these studies 
point to a uni" ed view of why and how “cognitive” cortical 
area can serve both internal representation (active working 
memory) and processing (decision, action selection, etc.). 

 Microcircuitry is at a level of complexity ideally suited 
for bridging the gap between cognitive network functions 
and the underlying biophysical mechanisms. ! e delicate 
balancing act of recurrent excitation and feedback inhi-
bition is at the heart of the strongly nonlinear dynamics 
that underlies cognitive processes in PFC. In this sense, 
microcircuit neurodynamics provides the critical link 
from molecules to behavior, and ultimately holds the key 
to a theoretical foundation for neuropharmacology and 
molecular psychiatry (Harrison & Weinberger 2005). 
One of the major challenges for future research is to elu-
cidate the di$ erential dynamics, computations, and func-
tions of distinct frontal subregions, and to understand 
how they work together in an interconnected circuit as 
well as with the rest of the brain. Progress in this direction 
at the system level of large-scale brain circuitry with mul-
tiple interacting modules, together with the tremendous 
advances in genome science, will prove to be especially 
promising in the next decade.  
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