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In the mammalian neocortex, an area typically receives inputs

from, and projects to, dozens of other areas. Mechanisms are

needed to flexibly route information to the right place at the

right time, which we term ‘pathway gating’. For instance, a

region in your brain that receives signals from both visual and

auditory pathways may want to ‘gate in’ the visual pathway

while ‘gating out’ the auditory pathway when you try to read a

book surrounded by people in a noisy café. In this review, we

marshall experimental and computational evidence in support

of a circuit mechanism for flexible pathway gating realized by a

disinhibitory motif. Moreover, recent work shows an increasing

preponderance of this disinhibitory motif from sensory areas to

association areas of the mammalian cortex. Pathway input

gating is briefly compared with alternative or complementary

gating mechanisms. Predictions and open questions for future

research on this puzzle about the complex brain system will be

discussed.
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Introduction
Recent years have witnessed substantial progress in the

neuroscience of large-scale brain circuits. Notably, a

series of papers reported high-quality directed and

weighted inter-areal connectivity of cortex in macaque

monkey [1–3] and mouse [4,5]. These datasets provided

an anatomical foundation for the development of compu-

tational models of the global cortical dynamics [6–8].

With this advance, a new set of questions have gained

urgency, one of which is concerned with gating in the

brain. In the mammalian neocortex, an area typically

receives inputs from several dozens of other areas, and

projects to similarly numerous areas downstream.
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Mechanisms are needed to flexibly route information

to the right place at the right time, which we term

‘pathway gating’.

A parallel development in recent years is a dramatic

increase in our knowledge about a diversity of GABAergic

inhibitory neurons in the cortex. Thanks to the availabil-

ity of genetic tools, researchers can label specific subtypes

of GABAergic cells, quantify their molecular fingerprints,

measure their morphological and physiological properties,

record their activity from behaving animals and assess

their functional role by optogenetic manipulations.

Whereas classification of GABAergic interneurons con-

tinues to be refined and debated, a consensus has

emerged with regard to a canonical disinhibitory motif

that involves three non-overlapping subclasses of inter-

neurons, in empirical support of a model prediction [9]. A

first type of parvalbumin (PV) positive interneurons target

perisomatic regions of excitatory pyramidal (P) cells and

control their spiking outputs; a second type of somato-

statin (SST) positive interneurons target pyramidal den-

drites and are in an ideal position to control their inputs; a

third type of interneurons express vasoactive intestinal

peptide (VIP) and preferentially target SST cells. When

VIP neurons are activated, they inhibit SST cells, thereby

disinhibiting pyramidal dendrites. Following the initial

breakthroughs (for a review of the work prior to 2015, see

[10]), our knowledge about these different inhibitory cell

types [11–14], their interactions [15��,16] and their func-

tions in behaving mice [14,17–20,21�,22–25] continue to

grow over the last few years.

Built on the new barrage of experimental data, a compu-

tational model was developed to test the hypothesis that

the canonical disinhibitory motif provides a circuit sub-

strate for pathway gating [26��]. In this short review, we

first summarize recent experimental research on this

canonical disinhibitory motif. Then, we will discuss

requirements and supporting evidence for this circuit

motif to implement pathway gating. Finally, we will

contrast this mechanism with other, potentially compli-

mentary, gating scenarios within cortex and involving

subcortical structures, and suggest open questions for

future research on the dynamical operation and flexible

functions of the cell-type specific large-scale brain systems.

A disinhibitory motif
One of the cognitive functions that depend on input

gating is working memory, the brain’s ability to internally

store and manipulate information in the absence of
Current Opinion in Neurobiology 2018, 49:75–83

mailto:xjwang@nyu.edu
http://dx.doi.org/10.1016/j.conb.2018.01.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.conb.2018.01.002&domain=pdf
http://www.sciencedirect.com/science/journal/09594388


76 Neurobiology of behavior

Figure 1

(a)

(c)

(b)

