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Simple, distance-dependent formulation of the Watts-Strogatz model for directed
and undirected small-world networks
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Small-world networks—complex networks characterized by a combination of high clustering and short path
lengths—are widely studied using the paradigmatic model of Watts and Strogatz (WS). Although the WS model
is already quite minimal and intuitive, we describe an alternative formulation of the WS model in terms of
a distance-dependent probability of connection that further simplifies, both practically and theoretically, the
generation of directed and undirected WS-type small-world networks. In addition to highlighting an essential
feature of the WS model that has previously been overlooked, namely the equivalence to a simple distance-
dependent model, this alternative formulation makes it possible to derive exact expressions for quantities such as
the degree and motif distributions and global clustering coefficient for both directed and undirected networks in
terms of model parameters.
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Many biological, technological, and social networks have
the “small-world” property of high clustering combined with
short path lengths [1]. The most widely used models of small-
world networks are the Watts-Strogatz (WS) model [2] and a
slight variant of the WS model known as the Newman-Watts
(NW) model [3]. In this paper we describe an alternative
formulation of the WS model in which the presence or
absence of connections is determined independently for each
possible edge according to a distance-dependent probability of
connection. This simplifies the generation of both directed and
undirected WS-type small-world networks, similar to the way
in which the G(n,p) model of random “Erdős-Rényi” (ER)
networks with n nodes and fixed probability of connection
p [4] is often easier to analyze than the G(n,m) ER model
with fixed number of edges m [5], because in the former
the edges are completely independent of one another. The
reformulated WS model is mathematically “cleaner” than
existing formulations and there are advantages to replacing
current implementations of the WS model, especially when the
connectivity is dense. However, constructing undirected small-
world networks is already straightforward and the concept
of a small world loses its significance in densely connected
networks (Fig. 1). Moreover, it is known that WS networks
on their own cannot fully describe many real-world networks,
most prominently their strongly heterogeneous degree distri-
bution [6]. Therefore, the primary value of the reformulated
WS model is in highlighting an essential feature of the
WS model that has previously been overlooked, namely the
equivalence to a simple distance-dependent model. In this way
the WS model is properly seen as one of the simplest possible
interpolations between a random network and one with an
underlying notion of metric distance (not to be confused
with graph distance); the latter is an important feature of
numerous spatially embedded real-world networks, including
telecommunication, power grid, transportation, social, and
brain networks [7]. The reformulated model also makes it
possible to derive exact expressions for quantities such as the
degree and motif distributions and global clustering coefficient
for both directed and undirected networks in terms of model
parameters.

Consider a network with L nodes labeled i = 0, . . . ,L − 1.
In the usual WS model of an undirected small-world network
[2] the nodes of the network are placed on a ring lattice
with periodic boundary conditions (i.e., node L is identified
with node 0) and each node is initially connected to its K

(conveniently taken to be even) nearest neighbors on the lattice.
This is the regular lattice limit of the WS model. Next, each
edge u ↔ v is “rewired” with probability β to u ↔ w, where
w can be any node w �= u,v as long as the connection u ↔ w

does not already exist (it is also common to replace both u and
v, and the restriction on multiple edges between the same pair
of nodes is not always enforced [8]). Since w, unlike v, can be
located anywhere on the lattice and is not necessarily one of the
K nearest neighbors of u, the rewired connection u ↔ w often
acts as a shortcut within the network. By varying the parameter
β from 0 to 1, it becomes possible to interpolate between
the original regular lattice limit (β = 0) and the completely
random ER limit (β = 1). Watts and Strogatz found [2] that
there is a relatively large range for the value of β over which the
average path length is short and clustering is high [Fig. 1(a)], so
that the network is said to possess the “small-world” property.

In the NW variant of the WS model [3], the only difference
is that, instead of rewiring the edges of the regular lattice,
the shortcuts are superposed on the original regular lattice.
This simplifies certain analytical calculations by ensuring that
the network always remains connected after rewiring; i.e.,
there is always a path through the network that connects two
nodes. On the other hand, the (typically negligible) cost of
this simplification is that there is no true random limit, even
at β = 1, because the original regular lattice always remains.
Indeed, it is the case in many existing implementations of the
WS model that the true ER limit does not exist [8].

