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Neural dynamics and circuit mechanisms of decision-making
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In this review, I briefly summarize current neurobiological

studies of decision-making that bear on two general themes.

The first focuses on the nature of neural representation and

dynamics in a decision circuit. Experimental and computational

results suggest that ramping-to-threshold in the temporal

domain and trajectory of population activity in the state space

represent a duality of perspectives on a decision process.

Moreover, a decision circuit can display several different

dynamical regimes, such as the ramping mode and the jumping

mode with distinct defining properties. The second is

concerned with the relationship between biologically-based

mechanistic models and normative-type models. A fruitful

interplay between experiments and these models at different

levels of abstraction have enabled investigators to pose

increasingly refined questions and gain new insights into the

neural basis of decision-making. In particular, recent work on

multi-alternative decisions suggests that deviations from

rational models of choice behavior can be explained by

established neural mechanisms.
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Introduction
David Marr, a pioneer in Computational Neuroscience

who died at the young age of 35 in 1980, is mostly

remembered today for his three-step recipe of brain

modeling [49]: first, formulate the problem and identify

its normative solution (the way it should be, optimally).

Second, search for computational algorithms that accom-

plish the optimal solution and, third, elucidate imple-

mentations of such algorithm(s) in the brain. Yet, it would

do Marr injustice to forget his deep roots in neurobiology

(and his seminal trilogy of papers on the theories of

cerebellum, hippocampus and neocortex). Francis Crick,

who interacted extensively with Marr, reminisced in
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1991: ‘‘David’s work clearly falls into two phases: Marr I
was concerned with neural circuitry and what it might compute.
Marr II (the AI phase) was more functional. The emphasis was
on the theory of the process and possible algorithms, with much
less attention to realistic implementations. I believe that if he had
lived he would have moved to a synthesis of these two
approaches.’’ [19]. The relationship and interplay between

the question of ‘how’ (Marr I) versus the question of ‘why’

(Marr II) of brain functions continues to be a subject of

epistemological discussions in Neuroscience today [11].

With the tremendous advances in neuroscience, time is

ripe to go back and forth between different levels of

Marr’s hierarchy: behavior, computational algorithm and

neural circuit mechanism. Recent research on the neural

basis of decision-making offers an illustration of this

perspective par excellence, as reviewed here.

Interplay between normative theory and
neural circuit mechanism
Modern neurobiological studies of decision-making took

off around the turn of this century. On perceptual

decision-making, pioneering work was done using a ran-

dom-dots motion (RDM) direction discrimination task. In

this task, subjects are trained to make a judgment about

the direction of motion (e.g. left or right) in a near-

threshold random dot display, and to report the perceived

direction with a saccadic eye movement. Neurophysio-

logical studies of behaving monkeys showed stochastic

activity of single neurons in the posterior parietal cortex

[67,68,65,13�] and prefrontal cortex [39] that were corre-

lated with the subject’s judgment. Around the same time,

neuroscientists began to examine valuation underlying

reward-based choice behavior [57,63,71,3,24]. Around the

same time, in a seemingly unrelated effort, computational

neuroscientists were developing increasingly realistic

models of neural persistent activity as a brain mechanism

for working memory (active short-term memory). Biologi-

cally realistic synaptic circuit modeling revealed that a

working memory system should not operate as fast

switches (between a resting state and memory states);

instead, recurrent synaptic excitation underlying self-

sustained persistent activity needs to be slow [75]. It

was soon recognized that this slow reverberation mechan-

ism is precisely what is needed for decision-making

computations, because a deliberate decision requires a

temporal accumulation of evidence for or against differ-

ent choice options (via slow transients), ultimately lead-

ing to a categorical choice (through attractor dynamics)

[76]. The proposal of a common mechanism for decision-

making and working memory is supported by physiologi-

cal observations that single-neuron activity signals
n-making, Curr Opin Neurobiol (2012), http://dx.doi.org/10.1016/j.conb.2012.08.006
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correlated with both processes are found in the same brain

regions such as the prefrontal and parietal cortices [30,77]

and by a recent human study showing that disruption

(using transcranial magnetic stimulation) of the prefrontal

cortex (known to be important for working memory)

causally affected decision making [62]. Over the

past ten years, recurrent network models (RNMs) have

been elaborated and extensively applied by compu-

tational and cognitive neuroscientists to perceptual de-

cisions [76,48,78,42,20,22,79,27��,41�,23,77,81,9,53�,25�],
action selection [44] and value-based choice behavior

[70,36�,6��].

