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Oscillatory and Bursting Properties of Neurons

Xiao-Jing Wang and John Rinzel

Introduction

Rhythmicity is a common feature of temporal organization in
neuronal firing patterns. Historically, when recordings from
isolated nerves became possible in the 1930s, systematic study
of repetitive firing behaviors ensued. Arvanitaki (1939) and
Hodgkin (1948) identified three categories of crustacean axons
by their rhythmic discharge patterns: those that fire repetitively
over a wide (I) or narrow (II) range of frequencies and those
whose firing hardly repeats (III). Later, Arvanitaki also pio-
neered the Aplysia preparation and discovered bursting oscilla-
tions where impulse clusters occur periodically, separated by
phases of quiescence.

Since then, many other stereotypical single-neuron patterns,
including a fascinating variety of endogensous oscillations,
have been tdentified (Llinas, 1988; Connors and Gutnick, 1990).
One wonders anew about categorizing neuronal firing modes
and the criteria on which to base such a classification. Hodgkin
and Huxley (1952) showed that many spiking properties can be
explained in terms of various active ionic currents across the
cell membrane. Today, many types of ion channels are known
(see Ton CHANNELS: KEYS TO NEURONAL SPECIALIZATION), and
some specific neuronal rhythms have been linked to selected
subsets of channels. However, membrane potential oscillations
with apparently similar characteristics can be generated by dif-
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ferent ionic mechanisms and by other biophysical factors, such
as cable properties. In addition, a given cell type may display
several different firing patterns under different neuromodula-
tory conditions. For these reasons, the visual appearance of
particular voltage time courses and the presence of certain ion-
ic mechanisms are insufficient bases for classification. A ratio-
nal scheme should consider a cell’s complete reperroire of dy-
namical modes and the nature of transitions between modes.
Here we apply the mathematics of dynamical systems to de-
scribe precisely the dynamical modes of neuronal firing and the
transformations between them. The approach was pioneered
by FitzHugh with his phase space analysis of nerve membrane
excitability (FitzHugh, 1961). In this theoretical framework,
membrane dynamics is described by coupled differential equa-
tions, e.g., a la Hodgkin and Huxley {cf. Rinzel and Ermentrout,
1989), the behavior modes by attractors, and the transitions
between modes by bifurcations. The rest state is represented by
a time-independent steady state and repetitive firing by a limit
cycle. The transition from resting to oscillating typically occurs
cither through a Hopf bifurcation or a homochinic bifurcation
(Figure 1); (e.g., see Rinzel and Ermentrout, 1989; and Dy-
NAMICS AND BIFURCATION OF NEURAL NETWORKS). The firing
frequency versus applied current curves are qualitatively differ-
ent in the two cases {minimum frequency being non-zero or
zero, respectively), and they might subserve an abstract basis
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Figure 1. Schematic bifurcation diagrams from a
steady state (5SS} to an oscillatory firing state (OSC).
The abscissa is a control parameter such as the applied
current intensity. The ordinate corresponds to the
membrane potential, the repetitive firing state being
indicated by the maximal (max) and minimal {min)
amplitudes of the oscillatory membrane potential. The
solid curve indicates stable and the dashed curve un-
stable. In the lowermost panels, the ordinate { £) is the
frequency of repetitive firing and [ is applied current.
The left panels show Hopf bifurcation. At the onset of
oscillation, the rhythmic amplitede is smal! and the
frequency is finite. The bifurcation may be supercriti-
cal, where the new oscillatory branch is stable; or sub-
critical, where the new oscillatory branch is unstable
and becomes stable at a turning point. The right panels
show homoclinic bifurcation. It corresponds to the co-
alescence of an oscillatory state with an unstable steady
state. This steady state can be either of saddie-node or
saddle type. As this bifurcation point is approached,
the amplitude of oscillation remains finite, while the
rhythmic frequency tends to zero (the period diverging
to infinity). In the case of a subcritical Hopf bifurca-
tion or a normal homoclinic bifurcation, there is a
range of parameter values where a steady-state attrac-
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tor and an oscillatory attractor coexist {(bistability,
I shaded region).



