
*For correspondence: xjwang@

nyu.edu

Competing interests: The

authors declare that no

competing interests exist.

Funding: See page 20

Received: 13 September 2016

Accepted: 12 January 2017

Published: 13 January 2017

Reviewing editor: Timothy EJ

Behrens, University College

London, United Kingdom

Copyright Song et al. This

article is distributed under the

terms of the Creative Commons

Attribution License, which

permits unrestricted use and

redistribution provided that the

original author and source are

credited.

Reward-based training of recurrent neural
networks for cognitive and value-based
tasks
H Francis Song1, Guangyu R Yang1, Xiao-Jing Wang1,2*

1Center for Neural Science, New York University, New York, United States; 2NYU-
ECNU Institute of Brain and Cognitive Science, NYU Shanghai, Shanghai, China

Abstract Trained neural network models, which exhibit features of neural activity recorded from

behaving animals, may provide insights into the circuit mechanisms of cognitive functions through

systematic analysis of network activity and connectivity. However, in contrast to the graded error

signals commonly used to train networks through supervised learning, animals learn from reward

feedback on definite actions through reinforcement learning. Reward maximization is particularly

relevant when optimal behavior depends on an animal’s internal judgment of confidence or

subjective preferences. Here, we implement reward-based training of recurrent neural networks in

which a value network guides learning by using the activity of the decision network to predict

future reward. We show that such models capture behavioral and electrophysiological findings

from well-known experimental paradigms. Our work provides a unified framework for investigating

diverse cognitive and value-based computations, and predicts a role for value representation that is

essential for learning, but not executing, a task.

DOI: 10.7554/eLife.21492.001

Introduction
A major challenge in uncovering the neural mechanisms underlying complex behavior is our incom-

plete access to relevant circuits in the brain. Recent work has shown that model neural networks

optimized for a wide range of tasks, including visual object recognition (Cadieu et al., 2014;

Yamins et al., 2014; Hong et al., 2016), perceptual decision-making and working memory

(Mante et al., 2013; Barak et al., 2013; Carnevale et al., 2015; Song et al., 2016; Miconi, 2016),

timing and sequence generation (Laje and Buonomano, 2013; Rajan et al., 2015), and motor reach

(Hennequin et al., 2014; Sussillo et al., 2015), can reproduce important features of neural activity

recorded in numerous cortical areas of behaving animals. The analysis of such circuits, whose activity

and connectivity are fully known, has therefore re-emerged as a promising tool for understanding

neural computation (Zipser and Andersen, 1988; Sussillo, 2014; Gao and Ganguli, 2015). Con-

straining network training with tasks for which detailed neural recordings are available may also pro-

vide insights into the principles that govern learning in biological circuits (Sussillo et al., 2015;

Song et al., 2016; Brea and Gerstner, 2016).

Previous applications of this approach to ’cognitive-type’ behavior such as perceptual decision-

making and working memory have focused on supervised learning from graded error signals. Ani-

mals, however, learn to perform specific tasks from reward feedback provided by the experimental-

ist in response to definite actions, i.e., through reinforcement learning (Sutton and Barto, 1998).

Unlike in supervised learning where the network is given the correct response on each trial in the

form of a continuous target output to be followed, reinforcement learning provides evaluative feed-

back to the network on whether each selected action was ’good’ or ’bad.’ This form of feedback

allows for a graded notion of behavioral correctness that is distinct from the graded difference
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between the network’s output and the target output in supervised learning. For the purposes of

using model networks to generate hypotheses about neural mechanisms, this is particularly relevant

in tasks where the optimal behavior depends on an animal’s internal state or subjective preferences.

In a perceptual decision-making task with postdecision wagering, for example, on a random half of

the trials the animal can opt for a sure choice that results in a small (compared to the correct choice)

but certain reward (Kiani and Shadlen, 2009). The optimal decision regarding whether or not to

select the sure choice depends not only on the task condition, such as the proportion of coherently

moving dots, but also on the animal’s own confidence in its decision during the trial. Learning to

make this judgment cannot be reduced to reproducing a predetermined target output without pro-

viding the full probabilistic solution to the network. It can be learned in a natural, ethologically rele-

vant way, however, by choosing the actions that result in greatest overall reward; through training,

the network learns from the reward contingencies alone to condition its output on its internal esti-

mate of the probability that its answer is correct.

Meanwhile, supervised learning is often not appropriate for value-based, or economic, decision-

making where the ’correct’ judgment depends explicitly on rewards associated with different

actions, even for identical sensory inputs (Padoa-Schioppa and Assad, 2006). Although such tasks

can be transformed into a perceptual decision-making task by providing the associated rewards as

inputs, this sheds little light on how value-based decision-making is learned by the animal because it

conflates external with ’internal,’ learned inputs. More fundamentally, reward plays a central role in

all types of animal learning (Sugrue et al., 2005). Explicitly incorporating reward into network train-

ing is therefore a necessary step toward elucidating the biological substrates of learning, in particu-

lar reward-dependent synaptic plasticity (Seung, 2003; Soltani et al., 2006; Izhikevich, 2007;

Urbanczik and Senn, 2009; Frémaux et al., 2010; Soltani and Wang, 2010; Hoerzer et al., 2014;

Brosch et al., 2015; Friedrich and Lengyel, 2016) and the role of different brain structures in learn-

ing (Frank and Claus, 2006).

eLife digest A major goal in neuroscience is to understand the relationship between an animal’s

behavior and how this is encoded in the brain. Therefore, a typical experiment involves training an

animal to perform a task and recording the activity of its neurons – brain cells – while the animal

carries out the task. To complement these experimental results, researchers “train” artificial neural

networks – simplified mathematical models of the brain that consist of simple neuron-like units – to

simulate the same tasks on a computer. Unlike real brains, artificial neural networks provide

complete access to the “neural circuits” responsible for a behavior, offering a way to study and

manipulate the behavior in the circuit.

One open issue about this approach has been the way in which the artificial networks are trained.

In a process known as reinforcement learning, animals learn from rewards (such as juice) that they

receive when they choose actions that lead to the successful completion of a task. By contrast, the

artificial networks are explicitly told the correct action. In addition to differing from how animals

learn, this limits the types of behavior that can be studied using artificial neural networks.

Recent advances in the field of machine learning that combine reinforcement learning with

artificial neural networks have now allowed Song et al. to train artificial networks to perform tasks in

a way that mimics the way that animals learn. The networks consisted of two parts: a “decision

network” that uses sensory information to select actions that lead to the greatest reward, and a

“value network” that predicts how rewarding an action will be. Song et al. found that the resulting

artificial “brain activity” closely resembled the activity found in the brains of animals, confirming that

this method of training artificial neural networks may be a useful tool for neuroscientists who study

the relationship between brains and behavior.

The training method explored by Song et al. represents only one step forward in developing

artificial neural networks that resemble the real brain. In particular, neural networks modify

connections between units in a vastly different way to the methods used by biological brains to alter

the connections between neurons. Future work will be needed to bridge this gap.

DOI: 10.7554/eLife.21492.002
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In this work, we build on advances in recurrent policy gradient reinforcement learning, specifically

the application of the REINFORCE algorithm (Williams, 1992; Baird and Moore, 1999;

Sutton et al., 2000; Baxter and Bartlett, 2001; Peters and Schaal, 2008) to recurrent neural net-

works (RNNs) (Wierstra et al., 2009), to demonstrate reward-based training of RNNs for several

well-known experimental paradigms in systems neuroscience. The networks consist of two modules

in an ’actor-critic’ architecture (Barto et al., 1983; Grondman et al., 2012), in which a decision net-

work uses inputs provided by the environment to select actions that maximize reward, while a value

network uses the selected actions and activity of the decision network to predict future reward and

guide learning. We first present networks trained for tasks that have been studied previously using

various forms of supervised learning (Mante et al., 2013; Barak et al., 2013; Song et al., 2016);

they are characterized by ’simple’ input-output mappings in which the correct response for each trial

depends only on the task condition, and include perceptual decision-making, context-dependent

integration, multisensory integration, and parametric working memory tasks. We then show results

for tasks in which the optimal behavior depends on the animal’s internal judgment of confidence or

subjective preferences, specifically a perceptual decision-making task with postdecision wagering

(Kiani and Shadlen, 2009) and a value-based economic choice task (Padoa-Schioppa and Assad,

2006). Interestingly, unlike for the other tasks where we focus on comparing the activity of units in

the decision network to neural recordings in the dorsolateral prefrontal and posterior parietal cortex

of animals performing the same tasks, for the economic choice task we show that the activity of the

value network exhibits a striking resemblance to neural recordings from the orbitofrontal cortex

(OFC), which has long been implicated in the representation of reward-related signals

(Wallis, 2007).