The idea of temporal accumulation of evidence through

sequential analysis in decision-making has a long history

in cognitive psychology. According to the drift diffusion

model (DDM) [47,69], a ‘decision variable’ integrates

relative evidence for two alternative choices (A and B),

a decision is made when the decision variable reaches

either a positive (for alternative A) or negative (for

alternative B) threshold. DDM has proven to be quite

successful with accounting for behavioral data [47,69],

and more recent monkey’s accuracy and reaction time in

the RDM task [65,30]. DDM can be considered as a

normative theory, since it is the continuous-time equiv-

alent of the sequential probability-ratio test (SPRT),

which is the optimal procedure for making binary choices

under uncertainty in the sense that it minimizes the mean

decision time among all tests for a given error rate [10,7].

How does RNM compare with DDM? First, they are at

two quite different levels of abstraction. DDM assumes

an infinite integration time; whereas RNM strives to

identify biological mechanisms for a long but finite integ-

ration time. A plausible neural basis of a long integration

time is the NMDA receptor dependent recurrent synaptic

excitation. This model prediction remains to be tested

experimentally. It has also been proposed that neural

integrators could be realized with an appropriate network

architecture devoid of recurrent connections [31]. Sec-

ond, the functional benefit of time integration was

demonstrated in the model by showing that performance

improves when the system is allowed to integrate inputs

over a longer time, but eventually plateaus with suffi-

ciently long integration as the system reaches an attractor

state representing a categorical choice [76]. This predic-

tion was confirmed in a recent monkey experiment [38].

Third, whereas in DDM evidence shown at different

time points has equal weight, RNM asserts that evidence

available early on has a larger impact on the ultimate

choice than evidence presented later and immediately

before a decision is made. This RNM prediction was

supported in an experiment where a brief pulse of sensory

information was introduced at different time points

[35,79]. However, in more general situations when sen-

sory evidence or attention varies continuously in time,

information provided a long time ago may be forgotten,
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and a commitment may be reversed in the face of newly

presented evidence [64]. The biological basis and

possible fundamental limitation of integration time in

decision-making remain an outstanding subject of future

research.

In RNM, categorical formation is realized by attractor

dynamics that depend on feedback inhibition. This dif-

fers from an implementation of DDM in which feedfor-

ward inhibition implements an explicit neural

computation of the difference in the sensory inputs

[50]. Monkey experiments provided evidence for both

feedback inhibition [32] and feedforward inhibition [8].

Note that it is empirically unknown whether accumu-

lation of evidence and formation of a categorical choice

take place in a single neural circuit. Alternatively, these

two computations may proceed sequentially in distinct

brain areas, or simultaneously through cooperative and

distributed dynamics across multiple brain areas [17].

Accumulation-to-threshold in time and
population dynamics in state space
RNM can be viewed in two different ways. One can plot

neural activity of neural pools (each selective for a particu-

lar choice) as a function of time (Figure 1a, b), and a

threshold can be introduced for the termination of a

decision process (Figure 1a). Alternatively, one can por-

tray the dynamics of a decision circuit in the state space,

where the firing rates of neural pools selective for differ-

ent options are plotted against each other (Figure 1c).

According to this view, different choices are represented

by distinct ‘attractor’ states. The mathematical term

‘attractor’ simply means a dynamical system state is stable

against small perturbations. An attractor does not have to

be a steady state but can be a complex spatiotemporal

pattern. Furthermore, a system’s attractor landscape is not

rigidly fixed; any relatively sustained input (an external

stimulus or top-down cognitive control signal) readily

alters the attractor landscape in the state space, as shown

in Figure 1c (middle and right panels).