Qscillatory and Bursting Properties of Neurons 687

for the distinction between the Arvanitaki-Hodgkin type If and
type I axons. Our review generalizes this theoretical methodol-
ogy to characterize various bursting oscillations in single neu-
rons, elaborating on a qualitative classification scheme for
bursting mechanisms proposed by Rinzel (1987).

Neuronal Bursting: Examples

We summarize some qualitative features of observed bursting
patterns and then relate these to our classification scheme. We
briefly mention conductance mechanisms that are sufficient to
produce some of these bursting oscillations. While network
synaptic interactions and dendritic cable properties influence
bursting behavior, for the most part, our discussion concerns
an isolated, isopotential neuron. The main biophysical idea is
that rhythmicity is generated by a depolarization process which
is autocatalytic (positive feedback), followed by a slower re-
polarization process (negative feedback). These opposing pro-
cesses may involve activation and slow inactivation of an
inward ionic current or a fast inward current and a slower
outward current. Such features underlie action potential gener-
ation, and for bursting, there is at least another slower negative
feedback process.

The burst pattern shown in Figure 24 has a square-wave
form, with abrupt periodic switching between rest (silent phase)
and depolarized repetitive firing (active phase). Spiking here is
primarily caused by a high-threshold fast calcium current and a
Hodgkin-Huxley-like potassium current. A minimal biophysi-
cal mechanism for square-wave bursting involves a calcium-
activated potassium current (see Rinzel, 1985, and citation
there for Chay and Keizer, 1983). During the active phase, each
calcium spike increases slightly [Ca?*];, slowly turning on this
current and eventually repolarizing the membrane to terminate
the active phase. During the silent phase, the Ca®* channels are
closed, [Ca?*);, decreases, and as the potassium conductance
deactivates, the cell slowly depalarizes until the threshold for
the next active phase is reached. Suggested alternative mecha-
nisms for this type of bursting include slow inactivation by
Ca?*, andjor by voltage of the Ca®* current (Cook, 1991).
Here, if spikes are abolished by pharmacologically blocking the
calcium current, bursting is lost.

While the dopamine-secreting neuron (Figure 28) superfi-
cially appears to be a squarc-wave burster, we would not clas-
sify it as such. Its underlying slow wave persists even when
action potentials are blocked. It appears to be of dendritic
origin, and it drives somatic spiking through electrotonic
interaction.

The bursting patterns of Figure 2C and 2D exhibit brief spike
bursts riding on a slow triangular wave. Thalamocortical relay
cells (see Figure 2C) burst at the delta-wave frequency (3 Hz) of
quiet sleep (Steriade, McCormick, and Sejnowski, 1993), while
the §-Hz oscillation in inferior olivary cells (see Figure 2D)
is probably involved with movement tremor (see Llinas and
Yarom, 1986). Remarkably, in both cases, rhythmic bursting
occurs for maintained hyperpolarizing rather than depolar-
izing stimuli. The underlying siow wave (as a result of a low-
threshold calcium current) is unmasked when the fast action
potentials are blocked and is sometimes seen for modest hyper-
polarizing inputs, even without blocking spikes. The Ca** cur-
rent aclivates rapidly below the voltage threshold for action
potentials. Its inactivation by voltage, with a time scale like
that of the triangular wave's depolarization, provides the slow
negative feedback.

The Aplysia R15 neuron is the quintessential experimental
model of an endogenous burster (Figure 2E) (Adams and
Benson, 1985). The sodium spike rate during a burst first in-

creases and then decreases; hence, the term parabolic bursting.
Blocking these spikes reveals an underlying quasi-sinusoidal
slow wave that is generated primarily by a Ca®* current. This
current activates more slowly and at lower depolarizations
than that associated with the square-wave bursting of Figure
2A. Tis slow activation and the slower [Ca®*]; that inactivates it
provide the two variables for a minimal model of a parabolic
burster’s underlying slow oscillator (see the next section).

Parabolic burst-like features are seen in the 10-Hz oscilla-
tions of mammalian thalamic reticular neurons (Figure 2F)
during the spindle waves of quiet sleep (Steriade et al., 1993).
The oscillation depends on a low-threshold calcium current,
such as that of triangular bursting. In addition to this current’s
slow inactivation, there is likely a second slow variable to
support the parabolic pattern, e.g., [Ca’*); for activating a
calcium-dependent potassium current in these cells.