An interesting feature of our REINFORCE-based model is that a reward baseline—in this case,

the output of a recurrently connected value network (Wierstra et al., 2009)—is essential for learn-

ing, but not for executing the task, because the latter depends only on the decision network. Impor-

tantly, learning can sometimes still occur without the value network but is much more unreliable. It is

sometimes observed in experiments that reward-modulated structures in the brain such as the basal

ganglia or OFC are necessary for learning or adapting to a changing environment, but not for exe-

cuting a previously learned skill (Turner and Desmurget, 2010; Schoenbaum et al., 2011;

Stalnaker et al., 2015). This suggests that one possible role for such circuits may be representing an

accurate baseline to guide learning. Moreover, since confidence is closely related to expected

reward in many cognitive tasks, the explicit computation of expected reward by the value network

provides a concrete, learning-based rationale for confidence estimation as a ubiquitous component

of decision-making (Kepecs et al., 2008; Wei and Wang, 2015), even when it is not strictly required

for performing the task.

Conceptually, the formulation of behavioral tasks in the language of reinforcement learning pre-

sented here is closely related to the solution of partially observable Markov decision processes

(POMDPs) (Kaelbling et al., 1998) using either model-based belief states (Rao, 2010) or model-free

working memory (Todd et al., 2008). Indeed, as in Dayan and Daw, (2008) one of the goals of this

work is to unify related computations into a common language that is applicable to a wide range of

tasks in systems neuroscience. Such policies can also be compared more directly to behaviorally

’optimal’ solutions when they are known, for instance to the signal detection theory account of per-

ceptual decision-making (Gold and Shadlen, 2007). Thus, in addition to expanding the range of

tasks and neural mechanisms that can be studied with trained RNNs, our work provides a convenient

framework for the study of cognitive and value-based computations in the brain, which have often

been viewed from distinct perspectives but in fact arise from the same reinforcement learning

paradigm.

Results

Policy gradient reinforcement learning for behavioral tasks
For concreteness, we illustrate the following in the context of a simplified perceptual decision-mak-

ing task based on the random dots motion (RDM) discrimination task as described in Kiani et al.

(2008) (Figure 1A). In its simplest form, in an RDM task the monkey must maintain fixation until a

’go’ cue instructs the monkey to indicate its decision regarding the direction of coherently moving
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Figure 1. Recurrent neural networks for reinforcement learning. (A) Task structure for a simple perceptual decision-making task with variable stimulus

duration. The agent must maintain fixation (at ¼ F) until the go cue, which indicates the start of a decision period during which choosing the correct

response (at ¼ L or at ¼ R) results in a positive reward. The agent receives zero reward for responding incorrectly, while breaking fixation early results in

an aborted trial and negative reward. (B) At each time t the agent selects action at according to the output of the decision network p�, which

implements a policy that can depend on all past and current inputs u1:t provided by the environment. In response, the environment transitions to a new

state and provides reward �tþ1 to the agent. The value network vf uses the selected action and the activity of the decision network rpt to predict future

rewards. All the weights shown are plastic, i.e., trained by gradient descent. (C) Performance of the network trained for the task in (A), showing the

percent correct by stimulus duration, for different coherences (the difference in strength of evidence for L and R). (D) Neural activity of an example

decision network unit, sorted by coherence and aligned to the time of stimulus onset. Solid lines are for positive coherence, dashed for negative

coherence. (E) Output of the value network (expected return) aligned to stimulus onset. Expected return is computed by performing an ’absolute

value’-like operation on the accumulated evidence.

DOI: 10.7554/eLife.21492.003

The following figure supplements are available for figure 1:

Figure supplement 1. Learning curves for the simple perceptual decision-making task.

DOI: 10.7554/eLife.21492.004

Figure supplement 2. Reaction-time version of the perceptual decision-making task, in which the go cue coincides with the onset of stimulus, allowing

the agent to choose when to respond.

DOI: 10.7554/eLife.21492.005

Figure supplement 3. Learning curves for the reaction-time version of the simple perceptual decision-making task.

DOI: 10.7554/eLife.21492.006

Figure supplement 4. Learning curves for the simple perceptual decision-making task with a linear readout of the decision network as the baseline.

DOI: 10.7554/eLife.21492.007

Song et al. eLife 2017;6:e21492. DOI: 10.7554/eLife.21492 4 of 24

Research article Neuroscience

http://dx.doi.org/10.7554/eLife.21492.003
http://dx.doi.org/10.7554/eLife.21492.004
http://dx.doi.org/10.7554/eLife.21492.005
http://dx.doi.org/10.7554/eLife.21492.006
http://dx.doi.org/10.7554/eLife.21492.007
http://dx.doi.org/10.7554/eLife.21492


dots on the screen. Thus the three possible actions available to the monkey at any given time are fix-

ate, choose left, or choose right. The true direction of motion, which can be considered a state of

the environment, is not known to the monkey with certainty, i.e., is partially observable. The monkey

must therefore use the noisy sensory evidence to infer the direction in order to select the correct

response at the end of the trial. Breaking fixation early results in a negative reward in the form of a

timeout, while giving the correct response after the fixation cue is extinguished results in a positive

reward in the form of juice. Typically, there is neither a timeout nor juice for an incorrect response

during the decision period, corresponding to a ’neutral’ reward of zero. The goal of this section is to

give a general description of such tasks and how an RNN can learn a behavioral policy for choosing

actions at each time to maximize its cumulative reward.

Consider a typical interaction between an experimentalist and animal, which we more generally

call the environment E and agent A, respectively (Figure 1B). At each time t the agent chooses to

perform actions at after observing inputs ut provided by the environment, and the probability of

choosing actions at is given by the agent’s policy p� atju1:tð Þ with parameters �. Here the policy is

implemented as the output of an RNN, so that � comprises the connection weights, biases, and ini-

tial state of the decision network. The policy at time t can depend on all past and current inputs

u1:t ¼ u1;u2; . . .;utð Þ, allowing the agent to integrate sensory evidence or use working memory to

perform the task. The exception is at t ¼ 0, when the agent has yet to interact with the environment

and selects its actions ’spontaneously’ according to p� a0ð Þ. We note that, if the inputs give exact

information about the environmental state st, i.e., if ut ¼ st, then the environment can be described

by a Markov decision process. In general, however, the inputs only provide partial information about

the environmental states, requiring the network to accumulate evidence over time to determine the

state of the world. In this work we only consider cases where the agent chooses one out of Na possi-

ble actions at each time, so that p� atju1:tð Þ for each t is a discrete, normalized probability distribution

over the possible actions a1; . . .; aNa
. More generally, at can implement several distinct actions or

even continuous actions by representing, for example, the means of Gaussian distributions

(Peters and Schaal, 2008; Wierstra et al., 2009). After each set of actions by the agent at time t

the environment provides a reward (or special observable) �tþ1 at time t þ 1, which the agent

attempts to maximize in the sense described below.

In the case of the example RDM task above (Figure 1A), the environment provides (and the agent

receives) as inputs a fixation cue and noisy evidence for two choices L(eft) and R(ight) during a vari-

able-length stimulus presentation period. The strength of evidence, or the difference between the

evidence for L and R, is called the coherence, and in the actual RDM experiment corresponds to the

percentage of dots moving coherently in one direction on the screen. The agent chooses to perform

one of Na ¼ 3 actions at each time: fixate (at ¼ F), choose L (at ¼ L), or choose R (at ¼ R). Here, the

agent must choose F as long as the fixation cue is on, and then, when the fixation cue is turned off

to indicate that the agent should make a decision, correctly choose L or R depending on the sensory

evidence. Indeed, for all tasks in this work we required that the network ’make a decision’ (i.e., break

fixation to indicate a choice at the appropriate time) on at least 99% of the trials, whether the

response was correct or not. A trial ends when the agent chooses L or R regardless of the task

epoch: breaking fixation early before the go cue results in an aborted trial and a negative reward

�t ¼ �1, while a correct decision is rewarded with �t ¼ þ1. Making the wrong decision results in no

reward, �t ¼ 0. For the zero-coherence condition the agent is rewarded randomly on half the trials

regardless of its choice. Otherwise the reward is always �t ¼ 0.