STC: perisoma-targeting cell (PV)
DTC: peridendrite-targeting cell (SST/CB)
ITC: interneuron-targeting cell (VIP/CR)
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A disinhibitory circuit motif. (a) A neural circuit model for working memory with three types of inhibitory neurons, that is perisoma targeting,

peridendrite-targeting, and interneuron-targeting neurons. Dendrite-targeting inhibitory neurons (blue) control the resistance to distractors (adapted

from [9]). (b) The circuit diagram of PV, CB, and CR neurons. The connection probabilities between different types of neurons are measured in

inferior temporal cortex of macaque monkey (adapted from [32]). (c) Number of CR, CB, and PV neurons in three subregions of the macaque

monkey prefrontal cortex, showing that PV are not predominant among the three interneuron types in the prefrontal cortex (adapted from [33]).
sensory stimulation. A cardinal requirement for a working

memory circuit to function properly is that only behav-

ioral relevant stimuli are ‘gated in’ while irrelevant dis-

tractors are filtered out and ignored. Computational con-

siderations of this problem have led to the publication, in

2004, of a biologically based local circuit model endowed

with three subtypes of inhibitory neurons (Figure 1a) [9].

The model was inspired by three lines of anatomical

evidence. First, a subpopulation of GABAergic cells

labeled by VIP or calcium-binding protein calretinin

(CR) preferentially target other interneurons rather than

pyramidal cells in the hippocampus [27], as well as

neocortex of rodents [28,29] and monkeys [30–32]. Sec-

ond, statistically, VIP and CR cells preferentially target

dendrite-targeting inhibitory neurons expressing calbin-

din (CB) or SST, rather than PV cells (Figure 1b) [32].

Third, unlike primary sensory areas where PV cells are

the majority of GABAergic neurons, CB and CR inter-

neurons are predominant in the prefrontal cortex which

plays a central role in working memory (Figure 1c) [33].

The model has several predictions. In particular, den-

drite-targeting interneurons should have a significant

spontaneous activity, which was later supported by
Current Opinion in Neurobiology 2018, 49:75–83 
empirical data [34]. Moreover, these cells display an

‘inverted tuning’, that is a decrease in activity for specific

stimulus features, which was found in single-unit record-

ing from behaving monkeys [9]. More direct support

came recently in a mice experiment showing that activa-

tion of VIP or SST neurons of dorsomedial frontal cortex,

respectively enhanced or impaired working memory

retention and behavioral performance [25].

Although the theoretical proposal of a disinhibitory micro-

circuit motif was originally motivated by the need of

gating for a working memory network, the local circuit

organization (Figure 1a) is in principle general for all

cortical areas. Note that it appears that PV, CB and CR

positive interneurons do not have significant overlap in

macaque monkey; whereas the overlaps are more sub-

stantial in mice, for which PV, SST and VIP are better

markers of non-overlapping interneuron subpopulations.

Importantly, Wang et al. explicitly stated that ‘We empha-

size that the three interneuron types in our model should

be more appropriately interpreted according to their

synaptic targets rather than calcium-binding protein

expressions’ [9].
www.sciencedirect.com
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With the invention of genetic labeling and optogenetic

tools, an avalanche of papers have been published in

recent years, demonstrating this disinhibitory motif in

various cortical areas of mouse cortex [35–38]. In layer 2/3

of primary somatosensory cortex of behaving animals,

onset of locomotion is correlated with an increase of

activity in both pyramidal cells and VIP interneurons,

concomitantly with a decrease of activity in SST cells

[37]. This observation can be explained by the disinhi-

bitory motif, which was rigorously established for the

same circuit by intracellular recording from pairs of neu-

rons in vitro [35]. Similar concurrent changes of activity in

pyramidal cells, SST and VIP cells are observed in

primary visual cortex [38] and medial frontal cortex

[36] of awake behaving mice.