The state space framework puts the emphasis on popu-

lation dynamics rather than single neurons. It offers

natural explanations for observations that cannot be

readily explained by the pure DDM: time integration

has a limit because eventually the system reaches an

attractor state when ramping stops; a brief pulse of

evidence has a stronger impact on the ultimate choice

early on when the system is still in the vicinity of the

boundary between the basins of choice attractor states

(Figure 1c, middle and right panels); reaction times are

longer in error trials because a wrong choice means that

the system has to pass by a saddle point where the

dynamics is dramatically slower (Figure 1c, middle

panel). Finally, according to this population dynamics

view, the decision is made as long as the system has gone

into the basin of a choice attractor state far enough, even
n-making, Curr Opin Neurobiol (2012), http://dx.doi.org/10.1016/j.conb.2012.08.006
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Figure 1
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Ramping-to-threshold and population dynamics of decision-making. (a) Stochastic ramping activity to a threshold (dashed line) in a RNM (three

sample trials are shown). (b) Two neural populations selective for different choices display graded ramping followed by winner-take-all competition, in

a simulation of motion direction discrimination task where the task difficulty is quantified by motion coherence c0. (c) The population dynamics of a

RNM is displayed in the state space of firing rates rA and rB. Without external input (left panel), in the presence of a motion stimulus with a low (middle

panel) or high (right panel) coherence. Note that the attractor landscape sensitively depends on the input (middle versus right panel). (d) Population

dynamics of �65 cells recorded from the posterior parietal cortex in mice performing a virtual-navigation decision task. Trajectories are choice specific

(red: right choice trials, blue: left choice trials). Left panel: Sample trial trajectories in correct trials. Middle and Right panels: individual trial trajectories

(gray and black) on erroneous right choice and left choice trials, plotted with the mean trajectories for correct right (red) and left (blue) choice trials.

Adapted from [76] for (b), from [77] for (c) and from [33] for (d).
though the neural firing rate may not have yet attained a

threshold level. Biologically, the notion of decision

threshold should be understood as the firing level of

decision neurons that is required for triggering a
Please cite this article in press as: Wang X-J. Neural dynamics and circuit mechanisms of decisio
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switch-like response in downstream premotor neurons

[42]. Consistent with this perspective is the common

observation that, in a visual search task, behavioral reac-

tion time co-varies with the time it takes for the firing
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rates of competing visually responsive neurons to signifi-

cantly diverge from each other, rather than to reach a fixed

threshold level, in FEF [66,80,18,34], SC [52] and LIP

[37,73,2].

A recent paper provided remarkable support for the popu-

lation dynamics perspective. Harvey et al. [33��] recorded

�65 (ranging 37–94) single neurons in the parietal cortex

(using calcium imaging) from behaving mice. In a virtual-

navigation decision task, animals were shown a cue indi-

cating, after a delay period, which of two turns (left or right)

was correct choice and yielded a reward on a given trial. It

was reported that dynamical trajectory in the recorded

population’s state space is well separated for two alterna-

tive choices (Figure 1d, left panel). Moreover, in error

trials, the animal’s choice decoded from the population

activity often started along the path of the correct choice

but later somehow veered to be aligned with the path of the

erroneous choice (Figure 1d, gray traces in middle and right

panels). Another line of recent work, using simultaneous

electrical recording from multiple single neurons, suggests

that the population dynamics framework also applies to the

motor system [15,16].

Ramping mode versus jumping mode
In most experiments a spike train of a single neuron is

recorded at a time, which is often too irregular for inves-

tigators to ascertain that its underlying firing rate actually

climbs smoothly and quasi-linearly over time (the ramp-

ing mode). Alternatively, a neuron may display a discrete

jump of firing rate at a time that varies from trial to trial, so

that the trial-averaged firing rate shows a graded time

course (the jumping mode). In one realization of the

jumping mode, single neurons are endowed with bist-

ability, for instance thanks to the presence of a calcium-

activated inward current [75,72,26,61]. If neurons switch

from one state to the other randomly, approximately at a

constant rate, then the trial-average of a single neuron (or

the population average in a single trial) would exhibit a

graded rate change [61,60�]. Another scenario does not

require single neurons to be bistable, but a recurrent

network may switch from a low spontaneous state to a

high choice state [21,23,28,43,53�]. In other words, the

resting state of RNM (in the left panel of Figure 1c) may

be still present in the presence of stimulation (Figure 1c,

middle and right panels). The system remains at that state

for sometime until noise eventually induces a transition

from it to one of the choice attractor states, which is

reflected in the temporal domain as a jump in the firing

rate of decision neurons. This noise-induced stochastic

event takes place at random times in different trials,

resulting in a trial-average that may appear to a graded

ramping time course [55,61,53�].