Formally, a trial proceeds as follows. At time t ¼ 0, the environment is in state s0 with probability

E s0ð Þ. The state s0 can be considered the starting time (i.e., t ¼ 0) and ’task condition,’ which in the

RDM example consists of the direction of motion of the dots (i.e., whether the correct response is L

or R) and the coherence of the dots (the difference between evidence for L and R). The time compo-

nent of the state, which is updated at each step, allows the environment to present different inputs

to the agent depending on the task epoch. The true state s0 (such as the direction of the dots) is

only partially observable to the agent, so that the agent must instead infer the state through inputs

ut provided by the environment during the course of the trial. As noted previously, the agent initially

chooses actions a0 with probability p� a0ð Þ. The networks in this work almost always begin by choos-

ing F, or fixation.

At time t ¼ 1, the environment, depending on its previous state s0 and the agent’s action a0, tran-

sitions to state s1 with probability E s1js0; a0ð Þ and generates reward �1. In the perceptual decision-
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making example, only the time advances since the trial condition remains constant throughout. From

this state the environment generates observable u1 with a distribution given by E u1js1ð Þ. If t ¼ 1

were in the stimulus presentation period, for example, u1 would provide noisy evidence for L or R,

as well as the fixation cue. In response, the agent, depending on the inputs u1 it receives from the

environment, chooses actions a1 with probability p� a1ju1:1ð Þ ¼ p� a1ju1ð Þ. The environment, depend-

ing on its previous states s0:1 ¼ s0; s1ð Þ and the agent’s previous actions a0:1 ¼ a0; a1ð Þ, then transi-

tions to state s2 with probability E s2js0:1; a0:1ð Þ and generates reward �2. These steps are repeated

until the end of the trial at time T. Trials can terminate at different times (e.g., for breaking fixation

early or because of variable stimulus durations), so that T in the following represents the maximum

length of a trial. In order to emphasize that rewards follow actions, we adopt the convention in which

the agent performs actions at t ¼ 0; . . .; T and receives rewards at t ¼ 1; . . .; T þ 1.

The goal of the agent is to maximize the sum of expected future rewards at time t ¼ 0, or

expected return

J �ð Þ ¼EH

X

T

t¼0

�tþ1

" #

; (1)

where the expectation EH is taken over all possible trial histories H ¼ s0:Tþ1;u1:T ;a0:Tð Þ consisting of

the states of the environment, the inputs given to the agent, and the actions of the agent. In prac-

tice, the expectation value in Equation 1 is estimated by performing Ntrials trials for each policy

update, i.e., with a Monte Carlo approximation. The expected return depends on the policy and

hence parameters �, and we use Adam stochastic gradient descent (SGD) (Kingma and Ba, 2015)

with gradient clipping (Graves, 2013; Pascanu et al., 2013b) to find the parameters that maximize

this reward (Materials and methods).

More specifically, after every Ntrials trials the decision network uses gradient descent to update its

parameters in a direction that minimizes an objective function Lp of the form

Lp �ð Þ ¼
1

Ntrials

X

Ntrials

n¼1

�Jn �ð Þþ
p
n �ð Þ

� �

(2)

with respect to the connection weights, biases, and initial state of the decision network, which we

collectively denote as �. Here 
p
n �ð Þ can contain any regularization terms for the decision network,

for instance an entropy term to control the degree of exploration (Xu et al., 2015). The key gradient

r�Jn �ð Þ is given for each trial n by the REINFORCE algorithm (Williams, 1992; Baird and Moore,

1999; Sutton et al., 2000; Baxter and Bartlett, 2001; Peters and Schaal, 2008; Wierstra et al.,

2009) as

r�Jn �ð Þ ¼
X

T

t¼0

r�logp� atju1:tð Þ½ �
X

T

t¼t

�tþ1 � vf a1:t;r
p
1:t

� �

" #

; (3)

where rp
1:t are the firing rates of the decision network units up to time t, vf denotes the value function

as described below, and the gradient r� logp� at ju1:tð Þ, known as the eligibility, [and likewise

r�

p
n �ð Þ] is computed by backpropagation through time (BPTT) (Rumelhart et al., 1986) for the

selected actions at. The sum over rewards in large brackets only runs over t¼ t; . . .;T, which reflects

the fact that present actions do not affect past rewards. In this form the terms in the gradient have

the intuitive property that they are nonzero only if the actual return deviates from what was pre-

dicted by the baseline. It is worth noting that this form of the value function (with access to the

selected action) can, in principle, lead to suboptimal policies if the value network’s predictions

become perfect before the optimal decision policy is learned; we did not find this to be the case in

our simulations.

The reward baseline is an important feature in the success of almost all REINFORCE-based algo-

rithms, and is here represented by a second RNN vf with parameters f in addition to the decision

network p� (to be precise, the value function is the readout of the value network). This baseline net-

work, which we call the value network, uses the selected actions a1:t and activity of the decision net-

work rp
1:t to predict the expected return at each time t ¼ 1; . . .; T; the value network also predicts the
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expected return at t ¼ 0 based on its own initial states, with the understanding that a1:0 ¼ � and

rp
1:0 ¼ � are empty sets. The value network is trained by minimizing a second objective function

Lv fð Þ ¼
1

Ntrials

X

Ntrials

n¼1

En fð Þþ
v
n fð Þ

� �

; (4)

En fð Þ ¼
1

T þ 1

X

T

t¼0

X

T

t¼t

�tþ1 � vf a1:t;r
p
1:t

� �

" #2

(5)

every Ntrials trials, where 
v
n fð Þ denotes any regularization terms for the value network. The necessary

gradient rfEn fð Þ [and likewise rf

v
n fð Þ] is again computed by BPTT.

Decision and value recurrent neural networks
The policy probability distribution over actions p� atju1:tð Þ and scalar baseline vf a1:t ; r

p
1:t

� �

are each

represented by an RNN of N firing-rate units rp and rv, respectively, where we interpret each unit as

the mean firing rate of a group of neurons. In the case where the agent chooses a single action at

each time t, the activity of the decision network determines p� atju1:tð Þ through a linear readout fol-

lowed by softmax normalization:

zt ¼Wp
outr

p
t þbp

out; (6)

p� at ¼ kju1:tð Þ ¼
e ztð Þk

PNa

‘¼1
e ztð Þ‘

(7)

for k¼ 1; . . .;Na. Here Wp
out is an Na �N matrix of connection weights from the units of the decision

network to the Na linear readouts zt, and bp
out are Na biases. Action selection is implemented by ran-

domly sampling from the probability distribution in Equation 7, and constitutes an important differ-

ence from previous approaches to training RNNs for cognitive tasks (Mante et al., 2013;

Carnevale et al., 2015; Song et al., 2016; Miconi, 2016), namely, here the final output of the net-

work (during training) is a specific action, not a graded decision variable. We consider this sampling

as an abstract representation of the downstream action selection mechanisms present in the brain,

including the role of noise in implicitly realizing stochastic choices with deterministic outputs

(Wang, 2002, 2008). Meanwhile, the activity of the value network predicts future returns through a

linear readout

vf a1:t ;r
p
1:t

� �

¼Wv
outr

v
t þ bvout; (8)

where Wv
out is an 1�N matrix of connection weights from the units of the value network to the single

linear readout vf, and bvout is a bias term.

In order to take advantage of recent developments in training RNNs [in particular, addressing the

problem of vanishing gradients (Bengio et al., 1994)] while retaining intepretability, we use a modi-

fied form of Gated Recurrent Units (GRUs) (Cho et al., 2014; Chung et al., 2014) with a threshold-

linear ’f -I’ curve x½ �þ¼ max 0; xð Þ to obtain positive, non-saturating firing rates. Since firing rates in cor-

tex rarely operate in the saturating regime, previous work (Sussillo et al., 2015) used an additional

regularization term to prevent saturation in common nonlinearities such as the hyperbolic tangent;

the threshold-linear activation function obviates such a need. These units are thus leaky, threshold-

linear units with dynamic time constants and gated recurrent inputs. The equations that describe

their dynamics can be derived by a naı̈ve discretization of the following continuous-time equations

for the N currents x and corresponding rectified-linear firing rates r:

l¼ sigmoid Wl
recrþWl

inuþbl
� �

; (9)

g ¼ sigmoid Wg
recrþW

g
inuþbg

� �

; (10)

t

l
�x

:
¼�xþWrec g� rð ÞþWinuþbþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi

2ts2
rec

q

j; (11)

r¼ x½ �þ: (12)

Here x
:
¼ dx=dt is the derivative of x with respect to time, � denotes elementwise multiplication,

sigmoidðxÞ ¼ ½1þ e�x��1 is the logistic sigmoid, bl, bg, and b are biases, � are N independent
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Gaussian white noise processes with zero mean and unit variance, and s2

rec controls the size of this

noise. The multiplicative gates l dynamically modulate the overall time constant t for network units,

while the g control the recurrent inputs. The N�N matrices Wrec, W
l
rec, and Wg

rec are the recurrent

weight matrices, while the N�Nin matrices Win, W
l
in, and W

g
in are connection weights from the Nin

inputs u to the N units of the network. We note that in the case where l! 1 and g! 1 the equations

reduce to ’simple’ leaky threshold-linear units without the modulation of the time constants or gating

of inputs. We constrain the recurrent connection weights (Song et al., 2016) so that the overall con-

nection probability is pc; specifically, the number of incoming connections for each unit, or in-degree

K, was set to K ¼ pcN (see Table 1 for a list of all parameters).