In a recurrent system where multiple cell types interact

with each other, the collective behavior depends on

many factors, including their baseline states and the

strengths of their interconnectivity. In particular, the

disinhibitory circuit may behave in counterintuitive

ways. Recently, Pakan et al. and Dipoppa et al.
[21�,39] reported that, as mice made a transition from

rest to movement, SST cells in L2/3 of V1 showed an

increase of activity, instead of a previously reported

decrease [38]. This apparent inconsistency can be

explained computationally by synaptic interactions

between multiple neural populations and a nonlinear

neuronal input-output relationship [40]. Therefore, in

the same disinhibitory circuit, behavioral modulation of

SST neural activity may change the sign depending on

the circuit state. In contrast to L2/3, activity of SST cells

in the deep layers of somatosensory cortex increases

rather than decreases when mice started whisking, which

could arise from laminar differences in the strength of

VIP to SST projections, among other factors [24]. A

notable recent work along these lines was that of Jiang

et al. [15��,41,42], where connections between different

cell types were assessed physiologically with simulta-

neous intracellular recording from up to 8 neurons in

slices of mouse V1. Layers within a local circuit may

show markedly different properties thus operate in dis-

tinct dynamical regimes.

Another important aspect of the disinhibitory motif is

concerned with the input signals. Within a cortical area,

long-range clustered horizontal connections from pyrami-

dal cells target SST cells [43], contributing to surround

suppression [43,44]. In addition, PV, SST and VIP inter-

neurons are all targets of long-distance cortico-cortical

projections [45�], but finer grained differences remain to

be elucidated. Particularly interesting is empirical evi-

dence that top-down excitation of VIP interneurons con-

tributes to attention induced amplification of neural

responses in sensory areas [46]. Finally, variations may

exist across different cortical areas, we will come back to

this point in a later section.
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The dendritic disinhibitory gating hypothesis
Whereas the disinhibitory motif has been proposed as a

gating mechanism for working memory [9] or attention

[47], can it also implement pathway routing of informa-

tion in a multi-regional brain system? Consider a cortical

area that receives inputs from multiple areas upstream,

and assume that these cortico-cortical long-distance pro-

jections target overlapping pyramidal neurons so that any

individual cell is the recipient of inputs from multiple

pathways. In order for the disinhibitory motif to realize

pathway gating, the following four requirements need to

be fulfilled.

First, dendritic responses need to be nonlinear so that

dendritic inhibition mediated by SST cells and its sup-

pression would have a strong impact. This is supported by

ample evidence of NMDA and calcium spikes in pyra-

midal dendrites that ‘is tightly controlled by local micro-

circuits of inhibitory neurons targeting subcellular

compartments’ [48]. Second, for a given target pyramidal

cell, synaptic inputs from different pathways must be

segregated onto different parts of its dendritic tree, con-

sistent with recent findings of synapse clustering in

sensory and motor cortices [49,50]. Wilson et al. [50]

showed that synapses with similar orientation tunings

tend to cluster onto the same dendrites, and this cluster-

ing is important for explaining orientation selectivity

observed in V1. Although direct experimental evidence

supporting synaptic clustering of different pathways is

still lacking, it is not difficult to imagine the principle of

synaptic clustering being extended from sensory and

motor areas to association areas, and from feature-speci-

ficity to pathway-specificity. Third, dendrite-targeting

interneurons should be able to exert selective control

over individual dendritic branches. Cichon and Gan [51��]
observed that different motor tasks induced neural activ-

ities on different dendritic branches of pyramidal neurons

in the motor cortex, and inactivating SST neurons drasti-

cally reduced the branch-specificity in dendritic activity.

This work strongly suggests that SST neurons can pro-

vide branch-specific inhibition onto dendrites of pyrami-

dal neurons. Fourth and finally, there need to be an

alignment between the clustering of long-range synaptic

inputs from different pathways and the branch-specific

disinhibition. In order to selectively open the gate for one

pathway, dendrites targeted by that pathway need to be

disinhibited, while other dendrites remain inhibited.

In a computational work, Yang et al. [26��] showed that all

four requirements can be fulfilled with minimal assump-

tions about the underlying neural circuity (Figure 2).

Surprisingly, this model revealed that to achieve

branch-specific disinhibition, it is unnecessary to assume

tailored connections from SST neurons to pyramidal

neurons and from VIP to SST interneurons. Even random

connectivity between them, together with random acti-

vation/deactivation of SST neurons, suffice to provide
Current Opinion in Neurobiology 2018, 49:75–83
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Figure 2
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A disinhibitory circuit motif for pathway gating. (a) The disinhibitory circuit diagram with PV, SST, and VIP neurons. (b) An area receives

converging inputs from visual and auditory pathways. The control input selectively opens the gate for one pathway. (c) To open the gate for the

visual pathway, the control input can target a subset of VIP and SST neurons, leading to disinhibition of dendrites targeted by the visual pathway.