A different kind of burst pattern consists of spike clusters
interspersed with epochs of small-amplitude subthreshold os-
cillations (Figure 2G, 2H). The envelope of fast events slowly
waxes and wanes, forming an approximate spindle or ellipse;
hence, the term efliptic bursting. Here, the inactive phase is not
totally silent, but often shows small oscillations. The frequency
of intraburst spiking is comparable to that of the interburst
subthreshold oscillations. Only recently has this bursting pat-
tern been reported for mammalian neurons and associated with
important functional roles, such as the limbic system’s theta
rhythm (not shown) and the gamma fast oscillations (approxi-
mately 40 Hz) that occur intermittently with increased alertness
and focused attention (see Figure 2F). Experimental (Llinas,
Grace, and Yarom, 1991) and computational (Wang, 1993)
studies indicate that the 40-Hz elliptic bursts involve a persis-
tent Na* conductance and a specific voltage-dependent tran-
sient K* conductance.

Some oscillations (Figure 21, 2J) depend on the electrical
cable properties of neuronal dendrites and intracellular sources
of regenerative ion fluxes. The bursting behavior of some pyra-
midal neurons (Figure 27) in the neocortex (Connors and
Gutnick, 1990) and in the hippocampus depends on high-
threshold calcium channels located on the distal dendrites,
while the faster sodium spikes are generated primarily in the
perisomatic region. Computer simulations suggest that a one-
compartment description is inadequate and that electrotoni-
cally distinct compartments must be explicitly modeled and
analyzed (e.g., Traub et al., 1991). Figure 2.J displays the burst-
ing pattern of a pituitary gonadotropin-releasing cell. While it
resembles the square-wave form of Figure 24, here the under-
lying slow rhythm is generated by a cytoplasmatic second mes-
senger system that leads to nonlinear, time-dependent, calcium
fluxes across the endoplasmic reticulum membrane (Stojitkovic
and Catt, 1992} and to oscillations in [Ca®*];.

Bursting Systems Analysis: Fast- and Slow-Phase
Space Dynamics

Since different bursters may have qualitatively similar patterns,
a qualitative ¢lassification should not depend on quantitative
properties such as the rhythm’s period or its precise biophysical
bases. Qur general framework involves a geometrical analysis
of the bursting dynamics for a model's differential equations
(Rinzel, 1985, 1987). The model for an isopotential neuron may
be written as:

dX
rri FIX,Y) (n
dy
i GX,Y) 2
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Figure 2. Examples of rhythmic bursting, showing the time courses of
membrane potential, with the exception of G, which is extracellular
voltage. See text for explanations. A, Pancreatic §-cell [From Sherman,
A., Carroll, P., Santos, R. M., and Atwater, 1., 1990, Glucose dose
response of pancreatic beta-cells: Experimental and theoretical results,
in Transduction in Biological Systems (C. Hidalgo et al. Eds.), New
York: Plenum, p. 123; reprinted with permission.] B, Dopamine-
containing neurons in the rat midbrain. (From Johnson, §. W., Seutin,
V., and North, R. A_, 1992, Burst firing in dopamine neurons induced
by N-methyl-np-aspartate; Role of electrogenic sodium pump, Science,
258:665—-667; reprinted with permission. Copyright 1992 by the AAAS.)
C, Cat thalamocortical relay nevron. (From McCormick, I, A., and
Pape, C.-H., 1991, Properties of a hyperpolarization-activated cation
current and its role in thythmic oscillation in thalamic relay neurons, J.
Physiol. Camb., 431:291-318; reprinted with permission.} D, Guinea
pig inferior olivary neuron. (From Benardo, L., and Foster, R. E,,
1986, Oscillatory behaviors in inferior olive neurons: Mechanism,
modulation, cell aggregates, Brain Res. Buil, 17:773-784; copyright
1986; reprinted with permission from Elsevier Science Ltd.) E, Aplysia
R15 neuron. (From Lotshaw, D. P., Levitan, E. 8., and Levitan, I. B,
1986, Fine tuning of neuronal electrical activity: Modulation of several
ion channels by intracellular messengers in a single identified nerve cell,
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J. Exp. Biol., 124:302-322; reprinted with permission of Company of
Biologists Ltd.} F, Cat thalamic reticular neuron. (From Mulle, C.,
Madariaga, A., and Deschénes, M., 1986, Morphology and electro-
physiological properties of reticularis thalami neurons in cat: In vivo
study of a thalamic pacemaker, J. Neurosci., 6:2134-2145; reprinted
with permission of the Society for Neuroscience.) G, Sepia giant axon.
(From Arvanitaki, A., 1939, Recherche sur la réponse oscillatoire
locale de 'axone géant isolé de Sepia, Arch. Int. Physiol., 49:209-256;
reprinted with permission.) H, Ral thalamic reticular neuron. (From
Pinault, D., and Deschénes, M., 1992, Voltage-dependent 40 Hz oscil-
lations in rat reticular thalamic neurons in vivo, Neuroscience, 51:245—
258: copyright 1992; reprinted with permission from Elsevier Science
Ltd.) I, Mouse neccottical pyramidal neuron. (From Agmon, A., and
Connors, B. W., 1989, Repetitive burst-firing neurons in the deep lay-
ers of mouse somatosensory cortex, Newrosci. Letr., 99:137-141; re-
printed with permission.} J, Rat pituitary gonadotropin-releasing cell.
{From Tse, A., and Hille, B., 1993, Role of voltage-gated Na* and
Ca?* channels in gonadotropin-releasing hormone-induced membrane
potential changes in identified rat gonadotropes, Endocrinology,
132(4):1475-1481; reprinted with permission. © The Endocrine
Society.)



Oscillatory and Bursting Properties of Neurons 689

where the vectors X and ¥ represent the variables with fast and
slow time scales, respectively. Typically, the membrane poten-
tial is a fast variable, so Equation | might be the membrane’s
current balance equation:

av
Cm‘;i}_ = _; 1; + Iapp

The other dynamic variables include the gating variables for
specific ionic channels plus relevant second-messenger vari-
ables and ionic concentrations. Here, we consider only one
or two slow variables Y,, which might be a slow voltage-
dependent gating variable or [Ca2"];, or both.

The fast- and slow-phase space dissection method (Rinzel,
1985, 1987) exploits the presence of two disparate time scales.
For simplicity, suppose there is only one slow variable, Y. One
first treats Y as a control parameter and considers the dynamics
of Equation 1 as a function of ¥. The fast subsystem’s various
behavioral states are then summarized in a bifurcation dia-
gram, plotting response amplitude, for example V, versus Y, as
in Figure 1, but where ¥ (instead of 1) is the parameter. When
the full system is considered, ¥ evolves slowly in time according
to Equation 2, slowly sweeping through a range of values while
the fast subsystem slowly tracks its stable states {attractors).
For example, an oscillatory state of the fast subsystem corre-
sponds to the repetitive firing of a burst’s active phase. During
a silent phase, the fast subsystem would be following a pseudo-
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steady state of hyperpolarized V. To complete the description,
one must understand the slow dynarmics from Equation 2 to
know where on the fast subsystem’s bifurcation diagram ¥ will
be increasing or decreasing. When the full system, Equations 1
and 2, is integrated and the resulting burst trajectory is pro-
jected onto the (F, ¥) plane, it coincides with portions of the
bifurcation diagram. Through visualization of this geometrical
representation, one can make predictions about the qualitative
behavior of bursting and the effects of various parameter
changes.

Square-wave bursting. The proétotypical fast- and slow-phase
plane (Figure 34) was originally developed for the Chay-Keizer
model of B-cell bursting (Rinzel, 1985), where [Ca®*], was the
slow, negative-feedback variable (see the earlicr section on neu-
ronal bursting). For the fast-slow dissection, one first con-
structs the fast subsystem’s bifurcation diagram by treating ¥
as a parameter. This construction yields the Z-shaped curve
of steady states. The oscillatory state surrounding the upper
branch corresponds to repetitive spiking of an active phase.
It terminates by contacting the unstable middle steady-state
branch at a homeoclinic bifurcation. The Z-curve’s lower
branch represents a stable steady state of hyperpolarization as
tracked during a burst’s silent phase. In an intermediate range
of ¥ values, there is bistability of the depolarized oscillation
and the hyperpolarized steady state.