The result of discretizing Equations 9–12, as well as details on initializing the network parame-

ters, are given in Materials and methods. We successfully trained networks with time steps Dt ¼ 1ms,

but for computational convenience all of the networks in this work were trained and run with

Dt ¼ 10ms. We note that, for typical tasks in systems neuroscience lasting on the order of several sec-

onds, this already implies trials lasting hundreds of time steps. Unless noted otherwise in the text, all

networks were trained using the parameters listed in Table 1.

While the inputs to the decision network p� are determined by the environment, the value net-

work always receives as inputs the activity of the decision network rp, together with information

about which actions were actually selected at each time step (Figure 1B). The value network serves

two purposes: first, the output of the value network is used as the baseline in the REINFORCE gradi-

ent, Equation 3, to reduce the variance of the gradient estimate (Williams, 1992; Baird and Moore,

1999; Baxter and Bartlett, 2001; Peters and Schaal, 2008); second, since policy gradient reinforce-

ment learning does not explicitly use a value function but value information is nevertheless implicitly

contained in the policy, the value network serves as an explicit and potentially nonlinear readout of

this information. In situations where expected reward is closely related to confidence, this may

explain, for example, certain disassociations between perceptual decisions and reports of the associ-

ated confidence (Lak et al., 2014).

A reward baseline, which allows the decision network to update its parameters based on a rela-

tive quantity akin to prediction error (Schultz et al., 1997; Bayer and Glimcher, 2005) rather than

absolute reward magnitude, is essential to many learning schemes, especially those based on REIN-

FORCE. Indeed, it has been suggested that in general such a baseline should be not only task-spe-

cific but stimulus (task-condition)-specific (Frémaux et al., 2010; Engel et al., 2015; Miconi, 2016),

and that this information may be represented in OFC (Wallis, 2007) or basal ganglia (Doya, 2000).

Previous schemes, however, did not propose how this baseline critic may be instantiated, instead

implementing it algorithmically. Here we use a simple neural implementation of the baseline that

automatically depends on the stimulus and thus does not require the learning system to have access

to the true trial type, which in general is not known with certainty to the agent.

Table 1. Parameters for reward-based recurrent neural network training. Unless noted otherwise in

the text, networks were trained and run with the parameters listed here.

Parameter Symbol Default value

Learning rate h 0.004

Maximum gradient norm G 1

Size of decision/value network N 100

Connection probability (decision network) ppc 0.1

Connection probability (value network) pvc 1

Time step Dt 10 ms

Unit time constant t 100 ms

Recurrent noise s2

rec
0.01

Initial spectral radius for recurrent weights �0 2

Number of trials per gradient update Ntrials # of task conditions

DOI: 10.7554/eLife.21492.008
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Tasks with simple input-output mappings
The training procedure described in the previous section can be used for a variety of tasks, and

results in networks that qualitatively reproduce both behavioral and electrophysiological findings

from experiments with behaving animals. For the example perceptual decision-making task above,

the trained network learns to integrate the sensory evidence to make the correct decision about

which of two noisy inputs is larger (Figure 1C). This and additional networks trained for the same

task were able to reach the target performance in ~7000 trials starting from completely random

connection weights, and moreover the networks learned the ’core’ task after ~ 2000 trials (Figure 1—

figure supplement 1). As with monkeys performing the task, longer stimulus durations allow the

network to improve its performance by continuing to integrate the incoming sensory evidence

(Wang, 2002; Kiani et al., 2008). Indeed, the output of the value network shows that the expected

reward (in this case equivalent to confidence) is modulated by stimulus difficulty (Figure 1E). Prior to

the onset of the stimulus, the expected reward is the same for all trial conditions and approximates

the overall reward rate; incoming sensory evidence then allows the network to distinguish its chances

of success.

Sorting the activity of individual units in the network by the signed coherence (the strength of the

evidence, with negative values indicating evidence for L and positive for R) also reveals coherence-

dependent ramping activity (Figure 1D) as observed in neural recordings from numerous perceptual

decision-making experiments, e.g., Roitman and Shadlen (2002). This pattern of activity illustrates

why a nonlinear readout by the value network is useful: expected return is computed by performing

an ’absolute value’-like operation on the accumulated evidence (plus shifts), as illustrated by the

overlap of the expected return for positive and negative-coherence trials (Figure 1E).

The reaction time as a function of coherence in the reaction-time version of the same task, in

which the go cue coincides with the time of stimulus onset, is also shown in Figure 1—figure sup-

plement 2 and may be compared, e.g., to Wang (2002); Mazurek et al. (2003); Wong and Wang

(2006). We note that in many neural models [e.g., Wang (2002); Wong and Wang (2006)] a ’deci-

sion’ is made when the output reaches a fixed threshold. Indeed, when networks are trained using

supervised learning (Song et al., 2016), the decision threshold is imposed retroactively and has no

meaning during training; since the outputs are continuous, the speed-accuracy tradeoff is also

learned in the space of continuous error signals. Here, the time at which the network commits to a

decision is unambiguously given by the time at which the selected action is L or R. Thus the appro-

priate speed-accuracy tradeoff is learned in the space of concrete actions, illustrating the desirability

of using reward-based training of RNNs when modeling reaction-time tasks. Learning curves for this

and additional networks trained for the same reaction-time task are shown in Figure 1—figure sup-

plement 3.

In addition to the example task from the previous section, we trained networks for three well-

known behavioral paradigms in which the correct, or optimal, behavior is (pre-)determined on each

trial by the task condition alone. Similar tasks have previously been addressed with several different

forms of supervised learning, including FORCE (Sussillo and Abbott, 2009; Carnevale et al., 2015),

Hessian-free (Martens and Sutskever, 2011; Mante et al., 2013; Barak et al., 2013), and stochastic

gradient descent (Pascanu et al., 2013b; Song et al., 2016), so that the results shown in Figure 2

are presented as confirmation that the same tasks can also be learned using reward feedback on

definite actions alone. For all three tasks the pre-stimulus fixation period was 750 ms; the networks

had to maintain fixation until the start of a 500 ms ’decision’ period, which was indicated by the

extinction of the fixation cue. At this time the network was required to choose one of two alterna-

tives to indicate its decision and receive a reward of +1 for a correct response and 0 for an incorrect

response; otherwise, the networks received a reward of �1.

The context-dependent integration task (Figure 2A) is based on Mante et al. (2013), in which

monkeys were required to integrate one type of stimulus (the motion or color of the presented dots)

while ignoring the other depending on a context cue. In training the network, we included both the

750 ms stimulus period and 300–1500 ms delay period following stimulus presentation. The delay

consisted of 300 ms followed by a variable duration drawn from an exponential distribution with

mean 300 ms and truncated at a maximum of 1200 ms. The network successfully learned to perform

the task, which is reflected in the psychometric functions showing the percentage of trials on which

the network chose R as a function of the signed motion and color coherences, where motion and
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Figure 2. Performance and neural activity of RNNs trained for ’simple’ cognitive tasks in which the correct response depends only on the task

condition. Left column shows behavioral performance, right column shows mixed selectivity for task parameters of example units in the decision

network. (A) Context-dependent integration task (Mante et al., 2013). Left: Psychometric curves show the percentage of R choices as a function of the

signed ’motion’ and ’color’ coherences in the motion (black) and color (blue) contexts. Right: Normalized firing rates of examples units sorted by

different combinations of task parameters exhibit mixed selectivity. Firing rates were normalized by mean and standard deviation computed over the

responses of all units, times, and trials. Solid and dashed lines indicate choice 1 (same as preferred direction of unit) and choice 2 (non-preferred),

respectively. For motion and choice and color and choice, dark to light corresponds to high to low motion and color coherence, respectively. (B)

Multisensory integration task (Raposo et al., 2012, 2014). Left: Psychometric curves show the percentage of high choices as a function of the event

rate, for visual only (blue), auditory only (green), and multisensory (orange) trials. Improved performance on multisensory trials shows that the network

learns to combine the two sources of information in accordance with Equation 13. Right: Sorted activity on visual only and auditory only trials for units

selective for choice (high vs. low, left), modality [visual (vis) vs. auditory (aud), middle], and both (right). Error trials were excluded. (C) Parametric

working memory task (Romo et al., 1999). Left: Percentage of correct responses for different combinations of f1 and f2. The conditions are colored here

and in the right panels according to the first stimulus (base frequency) f1; due to the overlap in the values of f1, the 10 task conditions are represented

by seven distinct colors. Right: Activity of example decision network units sorted by f1. The first two units are positively tuned to f1 during the delay

period, while the third unit is negatively tuned.