Adapted from [26��].
branch-specific inhibition/disinhibition. The core intui-

tion is that, compared to the dense neuron-to-neuron

connectivity [52], the connectivity from SST neurons

to dendrites of pyramidal neurons is much sparser, due

to the large number of thin dendritic branches per neuron.

This sparse neuron-to-dendrite connectivity easily allows

for branch-specific disinhibition over the dendritic tree.

The alignment between excitation and disinhibition can

also arise naturally through synaptic plasticity, because

excitatory synapses targeting disinhibited thus depolar-

ized branches tend to get strengthened, whereas those

targeting hyperpolarized branches are depressed. In sup-

port of this idea, a recent work showed that dendritic

disinhibition is crucial for synaptic potentiation in vivo
[53]. In addition, the connections from SST neurons to

dendrites are subject to inhibitory plasticity [54] that can

continue to improve SST neurons’ control over individual

dendritic branches.

Besides being a plausible mechanism for pathway gating,

dendritic disinhibition could also be computationally

favorable compared to a dendritic excitatory mechanism.

When gating is implemented with excitation, the latter

depolarizes the dendritic membrane thus reduces its

dynamic range for information specific responses. In

contrast, with a disinhibitory gating mechanism, den-

drites are inhibited in the default state, allowing for a

wider dynamic range from hyperpolarization to depolar-

ization. Another advantage of dendritic disinhibition is

that it is permissive. Disinhibition cannot activate den-

drites by itself. However, if gating is implemented with
Current Opinion in Neurobiology 2018, 49:75–83 
direct dendritic (or somatic) excitation, the control

inputs could get overly strong, leading to spurious

responses.

Inasmuch as the disinhibitory motif offers a mechanism

for pathway gating, it follows that cortical areas with a

greater need of input gating should be endowed with

more inhibitory neurons dedicated to such a disinhibi-

tory motif. Frontal and association cortices receive con-

verging inputs from many different pathways in com-

parison to primary sensory or motor areas, therefore

these areas may need a larger repertoire of dendrite-

targeting interneurons to selectively gate inputs from

different pathways. Anatomical data from monkeys

hinted that dendrite-targeting interneurons are more

prevalent in prefrontal cortices [33]. The dominance

of SST neurons in mouse association and prefrontal

cortices is recently established by Kim et al. [55��],
who measured the number of PV, SST, and VIP neurons

in individual areas throughout the whole mouse brain.

Remarkably, they found that there is a more than 7-

times change in the balance between SST and PV

neurons across the cortex (Figure 3). In primary somato-

sensory and motor cortices, SST neurons are less abun-

dant than PV neurons. However, in higher-order cortical

areas, like the prelimbic area, there are 3 to 5 times more

SST neurons than PV neurons.

Taken together, a strong case can be made that the

disinhibitory motif provides a plausible circuit substrate

within the cortex for routing information flow.
www.sciencedirect.com
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Figure 3
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A cortical hierarchy based on SST/PV cell density ratio. Mouse cortical areas are ranked by the ratio between their PV and SST cell densities.

Primary somatosensory areas are abundant in PV neurons, while prefrontal areas are dominated by SST neurons (adapted from [55��]). The color

code indicates the cortical subnetwork each area belongs to [5].
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Figure 4
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Various mechanisms for information gating in the brain. Input gating can be achieved by dendrite-targeting interneurons that selectively control

inputs to pyramidal dendrites. In the synchronous gating mechanism, communication between two areas depends on the degree of temporal

synchrony of neural activity between the source and target areas. Recurrent gating mechanism involves selective integration of inputs based on

context-dependent dynamics of the network. Output gating is instantiated with perisoma-targeting interneurons that specifically inhibit pyramidal

neurons projecting to one pathway but not others. Gating may also involve subcortical structures, especially basal ganglia and thalamus.
Other gating mechanisms
The current short review focuses on input gating by a

disinhibitory motif. There are alternative and/or comple-

mentary, gating mechanisms in the brain (Figure 4). One

possibility is that excitatory-inhibitory synaptic balance

prevents input from entering a cortical area thus must be

broken to enable ‘gate in’ [56]; another is that synchrony

is required whereas asynchronous inputs are ‘gated out’