Although the idea of rewiring edges makes the WS model
very intuitive, in practice it introduces some inconvenient
features into the model that only become apparent when the
network is small and the connectivity dense. These effects
are almost always ignored because most networks that have
been studied are large and sparse (with the notable exception
of the areal network of the mammalian cerebral cortex [9],
which has L ∼ 100 and overall edge density p0 ∼ 0.6), but are

1539-3755/2014/90(6)/062801(5) 062801-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.90.062801


H. FRANCIS SONG AND XIAO-JING WANG PHYSICAL REVIEW E 90, 062801 (2014)

10−4 10−3 10−2 10−1 100

Rewiring probability, β

0.0

0.2

0.4

0.6

0.8

1.0

�
(β

)/
�

(0
),

C
(β

)/
C

(0
)

10−4 10−3 10−2 10−1 100
0.0

0.2

0.4

0.6

0.8

1.0
(a) (b)

�(β)/�(0)

C(β)/C(0)

FIG. 1. (Color online) Average path length �(β) (circles) and
global clustering coefficient C(β) (squares) in the reformulated,
undirected Watts-Strogatz model described by Eq. (1), for edge
density (a) p0 = 0.01 and (b) p0 = 0.6. The corresponding directed
network behaves identically with respect to average path length and
global clustering coefficient. The average path length and global
clustering coefficient are both normalized by their values in the
regular lattice limit, �(0) and C(0), respectively. For easy comparison
to the original model in Ref. [2] we have chosen the network size
to be L = 1001, so that K = 10 in (a). The exact global clustering
coefficients given by Eq. (9) are shown as solid lines. Note that
for p0 � 0.5 the average path length is essentially �(β) = 2 − p0

regardless of the rewiring probability β, while the global clustering
coefficient takes values in a relatively small range. Thus, the notion of
a “small world” loses its significance in densely connected networks
such as the one shown in (b).

nevertheless undesirable. To illustrate this point, consider the
random limit of the WS model reached by rewiring all edges,
β = 1. There are two issues: first, from a practical point of view
the process of rewiring requires checking existing connections
to ensure that there are no multiple edges (one can also simply
accept multiple edges), and second, from a mathematical point
of view the edges are not independent because the network is
constrained to approach the G(L,LK/2) ER network with
a fixed number of edges (inherited from the regular lattice),
rather than the G(L,p0) network with a fixed probability of
connection where no such global constraint exists.

An alternative, but essentially equivalent, way to understand
the WS model is to consider each edge to be present with a
probability that depends, in a simple way, on the distance
between the nodes. Here, the distance D between two nodes
is the shortest number of steps it takes to get from one node
to another along the ring, Dij = min(|i − j |,L − |i − j |). It
is convenient to normalize the distance by Dmax = �L/2�, so
that dij = Dij/Dmax with 0 � dij � 1. Let p0 = K/(L − 1).
Then the probability that an edge exists between two nodes is
given by

pij = p(dij ) = βp0 + (1 − β)�(p0 − dij ), (1)

where �(x) is the Heaviside step function with �(x) = 1
if x � 0 and zero otherwise. The fact that each edge is
chosen independently and is obviously either 0 or 1 makes
this interpretation of the WS model mathematically more
appealing than the rewiring formulation. In the regular lattice
limit β = 0 and pRL(d) = �(p0 − d), i.e., only nodes within
a distance p0 are connected, while in the ER limit β = 1 and
pER(d) = p0. For intermediate values of β, the probability

of two nodes separated by a distance greater than p0 being
connected is βp0, while the probability of two nodes within
a radius p0 being connected is the sum of the original
lattice minus rewired contribution, 1 − β, and the rewired
contribution, βp0. It can be checked that

∫ 1
0 dx p(x) = p0.

Equation (1) can be used for both directed and undirected
networks: for directed networks the edges u → v and u ← v

are determined independently, while for undirected networks
both edges are determined together. This is a more natural,
and consistent, way to generate directed networks compared
to the rewiring algorithm. Moreover, Eq. (1) is not restricted
to one dimension and generalizes to higher dimensions with
appropriate modifications. Interestingly, the β = 0 limit of
Eq. (1) is the rule used for both random geometric graphs
[10] and scale-free networks constructed in the framework of
hyperbolic geometry (in the limit of zero “temperature”) [11],
and it is of interest to investigate the properties of more general
spatially embedded networks constructed according to Eq. (1).

From a purely algorithmic perspective, we note that
the distance-dependent formulation is simpler (and without
history-dependence) but not necessarily faster. The latter
depends on the density of connections, which determines the
number of edges that need to be rewired and the occurrence of
rewiring steps that generate multiple edges. Computationally,
however, the fact that each edge is determined independently
implies that the method allows for trivial vectorization and
parallelization.

The three possible regimes for β are illustrated in Fig. 2,
which makes clear the “geometry” of the WS model. In all
cases, the probability of two nodes being connected by an
edge is a step function of the distance between the nodes.
In the random limit β = 1, however, the two “steps” have
equal probability. Although not surprising, Fig. 2 illustrates
the essential lack of spatial realism in WS-type small-world
networks; notably, the probability of connection depends only
on a cutoff radius (defined by K or p0) and the probability
of connection does not go to 1 as d → 0. According to this
picture, it is most natural to allow self-connections to be chosen
with probability p(0) (in which case p0 = K/L), but this may
not be the correct choice in all situations. In particular, it
must be emphasized that distances in WS-type models do not
necessarily represent physical distances.