DOI: 10.7554/eLife.21492.009

The following figure supplements are available for figure 2:

Figure supplement 1. Learning curves for the context-dependent integration task.

DOI: 10.7554/eLife.21492.010

Figure supplement 2. Learning curves for the multisensory integration task.

DOI: 10.7554/eLife.21492.011

Figure supplement 3. Learning curves for the parametric working memory task.

DOI: 10.7554/eLife.21492.012

Song et al. eLife 2017;6:e21492. DOI: 10.7554/eLife.21492 10 of 24

Research article Neuroscience

http://dx.doi.org/10.7554/eLife.21492.009
http://dx.doi.org/10.7554/eLife.21492.010
http://dx.doi.org/10.7554/eLife.21492.011
http://dx.doi.org/10.7554/eLife.21492.012
http://dx.doi.org/10.7554/eLife.21492


color indicate the two sources of noisy information and the sign is positive for R and negative for L

(Figure 2A, left). As in electrophysiological recordings, units in the decision network show mixed

selectivity when sorted by different combinations of task variables (Figure 2A, right). Learning curves

for this and additional networks trained for the task are shown in Figure 2—figure supplement 1.

The multisensory integration task (Figure 2B) is based on Raposo et al. (2012, 2014), in which

rats used visual flashes and auditory clicks to determine whether the event rate was higher or lower

than a learned threshold of 12.5 events per second. When both modalities were presented, they

were congruent, which implied that the rats could improve their performance by combining informa-

tion from both sources. As in the experiment, the network was trained with a 1000 ms stimulus

period, with inputs whose magnitudes were proportional (both positively and negatively) to the

event rate. For this task the input connection weights Win, W
l
in, and W

g
in were initialized so that a third

of the N ¼ 150 decision network units received visual inputs only, another third auditory inputs only,

and the remaining third received neither. As shown in the psychometric function (percentage of high

choices as a function of event rate, Figure 2B, left), the trained network exhibits multisensory

enhancement in which performance on multisensory trials was better than on single-modality trials.

Indeed, as for rats, the results are consistent with optimal combination of the two modalities,

1

s2

visual

þ
1

s2

auditory

»
1

s2

multisensory

; (13)

where s2

visual, s
2

auditory, and s2

multisensory are the variances obtained from fits of the psychometric func-

tions to cumulative Gaussian functions for visual only, auditory only, and multisensory (both visual

and auditory) trials, respectively (Table 2). As observed in electrophysiological recordings, moreover,

decision network units exhibit a range of tuning to task parameters, with some selective to choice

and others to modality, while many units showed mixed selectivity to all task variables (Figure 2B,

right). Learning curves for this and additional networks trained for the task are shown in Figure 2—

figure supplement 2.

The parametric working memory task (Figure 2C) is based on the vibrotactile frequency discrimi-

nation task of Romo et al. (1999), in which monkeys were required to compare the frequencies of

two temporally separated stimuli to determine which was higher. For network training, the task

epochs consisted of a 500 ms base stimulus with ’frequency’ f1, a 2700–3300 ms delay, and a 500 ms

comparison stimulus with frequency f2; for the trials shown in Figure 2C the delay was always 3000

ms as in the experiment. During the decision period, the network had to indicate which stimulus was

higher by choosing f1<f2 or f1>f2. The stimuli were constant inputs with amplitudes proportional

(both positively and negatively) to the frequency. For this task we set the learning rate to h ¼ 0:002;

the network successfully learned to perform the task (Figure 2C, left), and the individual units of the

network, when sorted by the first stimulus (base frequency) f1, exhibit highly heterogeneous activity

(Figure 2C, right) characteristic of neurons recorded in the prefrontal cortex of monkeys performing

Table 2. Psychophysical thresholds svisual, sauditory, and smultisensory obtained from fits of cumulative

Gaussian functions to the psychometric curves in visual only, auditory only, and multisensory trials in

the multisensory integration task, for six networks trained from different random initializations (first

row, bold: network from main text, cf. Figure 2B). The last two columns show evidence of ’optimal’

multisensory integration according to Equation 13 (Raposo et al., 2012).

svisual sauditory smultisensory

1

s2

visual

þ
1

s2

auditory

1

s2

multisensory

2.124 2.099 1.451 0.449 0.475

2.107 2.086 1.448 0.455 0.477

2.276 2.128 1.552 0.414 0.415

2.118 2.155 1.508 0.438 0.440

2.077 2.171 1.582 0.444 0.400

2.088 2.149 1.480 0.446 0.457

DOI: 10.7554/eLife.21492.013
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the task (Machens et al., 2010). Learning curves for this and additional networks trained for the task

are shown in Figure 2—figure supplement 3.

Additional comparisons can be made between the model networks shown in Figure 2 and the

neural activity observed in behaving animals, for example state-space analyses as in Mante et al.

(2013), Carnevale et al. (2015), or Song et al. (2016). Such comparisons reveal that, as found previ-

ously in studies such as Barak et al. 2013), the model networks exhibit many, but not all, features

present in electrophysiological recordings. Figure 2 and the following make clear, however, that

RNNs trained with reward feedback alone can already reproduce the mixed selectivity characteristic

of neural populations in higher cortical areas (Rigotti et al., 2010, 2013), thereby providing a valu-

able platform for future investigations of how such complex representations are learned.

Confidence and perceptual decision-making
All of the tasks in the previous section have the property that the correct response on any single trial

is a function only of the task condition, and, in particular, does not depend on the network’s state

during the trial. In a postdecision wager task (Kiani and Shadlen, 2009), however, the optimal deci-

sion depends on the animal’s (agent’s) estimate of the probability that its decision is correct, i.e., its

confidence. As can be seen from the results, on a trial-by-trial basis this is not the same as simply

determining the stimulus difficulty (a combination of stimulus duration and coherence); this makes it

difficult to train with standard supervised learning, which requires a pre-determined target output

for the network to reproduce; instead, we trained an RNN to perform the task by maximizing overall

reward. This task extends the simple perceptual decision-making task (Figure 1A) by introducing a

’sure’ option that is presented during a 1200–1800 ms delay period on a random half of the trials;

selecting this option results in a reward that is 0.7 times the size of the reward obtained when cor-

rectly choosing L or R. As in the monkey experiment, the network receives no information indicating

whether or not a given trial will contain a sure option until the middle of the delay period after stimu-

lus offset, thus ensuring that the network makes a decision about the stimulus on all trials

(Figure 3A). For this task the input connection weights Win, W
l
in, and W

g
in were initialized so that half

the units received information about the sure target while the other half received evidence for L and

R. All units initially received fixation input.

The key behavioral features found in Kiani and Shadlen (2009); Wei and Wang (2015) are repro-

duced in the trained network, namely the network opted for the sure option more frequently when

the coherence was low or stimulus duration short (Figure 3B, left); and when the network was pre-

sented with a sure option but waived it in favor of choosing L or R, the performance was better than

on trials when the sure option was not presented (Figure 3B, right). The latter observation is taken

as indication that neither monkeys nor trained networks choose the sure target on the basis of stimu-

lus difficulty alone but based on their internal sense of uncertainty on each trial.

Figure 3C shows the activity of an example network unit, sorted by whether the decision was the

unit’s preferred or nonpreferred target (as determined by firing rates during the stimulus period on

all trials), for both non-wager and wager trials. In particular, on trials in which the sure option was

chosen, the firing rate is intermediate compared to trials on which the network made a decision by

choosing L or R. Learning curves for this and additional networks trained for the task are shown in

Figure 3—figure supplement 1.

Value-based economic choice task
We also trained networks to perform the simple economic choice task of Padoa-Schioppa and

Assad (2006) and examined the activity of the value, rather than decision, network. The choice pat-

terns of the networks were modulated only by varying the reward contingencies (Figure 4A, upper

and lower). We note that, on each trial there is a ’correct’ answer in the sense that there is a choice

which results in greater reward. In contrast to the previous tasks, however, information regarding

whether an answer is correct in this sense is not contained in the inputs but rather in the association

between inputs and rewards. This distinguishes the task from the cognitive tasks discussed in previ-

ous sections: although the task can be transformed into a cognitive-type task by providing the asso-

ciated rewards as inputs, training in this manner conflates external with ’internal,’ learned inputs.