[57–59]. In contrast to input gating, a different scenario

involves output gating. In a recent paper [60�], the authors

conducted an anatomical analysis in the mice prelimbic

cortex focusing on chandelier cells which selectively

target the initial segment of axons of pyramidal cells

where action potentials are generated. They found that

a subset of chandelier cells specifically target pyramidal

cells projecting to amygdala while avoiding pyramidal

cells projecting to the contralateral side of the same

cortical area. Furthermore, these chandelier cells receive

differential inputs from the two populations of excitatory

neurons, therefore can be selectively activated, which

would lead to suppression of output from the prelimbic

area to one downstream area but not another. Such an

output gating mechanism would require not only
Current Opinion in Neurobiology 2018, 49:75–83 
different groups of chandelier cells dedicated to different

output pathways, but also that principal neurons dedi-

cated to different projection pathways are largely non-

overlapping. With the advance of cell-type specific con-

nectivity analysis, new information is expected in the

coming years that will support or disapprove such output

gating proposal.

In addition to input-gating and output-gating, it is con-

ceivable that recurrent dynamics within a local circuit can

selectively process information from one pathway but not

the other. This was proposed in a study combining

computational modeling and neurophysiology, in which

monkeys were trained to make a decision based on either

color or direction of a colored visual motion stimulus [61].

In each behavioral trial, the relevant feature, color or

direction, is indicated by a rule cue. The authors’ analysis

suggested that the rule cue input yields a ‘selection

vector’ to guide time integration of the relevant feature

but not the irrelevant one in a recurrent network. Yang

et al. [26��] showed that the same task can be accom-

plished with moderate input gating by the disinhibitory

motif mechanism. In principle, recurrent network
www.sciencedirect.com
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dynamic can work cooperatively with input and output

gating.

Finally, gating in the brain more than likely engages

subcortical structures as well, including the thalamus

[62], and basal ganglia [63,64]. Their experimental support

at the circuit level remains lacking and could be an

interesting direction for future research. Moreover, it is

worth keeping in mind that there are several kinds of

gating in the brain. For instance selective attention to a

spatial location but not other locations represent a form of

gating within the same pathway, which is different from

pathway gating. Distinct gating mechanisms may be suit-

able for various forms of information routing in the brain.

Concluding remarks
The complexity of inhibitory cells, which Cajal called

‘butterflies of the soul’, continues to fascinate neuroscien-

tists. Transcriptome analysis promises to systematically

define subclasses of inhibitory interneurons [12,65��]. It

may also be proven as a powerful tool to understand area-

to-area variations. Even among sensory areas, locomotion

induces an enhancement of excitatory neurons in primary

visual cortex [38] and somatosensory cortex [37], but

suppression in primary auditory cortex [66,67]. This find-

ing highlights the idea that quantitative differences in a

canonical disinhibitory motif could give rise to distinct

dynamical operation regimes. As shown by the work of

Kim et al. [55��], there are marked differences between

early sensory areas and association areas. This macro-

scopic gradient may have evolved to accommodate vary-

ing degrees of functional needs for input control across

the brain’s hierarchy, the computational and functional

implications await to be elucidated.

The disinhibitory motif model has several testable pre-

dictions. In particular, it suggests that cognitive control

signals, such as those representing behavioral rule or

context, act through targeting specific subclasses of inhibi-

tory neurons like VIP-expressing and SST-expressing

interneurons, rather than pyramidal cells. Although

research results summarized above present a strong case

that the disinhibitory motif offers a circuit mechanism for

pathway gating, a direct test of this theoretical prediction

requires that, in future experiments, cell-type specific

neurophysiology and manipulation be carried out in ani-

mals performing tasks that depend on flexible routing of

information in the cortex. Decisive progress in this area

will not only shed insights into this major puzzle, but also

into related deficits associated with psychiatric illness [68].
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