Figure 3. Fast- and slow-phase plot of bursting dynamics. The variable
Yis a slow variable (there are two slow variables ¥; and Y, in part C).
In each case, the bifurcation diagram is computed for the fast sub-
system, with ¥ treated as a parameter, and plotted in terms of the
membrane potential (V) behavior as a function of ¥. The sclid curve
shows stable and the dashed curve unstable branches. The oscillatory
state of repetitive firing is represented by its maximum and minimum
of ¥ (¢f. Figure 1). The heavy curves with arrows are bursting trajec-
tories of the full system plotted on the (¥, ¥) plane or the (¥, ¥,, 13}
space. A, Square-wave bursting is based on a bistability of a steady
state and a repetitive firing state in the fast subsystem and periodic
switching between the two, induced by the slow-variable dynamics. 5B,
Triangular bursting has a similar phase plot as in part A, but the fast
subsystem’s steady-state curve is quintic rather than cubic, with two
branches of stable steady states. Depending on whether the stable re-

petitive firing state overlaps with the lowermost steady-state branch,
oscillations of the full system may be either purely subthreshold (left
panel) or bursting (right panel). For simplicity, the repeiitive firing
state is shown only on the right panel, not on the left panel. C, Para-
bolic bursting is penerated by an oscillation in a two-variable (Y)
and ¥,) slow subsystem (right panel) that induces smooth periodic
switching between a steady state (SS) and a repetitive spiking state
(OSC) {which do not overlap) of the fast subsystem. D, Elliptic bursting
involves a subcritical Hopf bifurcation in the fast subsystem. Bursting
involves slow switching between a steady state and a repetitive firing
state that are bistable in the fast subsystem. The silent phase exhibits
damped or growing small oscillations as its trajectory passes through
the Hopf bifurcation point. (Parts 4 and C-D are adapted from
Rinzel, 1987; Part B from Rush, M., and Rinzel J., 1994, Biol. Cybern.,
71:281-291))
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Next, ¥ is allowed to vary according to its kinetics. Bursting
occurs if the slow kinetics dictate that ¥ increases (decreases)
when the fast spike-generating subsystem is in its upper {lower)
state, where the voltage-dependent channels are (are not) acti-
vated. The slow ¥ modulation induces abrupt switching be-
tween the two coexisting states, and thus temporal alternation
occurs between a train of spikes and a resting phase, as seen in
Figure 2A4.

Triangwiar bursting. Figure 38 shows fast- and slow-phase
planes associated with triangular bursting. A minimal model
has one slow variable, and its fast subsystem has regimes of
bistability, as with square waves. Here, however, the steady-
state curve has five branches composed of two S-shaped por-
tions in different ¥ ranges. These S-curves correspond to the
two sets of regenerative currents active in the subthreshold
voltage ranges, such as in thalamic relay or inferior olivary
cells. The depolarized oscillatory state (repetitive spiking) joins
the middle steady-state branch at its right knee (a saddle-node
homoclinic bifurcation), Different oscillation patterns occur
depending on whether the right knee of the lower S extends
rightward beyond that of the right knee of the upper S. Other-
wise (see Figure 3B, left), a slow subthreshold oscillation with-
out fast spikes may occur. The alternative case (see Figure 3B,
right) corresponds to more intense hyperpolarizing input, when
triangular bursting arises (see Figure 2D). The term triangular
refers to the gradually falling ¥ time course of the active phase,
related to the middle branch’s steep slope (see Figure 3B).