Each trial began with a 750 ms fixation period; the offer, which indicated the ’juice’ type and

amount for the left and right choices, was presented for 1000–2000 ms, followed by a 750 ms
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decision period during which the network was required to indicate its decision. In the upper panel of

Figure 4A the indifference point was set to 1A = 2.2B during training, which resulted in 1A = 2.0B

when fit to a cumulative Gaussian (Figure 4—figure supplement 1), while in the lower panel it was

set to 1A = 4.1B during training and resulted in 1A = 4.0B (Figure 4—figure supplement 2). The

basic unit of reward, i.e., 1B, was 0.1. For this task we increased the initial value of the value net-

work’s input weights, Wv
in, by a factor of 10 to drive the value network more strongly.

Strikingly, the activity of units in the value network vf exhibits similar types of tuning to task varia-

bles as observed in the orbitofrontal cortex of monkeys, with some units (roughly 20% of active units)

selective to chosen value, others (roughly 60%, for both A and B) to offer value, and still others

(roughly 20%) to choice alone as defined in Padoa-Schioppa and Assad (2006) (Figure 4B). The

decision network also contained units with a diversity of tuning. Learning curves for this and addi-

tional networks trained for the task are shown in Figure 4—figure supplement 3. We emphasize

that no changes were made to the network architecture for this value-based economic choice task.

Figure 3. Perceptual decision-making task with postdecision wagering, based on Kiani and Shadlen (2009). (A)

Task structure. On a random half of the trials, a sure option is presented during the delay period, and on these

trials the network has the option of receiving a smaller (compared to correctly choosing L or R) but certain reward

by choosing the sure option (S). The stimulus duration, delay, and sure target onset time are the same as in

Kiani and Shadlen 2009). (B) Probability of choosing the sure option (left) and probability correct (right) as a

function of stimulus duration, for different coherences. Performance is higher for trials on which the sure option

was offered but waived in favor of L or R (filled circles, solid), compared to trials on which the sure option was not

offered (open circles, dashed). (C) Activity of an example decision network unit for non-wager (left) and wager

(right) trials, sorted by whether the presented evidence was toward the unit’s preferred (black) or nonpreferred

(gray) target as determined by activity during the stimulus period on all trials. Dashed lines show activity for trials

in which the sure option was chosen.

DOI: 10.7554/eLife.21492.014

The following figure supplement is available for figure 3:

Figure supplement 1. Learning curves for the postdecision wager task.

DOI: 10.7554/eLife.21492.015
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Instead, the same scheme shown in Figure 1B, in which the value network is responsible for predict-

ing future rewards to guide learning but is not involved in the execution of the policy, gave rise to

the pattern of neural activity shown in Figure 4B.

Discussion
In this work we have demonstrated reward-based training of recurrent neural networks for both cog-

nitive and value-based tasks. Our main contributions are twofold: first, our work expands the range

of tasks and corresponding neural mechanisms that can be studied by analyzing model recurrent

neural networks, providing a unified setting in which to study diverse computations and compare to

electrophysiological recordings from behaving animals; second, by explicitly incorporating reward

into network training, our work makes it possible in the future to more directly address the question

of reward-related processes in the brain, for instance the role of value representation that is essential

for learning, but not executing, a task.

To our knowledge, the specific form of the baseline network inputs used in this work has not

been used previously in the context of recurrent policy gradients; it combines ideas from

Wierstra et al. (2009) where the baseline network received the same inputs as the decision network

in addition to the selected actions, and Ranzato et al. (2016), where the baseline was implemented

as a simple linear regressor of the activity of the decision network, so that the decision and value

networks effectively shared the same recurrent units. Indeed, the latter architecture is quite common

in machine learning applications (Mnih et al., 2016), and likewise, for some of the simpler tasks

Figure 4. Value-based economic choice task (Padoa-Schioppa and Assad, 2006). (A) Choice pattern when the reward contingencies are indifferent for

roughly 1 ’juice’ of A and 2 ’juices’ of B (upper) or 1 juice of A and 4 juices of B (lower). (B) Mean activity of example value network units during the pre-

choice period, defined here as the period 500 ms before the decision, for the 1A = 2B case. Units in the value network exhibit diverse selectivity as

observed in the monkey orbitofrontal cortex. For ’choice’ (last panel), trials were separated into choice A (red diamonds) and choice B (blue circles).

DOI: 10.7554/eLife.21492.016

The following figure supplements are available for figure 4:

Figure supplement 1. Fit of cumulative Gaussian with parameters �, s to the choice pattern in Figure 4 (upper), and the deduced indifference point

n�B=n
�
A ¼ ð1þ �Þ=ð1� �Þ.

DOI: 10.7554/eLife.21492.017

Figure supplement 2. Fit of cumulative Gaussian with parameters �, s to the choice pattern in Figure 4A (lower), and the deduced indifference point

n�B=n
�
A ¼ ð1þ �Þ=ð1� �Þ.

DOI: 10.7554/eLife.21492.018

Figure supplement 3. Learning curves for the value-based economic choice task.

DOI: 10.7554/eLife.21492.019
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considered here, models with a baseline consisting of a linear readout of the selected actions and

decision network activity could be trained in comparable (but slightly longer) time (Figure 1—figure

supplement 4). The question of whether the decision and value networks ought to share the same

recurrent network parallels ongoing debate over whether choice and confidence are computed

together or if certain areas such as OFC compute confidence signals locally, though it is clear that

such ’meta-cognitive’ representations can be found widely in the brain (Lak et al., 2014). Computa-

tionally, the distinction is expected to be important when there are nonlinear computations required

to determine expected return that are not needed to implement the policy, as illustrated in the per-

ceptual decision-making task (Figure 1).

Interestingly, a separate value network to represent the baseline suggests an explicit role for

value representation in the brain that is essential for learning a task (equivalently, when the environ-

ment is changing), but not for executing an already learned task, as is sometimes found in experi-

ments (Turner and Desmurget, 2010; Schoenbaum et al., 2011; Stalnaker et al., 2015). Since an

accurate baseline dramatically improves learning but is not required—the algorithm is less reliable

and takes many samples to converge with a constant baseline, for instance—this baseline network

hypothesis for the role of value representation may account for some of the subtle yet broad learn-

ing deficits observed in OFC-lesioned animals (Wallis, 2007). Moreover, since expected reward is

closely related to decision confidence in many of the tasks considered, a value network that nonli-

nearly reads out confidence information from the decision network is consistent with experimental

findings in which OFC inactivation affects the ability to report confidence but not decision accuracy

(Lak et al., 2014).

Our results thus support the actor-critic picture for reward-based learning, in which one circuit

directly computes the policy to be followed, while a second structure, receiving projections from the

decision network as well as information about the selected actions, computes expected future

reward to guide learning. Actor-critic models have a rich history in neuroscience, particularly in stud-

ies of the basal ganglia (Houk et al., 1995; Dayan and Balleine, 2002; Joel et al., 2002;

O’Doherty et al., 2004; Takahashi et al., 2008; Maia, 2010), and it is interesting to note that there

is some experimental evidence that signals in the striatum are more suitable for direct policy search

rather than for updating action values as an intermediate step, as would be the case for purely value

function-based approaches to computing the decision policy (Li and Daw, 2011; Niv and Langdon,

2016). Moreover, although we have used a single RNN each to represent the decision and value

modules, using ’deep,’ multilayer RNNs may increase the representational power of each module

(Pascanu et al., 2013a). For instance, more complex tasks than considered in this work may require

hierarchical feature representation in the decision network, and likewise value networks can use a

combination of the different features [including raw sensory inputs (Wierstra et al., 2009)] to predict

future reward. Anatomically, the decision networks may correspond to circuits in dorsolateral pre-

frontal cortex, while the value networks may correspond to circuits in OFC (Schultz et al., 2000;

Takahashi et al., 2011) or basal ganglia (Hikosaka et al., 2014). This architecture also provides a

useful example of the hypothesis that various areas of the brain effectively optimize different cost

functions (Marblestone et al., 2016): in this case, the decision network maximizes reward, while the

value network minimizes the prediction error for future reward.