Notably, in the jumping mode, without noise the system

would remain in the resting state, therefore fluctuations

are required for decision making. A poorly understood
Please cite this article in press as: Wang X-J. Neural dynamics and circuit mechanisms of decisio
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issue is the sources of noise or stochasticity in a decision

process. Perceptual decisions (identification, discrimi-

nation, etc.) are often hard because sensory information

is noisy, and integration of sensory data over time is

computationally desirable because it improves signal-

to-noise ratio [47,30,5]. However, there is also stochasti-

city intrinsic to a decision circuit, and the Fano factor (the

ratio of the variance versus mean of spike counts) of

neural integrators may itself increase over time

[54,14�]. This is likely to be generally true for neural

circuits involved in both perceptual decisions and value-

based choices, and stochastic neural dynamics of decision

systems may play a critical role in indeterminacy of

decision behavior [29,77].

One possible way to differentiate contrasting models is to

analyze not only the mean firing rate but also the time

course of the variance of firing rates [14�]; future theor-

etical work is needed to quantitatively assess differential

dynamics of neural variability for the ramping mode and

the jumping mode. Furthermore, new methods to sim-

ultaneous recording from many neurons [15,33��] will

enable investigators to assess whether multiple cells dis-

play any synchronous switch, as predicted by the jumping

mode of RNM. On the theory side, how the distribution

of jumping times is determined by network properties

remains to be clarified.

Neural mechanistic explanation of deviations
from rational behavior
Often times what constitutes optimality for a given

decision task is unclear. Whereas SPRT is optimal for

two-alternative forced choice tasks, optimal tests for three

or more options are not known. Several ways have been

proposed to generalize DDM to multi-alternatives

[51,58,13�,40�], one of them is shown in Figure 2a.

RNM generalized to multi-alternative decision-making

[74,27��,1] typically assumes competition between neural

pools with shared inhibition (Figure 2b). This model fits

well with human’s performance data from a 3-choice

RDM direction discrimination experiment [58]

(Figure 1c, left panel). The decision behavior of a

three-choice version of the attractor network model can

be well described by a softmax function, P(1) = exp(sV1)/

(exp(sV1) + exp(sV2) + exp(sV3)), where V1, V2 and V3 are

the values or strengths of evidence for the three options,

and s is a parameter that quantifies the amount of

stochasticity (Figure 1c, left and right panels).

One prediction of the softmax decision criterion is that

the relative probability of choosing one of two options

(say 1 and 2), P(1 j 1 + 2) = P(1)/(P(1) + P(2)), is indepen-

dent of the strength of the third option V3. This prediction

has been shown to be contradicted in economic choice

behavior in a surprising way. In an experiment using both

monkeys and humans, three choice options were associ-

ated with different reward values (1: best, 2: second best,
n-making, Curr Opin Neurobiol (2012), http://dx.doi.org/10.1016/j.conb.2012.08.006
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Figure 2
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Three-choice decision-making. (a) A proposed generalization of DDM to three-choice. Adapted from [58] with permission. (b) RNM for multiple choice.

(c) Left panel: Probability of choosing option 1 as a function of the motion coherence in the direction 1. Filled circles: data from three human subjects of

the experiment [58] (filled circles); open circles: simulation results of a 3-choice RNM (b); solid curves: best fit of model simulations with a softmax

function. Different colors correspond to different pairs of motion coherence levels for options 2 and 3 (blue: 0 and 0, green: 10/10, yellow: 15/5, red: 20/