Parabolic bursting. This bursting type has a smooth, underly-
ing slow-subthreshold wave. Its generation requires at least two
slow variables, one for positive feedback and the other for
negative feedback. The minimal fast- and slow-phase plot has
three dimensions: ¥ and the two slow variables (Figure 3C,
originally constructed for a model of the Aplysia R15 neuron;
see Rinzel, 1987). Steady states of the fast subsystem are now
represented by a8 Z-surface. Similarly, a surface describes the
fast oscillatory (repetitive spiking) attractors. These periodic
solutions disappear through homoclinic bifurcation as they
contact the Z-surface precisely at its lower knee, forming a
saddle-node coalescence (see Figure 1). Here, the fast subsys-
tem is monostable. The slow-variable-phase plane is divided
into two nonoverlapping regions: one for the resting steady
state and the other for the repetitive spiking regime of the fast
subsystem.

When the slow variables are allowed to vary, an oscillation
may occur in this two-variable slow system (see Figure 3C,
right). If the slow oscillatory trajectory visits both of the fast
subsystem’s regimes, bursting occurs, with repetitive smooth
switching between the resting and spiking states. As a burst
begins and ends, its trajectory crosses a homoclinic bifurcation
of the fast subsystem and spike frequency drops dramatically;
hence, the parabolic nature.

Elliptic bursting. A minimal model has only one slow vartable
(Figure 3D, originally constructed for a modified FitzHugh-
type model; see Rinzel, 1987). The fast subsystem has bistabil-
ity because of a subcritical Hopf bifurcation (see Figure 1) of
periodic solutions from a moneotonic steady-state curve. As
with square waves, during bursting, the full system operates in
the (¥, ¥) regime of bistability, repetitively switching between
the steady state and the spiking state. A distinguishing feature,
however, is that the silent phase, when the fast subsystem oper-
ates near its steady state, is no longer truly silent: it can display
small oscillations which damp and then grow as the trajectory

slowly passes through the Hopf bifurcation point, where the
steady state is a spiral-type fixed point.

Complex bursting. The theoretical study of certain bursting
types (see Figure 2/, 2.7} is relatively recent, and mathematical
understanding of their mechanisms is just emerging. For ana-
lyzing the case of Figure 2J, one requires a minimal model of at
least two electrotonically separated compartments. Electrical
coupling might introduce another, possibly intermediate, time
scale. As for Figure 2J, one must take into account the interac-
tion between second-messenger-mediated calcium fluxes from
intracellular pools and voltage-dependent plasma membrane
calcium currents.

The classification discussed here is based on various fast- and
slow-phase plots. Although consistent with some of the wave-
form phenomenology, the two may sometimes disagree. For
instance, a system with the fast- and slow-phase plot of Figure
3C may burst with a slow wave that is less sinusoidal and more
rectangular if one slow variable is much slower than the other.
However, in contrast to a square-wave burster (see Figures 24
and 34), its slow wave may persist, even with the fast action
potentials blocked.

Discussion

We have reviewed various neuronal bursting oscillations and,
by using notions and analytic tools from the mathematics of
dynamical systems, we discussed how these bursting patterns
might be theoretically described and classified. Our examples
are minimal for these categories. Indeed, one can imagine sub-
categories based on differences in the fast subsystem’s bifurca-
tion diagram. In summary, bursting in a single-compartment
model typically involves some slow processes which induce re-
petitive switching between a relatively quiescent state and an
active state of repetitive spiking of a faster system. In the cases
of square-wave, triangular, and elliptic bursting, one slow vari-
able is sufficient, and the fast subsystem must be bistable. In the
case of parabolic bursting, bistability in the fast subsystem is
not necessary, and two slow variables are required.

The geometrical analysis by fast and slow dissection illus-
trates how novel and powerful theoretical approaches can
emerge from fruitful interactions between neurobiology and
the science of dynamical systems. Possible extensions might
consider cable-like distributed systems with local burst-
generating dynamics, systems with many slow variables, or sys-
tems with complicated bifurcation diagrams, perhaps involving
chaotic attractors. One can expect that dynamical systems
methods, including fast and slow dissection, may also play
a role in our understanding of neural networks with many
synaptically coupled neurons, as long as there are disparate
time scales in the system.

Road Map: Biological Neurons

Background: Dynamics and Bifurcation of Neural Networks, Ion
Channels: Keys o Neuronal Specialization

Related Reading: Half-Center Oscillators Underlying Rhythmic Mave-
ments; Thalamocortical Oscillations in Sleep and Wakefulness
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