As in many other supervised learning approaches used previously to train RNNs (Mante et al.,

2013; Song et al., 2016), the use of BPTT to compute the gradients (in particular, the eligibility)

make our ’plasticity rule’ not biologically plausible. As noted previously (Zipser and Andersen,

1988), it is indeed somewhat surprising that the activity of the resulting networks nevertheless

exhibit many features found in neural activity recorded from behaving animals. Thus our focus has

been on learning from realistic feedback signals provided by the environment but not on its physio-

logical implementation. Still, recent work suggests that exact backpropagation is not necessary and

can even be implemented in ’spiking’ stochastic units (Lillicrap et al., 2016), and that approximate

forms of backpropagation and SGD can be implemented in a biologically plausible manner

(Scellier and Bengio, 2016), including both spatially and temporally asynchronous updates in RNNs

(Jaderberg et al., 2016). Such ideas require further investigation and may lead to effective yet more

neurally plausible methods for training model neural networks.

Recently, Miconi (2016) used a ’node perturbation’-based (Fiete and Seung, 2006; Fiete et al.,

2007; Hoerzer et al., 2014) algorithm with an error signal at the end of each trial to train RNNs for

several cognitive tasks, and indeed, node perturbation is closely related to the REINFORCE

Song et al. eLife 2017;6:e21492. DOI: 10.7554/eLife.21492 15 of 24

Research article Neuroscience

http://dx.doi.org/10.7554/eLife.21492


algorithm used in this work. On one hand, the method described in Miconi (2016) is more biologi-

cally plausible in the sense of not requiring gradients computed via backpropagation through time

as in our approach; on the other hand, in contrast to the networks in this work, those in

Miconi (2016) did not ’commit’ to a discrete action and thus the error signal was a graded quantity.

In this and other works (Frémaux et al., 2010), moreover, the prediction error was computed by

algorithmically keeping track of a stimulus (task condition)-specific running average of rewards. Here

we used a concrete scheme (namely a value network) for approximating the average that automati-

cally depends on the stimulus, without requiring an external learning system to maintain a separate

record for each (true) trial type, which is not known by the agent with certainty.

One of the advantages of the REINFORCE algorithm for policy gradient reinforcement learning is

that direct supervised learning can also be mixed with reward-based learning, by including only the

eligibility term in Equation 3 without modulating by reward (Mnih et al., 2014), i.e., by maximizing

the log-likelihood of the desired actions. Although all of the networks in this work were trained from

reward feedback only, it will be interesting to investigate this feature of the REINFORCE algorithm.

Another advantage, which we have not exploited here, is the possibility of learning policies for con-

tinuous action spaces (Peters and Schaal, 2008; Wierstra et al., 2009); this would allow us, for

example, to model arbitrary saccade targets in the perceptual decision-making task, rather than lim-

iting the network to discrete choices.

We have previously emphasized the importance of incorporating biological constraints in the

training of neural networks (Song et al., 2016). For instance, neurons in the mammalian cortex have

purely excitatory or inhibitory effects on other neurons, which is a consequence of Dale’s Principle

for neurotransmitters (Eccles et al., 1954). In this work we did not include such constraints due to

the more complex nature of our rectified GRUs (Equations 9–12); in particular, the units we used

are capable of dynamically modulating their time constants and gating their recurrent inputs, and

we therefore interpreted the firing rate units as a mixture of both excitatory and inhibitory popula-

tions. Indeed, these may implement the ’reservoir of time constants’ observed experimentally

(Bernacchia et al., 2011). In the future, however, comparison to both model spiking networks and

electrophysiological recordings will be facilitated by including more biological realism, by explicitly

separating the roles of excitatory and inhibitory units (Mastrogiuseppe and Ostojic, 2016). More-

over, since both the decision and value networks are obtained by minimizing an objective function,

additional regularization terms can be easily included to obtain networks whose activity is more simi-

lar to neural recordings (Sussillo et al., 2015; Song et al., 2016).

Finally, one of the most appealing features of RNNs trained to perform many tasks is their ability

to provide insights into neural computation in the brain. However, methods for revealing neural

mechanisms in such networks remain limited to state-space analysis (Sussillo and Barak, 2013),

which in particular does not reveal how the synaptic connectivity leads to the dynamics responsible

for implementing the higher-level decision policy. General and systematic methods for analyzing

trained networks are still needed and are the subject of ongoing investigation. Nevertheless,

reward-based training of RNNs makes it more likely that the resulting networks will correspond

closely to biological networks observed in experiments with behaving animals. We expect that the

continuing development of tools for training model neural networks in neuroscience will thus con-

tribute novel insights into the neural basis of animal cognition.

Materials and methods

Policy gradient reinforcement learning with RNNs
Here we review the application of the REINFORCE algorithm for policy gradient reinforcement learn-

ing to recurrent neural networks (Williams, 1992; Baird and Moore, 1999; Sutton et al., 2000;

Baxter and Bartlett, 2001; Peters and Schaal, 2008; Wierstra et al., 2009). In particular, we pro-

vide a careful derivation of Equation 3 following, in part, the exposition in Zaremba and Sutskever

(2016).

Let H�:t be the sequence of interactions between the environment and agent (i.e., the environ-

mental states, observables, and agent actions) that results in the environment being in state stþ1 at

time t þ 1 starting from state s� at time �:
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H�:t ¼ s�þ1:tþ1;u�:t;a�:t
� �

: (14)

For notational convenience in the following, we adopt the convention that, for the special case of

�¼ 0, the history H0:t includes the initial state s0 and excludes the meaningless inputs u0, which are

not seen by the agent:

H0:t ¼ s0:tþ1;u1:t ;a0:tð Þ: (15)

When t¼ 0, it is also understood that u1:0 ¼ �, the empty set. A full history, or a trial, is thus

denoted as

H �H0:T ¼ s0:Tþ1;u1:T ;a0:Tð Þ; (16)

where T is the end of the trial. Here we only consider the episodic, ’finite-horizon’ case where T is

finite, and since different trials can have different durations, we take T to be the maximum length of

a trial in the task. The reward �tþ1 at time tþ 1 following actions at (we use � to distinguish it from

the firing rates r of the RNNs) is determined by this history, which we sometimes indicate explicitly

by writing

�tþ1 ¼ �tþ1 H0:tð Þ: (17)

As noted in the main text, we adopt the convention that the agent performs actions at t¼ 0; . . .;T

and receives rewards at t¼ 1; . . .;T þ 1 to emphasize that rewards follow the actions and are jointly

determined with the next state (Sutton and Barto, 1998). For notational simplicity, here and else-

where we assume that any discount factor is already included in �tþ1, i.e., in all places where the

reward appears we consider �tþ1 ! e�t=treward�tþ1, where treward is the time constant for discounting

future rewards (Doya, 2000); we included temporal discounting only for the reaction-time version of

the simple perceptual decision-making task (Figure 1—figure supplement 2), where we set

treward ¼ 10s. For the remaining tasks, treward ¼¥.

Explicitly, a trial H0:T comprises the following. At time t ¼ 0, the environment is in state s0 with

probability E s0ð Þ. The agent initially chooses a set of actions a0 with probability p� a0ð Þ, which is

determined by the parameters of the decision network, in particular the initial conditions x0 and

readout weights Wp
out and biases bp

out (Equation 6). At time t ¼ 1, the environment, depending on its

previous state s0 and the agent’s actions a0, transitions to state s1 with probability E s1js0; a0ð Þ. The

history up to this point is H0:0 ¼ s0:1; �; a0:0ð Þ, where � indicates that no inputs have yet been seen by

the network. The environment also generates reward �1, which depends on this history,

�1 ¼ �1 H0:0ð Þ. From state s1 the environment generates observables (inputs to the agent) u1 with a

distribution given by E u1js1ð Þ. In response, the agent, depending on the inputs u1 it receives from

the environment, chooses the set of actions a1 according to the distribution p� a1ju1:1ð Þ ¼ p� a1ju1ð Þ.

The environment, depending on its previous states s0:1 and the agent’s previous actions a0:1, then

transitions to state s2 with probability E s2js0:1; a0:1ð Þ. Thus H0:1 ¼ s0:2;u1:1; a0:1ð Þ. Iterating these steps,

the history at time t is therefore given by Equation 15, while a full history is given by Equation 16.