20, black: 25/15). Right panel: Performance data from RNM simulations are plotted against those predicted by the softmax function. Model simulations

were carried out by Nathaniel Smith. These results need to be confirmed in future studies. (d) In a value-based choice task [45�], 3 options are offered

in the order of values (1: best, 2: second best, 3: worst). According to normative decision theory, option 3 should be irrelevant and changing its value

should not influence the relative probability of choosing option 1 among the first two options P(1)/(P(1) + P(2)). In contrast to this ideal optimality, in the

monkey experiment a higher value for option 3 reduces the relative probability for choosing the best of the two better options, which is inconsistent

with the softmax decision criterion. Figure kindly provided by K. Louie and P. Glimcher. (e) Similar finding as in (d) in another monkey experiment, when

medial orbitofrontal cortex was lesioned.Adapted from [59�] with permission.
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3: worst) [45�], K Louie and P Glimcher, personal com-

munication]. The third option has a lower value than both

the first and second options, thus is irrelevant and should be

ignored. Yet, when the value for the worst option 3 was

increased (while remaining lower than those for options 1

and 2), subjects reduced the relative probability for choos-

ing the best of the two better options, contrary to normative

models of rational behavior (Figure 2d). Similar findings

were reported in another monkey experiment, but only

when the medial orbitofrontal cortex was lesioned

(Figure 2e) [59�]. These findings highlight the context

dependence of neural representation of values [46].

Interestingly, deviations from rational behavior in the

monkey experiment of [45�], K Louie and P Glimcher,

personal communication] can be concisely accounted for

with the assumption that neural circuit is endowed with

divisive normalization, namely the activity of a neuron is

divided by the sum of activities of all neurons in the

circuit; by virtue of normalization neural firing rates are

correlated with the relative rather than absolute action

values action values (K Louie and P Glimcher, personal

communication). Divisive normalization has been widely

observed in a number of cortical circuits [12], and has

recently been suggested to play a useful role in decision-

making [4,46,56]. Therefore, this combined approach

using monkey behavior, physiology and model demon-

strated how a neural circuit mechanism predicts robust

behavioral trends that are not anticipated nor easily

explained by optimality-based normative theories.

Further studies will clarify several important issues. First,

it remains to be seen why this deviation from rational

behavior was found in normal subjects in one experiment,

yet only in animals with damaged brain in another exper-

iment. Second, the above reasoning assumes that the

parameter s controlling stochasticity remains the same

when the value of the third option is varied. However, s
may not be fixed, because an increased value for options

other than the best ones renders the situation less certain,

as a result the decision process might become more

stochastic (characterized by a larger s). It would be

interesting to design new experimental manipulations

to test directly these two contrasting scenarios. Third,

although RNM simulations are consistent with behavioral

data from a 3-choice perceptual decision experiment

(Figure 2c), additional data are needed to assess whether

the third option with the lowest motion coherence does

not affect the relative decisions between the other two

options, as predicted by the softmax decision rule. New

experiments will probe into the possibility that percep-

tual decisions conform to rational theory of decision-

making (at least in well trained animals) whereas

value-based choices are more prone to seemingly

irrational behavioral effects which nevertheless can be

explained by established neural computations such as

normalization.
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Conclusions
In this short review I focused on two themes of recent

neurobiological studies of decision-making. One is the

nature of neural decision dynamics. There are two comp-

lementary perspectives of a decision process: ramping-to-

threshold in the temporal domain and population

dynamics in the state space. Moreover, according to

RNM, the same model (with modest variations of

parameters) can display several different dynamical

regimes such as the ramping mode and the jumping

mode, suggesting that they could occur in different local

circuits of the brain or under different conditions in a

single brain area. New experimental approaches such as

measurements and analysis of simultaneously recorded

single neurons will shed new insights into these issues in

the coming years. The second theme is the relationship

between normative theories and neural circuit mechan-

isms. The fruitful interplay between RNM and DDM has

shown that research in the field would greatly benefit

from cross-talk between theories of models at different

levels of abstraction, in close interaction with exper-

iments. Epistemologically, neural circuit mechanisms

should be not viewed as mere implementations of nor-

mative principles, but can provide a principled expla-

nation of irrational choice effects observed in humans and

nonhuman animals, as illustrated by recent findings with

3-choice experiments. Future research that integrates

across cognitive, computational, and circuit levels will

be especially promising in our quest to understand the

neurobiology of decision behavior.
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