The probability p� H0:tð Þ of a particular sub-history H0:t up to time t occurring, under the policy p�

parametrized by �, is given by

p� H0:tð Þ ¼
Y

t

t¼1

E stþ1js0:t;a0:tð Þp� atju1:tð ÞE utjstð Þ

" #

E s1js0;a0ð Þp� a0ð ÞE s0ð Þ: (18)

In particular, the probability p� Hð Þ of a history H ¼H0:T occurring is

p� Hð Þ ¼
Y

T

t¼1

E stþ1js0:t;a0:tð Þp� atju1:tð ÞE utjstð Þ

" #

E s1js0;a0ð Þp� a0ð ÞE s0ð Þ: (19)

A key ingredient of the REINFORCE algorithm is that the policy parameters only indirectly affect

the environment through the agent’s actions. The logarithmic derivatives of Equation 18 with

respect to the parameters � therefore do not depend on the unknown (to the agent) environmental

dynamics contained in E, i.e.,
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r�logp� H0:tð Þ ¼
X

t

t¼0

r�logp� atju1:tð Þ; (20)

with the understanding that u1:0 ¼ � (the empty set) and therefore p� a0ju1:0ð Þ ¼p� a0ð Þ.

The goal of the agent is to maximize the expected return at time t ¼ 0 (Equation 1, reproduced

here)

J �ð Þ ¼EH

X

T

t¼0

�tþ1 H0:tð Þ

" #

; (21)

where we have used the time index t for notational consistency with the following and made the his-

tory-dependence of the rewards explicit. In terms of the probability of each history H occurring,

Equation 19, we have

J �ð Þ ¼
H

P

p� Hð Þ
X

T

t¼0

�tþ1 H0:tð Þ

" #

; (22)

where the generic sum over H may include both sums over discrete variables and integrals over con-

tinuous variables. Since, for any t¼ 0; . . .;T ,

p� Hð Þ ¼ p� H0:Tð Þ ¼ p� Htþ1:T jH0:tð Þp� H0:tð Þ (23)

(cf. Equation 18), we can simplify Equation 22 to

J �ð Þ ¼
X

T

t¼0

X

H

p� Hð Þ�tþ1 H0:tð Þ (24)

¼
X

T

t¼0

X

H0:t

p� H0:tð Þ�tþ1 H0:tð Þ
X

Htþ1:T

p� Htþ1:T jH0:tð Þ (25)

¼
X

T

t¼0

X

H0:t

p� H0:tð Þ�tþ1 H0:tð Þ: (26)

This simplification is used below to formalize the intuition that present actions do not influence

past rewards. Using the ’likelihood-ratio trick’

r�f �ð Þ ¼ f �ð Þ
r�f �ð Þ

f �ð Þ
¼ f �ð Þr�logf �ð Þ; (27)

we can write

r�Jð�Þ ¼
X

T

t¼0

X

H0:t

r�p�ðH0:tÞ½ ��tþ1ðH0:tÞ (28)

¼
X

T

t¼0

X

H0:t

p�ðH0:tÞ r� logp�ðH0:tÞ½ ��tþ1ðH0:tÞ: (29)

From Equation 20 we therefore have

r�Jð�Þ ¼
X

T

t¼0

X

H0:t

p�ðH0:tÞ

"

X

t

t¼0

r� logp�ðatju1:tÞ

#

�tþ1ðH0:tÞ (30)

¼
X

H

p�ðHÞ
X

T

t¼0

X

t

t¼0

r� logp�ðat ju1:tÞ½ ��tþ1ðH0:tÞ (31)

¼
X

H

p�ðHÞ
X

T

t¼0

X

T

t¼t

r� logp�ðat ju1:tÞ½ ��tþ1ðH0:tÞ (32)

¼
X

H

p�ðHÞ
X

T

t¼0

r� logp�ðatju1:tÞ

"

X

T

t¼t

�tþ1ðH0:tÞ

#

; (33)
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where we have ’undone’ Equation 23 to recover the sum over the full histories H in going from

Equation 30 to Equation 31. We then obtain the first terms of Equation 2 and Equation 3 by esti-

mating the sum over all H by Ntrials samples from the agent’s experience.

In Equation 22 it is evident that, while subtracting any constant b from the reward Jð�Þ will not

affect the gradient with respect to �, it can reduce the variance of the stochastic estimate (Equa-

tion 33) from a finite number of trials. Indeed, it is possible to use this invariance to find an ’optimal’

value of the constant baseline that minimizes the variance of the gradient estimate (Peters and

Schaal, 2008). In practice, however, it is more useful to have a history-dependent baseline that

attempts to predict the future return at every time (Wierstra et al., 2009; Mnih et al., 2014;

Zaremba and Sutskever, 2016). We therefore introduce a second network, called the value net-

work, that uses the selected actions a1:t and the activity of the decision network rp
1:t to predict the

future return
PT

t¼t �tþ1 by minimizing the squared error (Equations 4–5). Intuitively, such a baseline

is appealing because the terms in the gradient of Equation 3 are nonzero only if the actual return

deviates from what was predicted by the value network.

Discretized network equations and initialization
Carrying out the discretization of Equations 9–12 in time steps of Dt, we obtain

lt ¼ sigmoidðWl
recrt�1 þWl

inut þblÞ; (34)

gt ¼ sigmoidðWg
recrt�1 þW

g
inut þbgÞ; (35)

xt ¼ ð1�altÞ�xt�1 þalt �
h

Wrecðgt � rt�1ÞþWinut þbþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2a�1s2
rec

q

Nð0;1Þ
i

; (36)

rt ¼ ½xt�þ (37)

for t¼ 1; . . . ;T , where a¼ Dt=t and Nð0;1Þ are normally distributed random numbers with zero mean

and unit variance. We note that the rectified-linear activation function appears in different positions

compared to standard GRUs, which merely reflects the choice of using ’synaptic currents’ as the

dynamical variable rather than directly using firing rates as the dynamical variable. One small advan-

tage of this choice is that we can train the unconstrained initial conditions x0 rather than the non-

negatively constrained firing rates r0.

The biases bl, bg, and b, as well as the readout weights Wp
out and Wv

out, were initialized to zero.

The biases for the policy readout bp
out were initially set to zero, while the value network bias bvout was

initially set to the ’reward’ for an aborted trial, �1. The entries of the input weight matrices Wg
in, W

l
in,

and Win for both decision and value networks were drawn from a zero-mean Gaussian distribution

with variance K=N2

in. For the recurrent weight matrices Wrec, W
l
rec, and Wg

rec, the K nonzero entries in

each row were initialized from a gamma distribution Gða;bÞ with a ¼ b ¼ 4, with each entry multi-

plied randomly by �1; the entire matrix was then scaled such that the spectral radius—the largest

absolute value of the eigenvalues—was exactly �0. Although we also successfully trained networks

starting from normally distributed weights, we found it convenient to control the sign and magnitude

of the weights independently. The initial conditions x0, which are also trained, were set to 0.5 for all

units before the start of training. We implemented the networks in the Python machine learning

library Theano (The Theano Development Team, 2016).

Adam SGD with gradient clipping
We used a recently developed version of stochastic gradient descent known as Adam, for adaptive

moment estimation (Kingma and Ba, 2015), together with gradient clipping to prevent exploding

gradients (Graves, 2013; Pascanu et al., 2013b). For clarity, in this section we use vector notation u

to indicate the set of all parameters being optimized and the subscript k to indicate a specific

parameter �k. At each iteration i>0, let

gðiÞ ¼
qL

qu

�

�

�

�

�

u¼uði�1Þ

(38)

be the gradient of the objective function L with respect to the parameters u. We first clip the gradi-

ent if its norm jgðiÞj exceeds a maximum G (see Table 1), i.e.,
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ĝðiÞ ¼ gðiÞ�min

 

1;
G

jgðiÞj

!

: (39)

Each parameter �k is then updated according to

�
ðiÞ
k ¼ �

ði�1Þ
k �h

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1�bi
2

q

1�bi
1

m
ðiÞ
k

ffiffiffiffiffiffi

v
ðiÞ
k

q

þ "
; (40)

where h is the base learning rate and the moving averages

mðiÞ ¼ b1m
ði�1Þþð1�b1Þĝ

ðiÞ; (41)

vðiÞ ¼ b2v
ði�1Þþð1�b2Þ

�

ĝðiÞ
�2

(42)

estimate the first and second (uncentered) moments of the gradient. Initially, mð0Þ ¼ vð0Þ ¼ 0. These

moments allow each parameter to be updated in Equation 40 according to adaptive learning rates,

such that parameters whose gradients exhibit high uncertainty and hence small ’signal-to-noise ratio’

lead to smaller learning rates.

Except for the base learning rate h (see Table 1), we used the parameter values suggested in

Kingma and Ba (2015):

b1 ¼ 0:9;

b2 ¼ 0:999;

"¼ 10
�8:

Computer code
All code used in this work, including code for generating the figures, is available at http://github.

com/xjwanglab/pyrl.
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