0 p0 1
Normalized distance, d

0

1

P
ro

ba
bi

lit
y

of
co

nn
ec

tio
n,

p
(d

)

0 p0 1
0

βp0

1

0 p0 1
0

p0

1

(a) (c)(b)

FIG. 2. (Color online) Distance-dependent formulation of the
Watts-Strogatz (WS) model. (a) Regular lattice limit, β = 0.
(b) Intermediate β, here 0.5. (c) Erdős-Rényi limit, β = 1. In all
cases p0 = 0.3 for illustration purposes; in reality, most discussions
of the WS model deal with situations where p0 	 1.
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Because every connection is chosen independently, the
formulation in terms of distances allows us to easily average
over ensembles and derive exact expressions for several
quantities of interest by inspection. For instance, the exact
degree (either out-degree or in-degree if the network is
directed) distribution f (k) is clearly

f (k) =
k∑

k1=0

(
K

k1

)
p

k1
1 (1 − p1)K−k1

(
L′ − K

k − k1

)
p

k−k1
2

× (1 − p2)L
′−K−(k−k1), 0 � k � L′, (2)

where p1 = βp0 + 1 − β, p2 = βp0, and L′ = L if self-
connections are counted and L′ = L − 1 otherwise. It is
understood in Eq. (2) that the binomial coefficient (ab) = 0
if b > a. Equation (2) is similar in form to the well-known
result from Ref. [12]. As a check, in the regular lattice limit
β → 0 Eq. (2) becomes f (k) = 1 if k = K and 0 otherwise,
while in the ER limit β = 1 Eq. (2) reduces to the binomial
distribution f (k) = (L

′
k )pk

0(1 − p0)L
′−k .

A more interesting benefit of the reformulated WS model
is that it becomes straightforward to express the motif
distribution by generalizing the motif distribution for the ER

TABLE I. Parameters for computing the triad distribution. The
commonly used designation for each triad [13,14], which indicates
the number of double, single, and zero edges, is also given for con-
venience. mt and nt = (n1,n2,n3) are the combinatorial multiplicity
and number of edges, respectively.

Directed Undirected

Triad t name mt nt mt nt

003 1 (0,0,0) 1 (0,0,0)

012 6 (1,0,0) – –

102 3 (2,0,0) 3 (1,0,0)

021D 3 (1,1,0) – –

021U 3 (1,1,0) – –

021C 6 (1,1,0) – –

111D 6 (2,1,0) – –

111U 6 (2,1,0) – –

030T 6 (1,1,1) – –

030C 2 (1,1,1) – –

201 3 (2,2,0) 3 (1,1,0)

120D 3 (2,1,1) – –

120U 3 (2,1,1) – –

120C 6 (2,1,1) – –

210 6 (2,2,1) – –

300 1 (2,2,2) 1 (1,1,1)

random network. In the directed case the proportion of triads
(three-node combinations) with a given motif is given by

Pd(t) = m

(L − 1)(L − 2)/2

∑
0<j<k

p
n1
0j (1 − p0j )2−n1

×p
n2
0k(1 − p0k)2−n2p

n3
jk(1 − pjk)2−n3 , (3)

where the combinatorial factor m and number of edges n =
(n1,n2,n3) for each triad t = (m,n) are given in Table I, and we
have dropped the subscript t for notational simplicity in Eq. (3).
We have used translational invariance and reflection symmetry
to simplify the sum. In the ER limit of β = 1, Eq. (3) reduces
to mp

n1+n2+n3
0 (1 − p0)6−(n1+n2+n3). Similarly, for the far less

interesting case (because there are fewer possible motifs) of
undirected networks the occurrence of triads is given by

Pud(t) = m

(L − 1)(L − 2)/2

∑
0<j<k

p
n1
0j (1 − p0j )1−n1

×p
n2
0k(1 − p0k)1−n2p

n3
jk(1 − pjk)1−n3 . (4)

Again the appropriate parameters are given in Table I, and in
the ER limit Eq. (4) reduces to mp

n1+n2+n3
0 (1 − p0)3−(n1+n2+n3).

In this way, moreover, the occurrence of motifs of any size
can be calculated if the combinatorial factors are known.
An example of computing the exact triad distribution using
Eqs. (3) and (4) is presented in Fig. 3.

The global clustering coefficient can be calculated in a
similar manner to the triad distribution. There are several
different definitions for the global clustering coefficient of
a network that differ slightly in their detail, but they all reflect
the probability that two nodes u and v are connected when u

and v are both connected to a third node w. Alternatively, the
global clustering coefficient measures the ratio of the number
of closed triplets to the number of connected triplets. Here we
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FIG. 3. (Color online) Example of the exact triad distribution
computed using Eq. (3) (directed, upper bars) and Eq. (4) (undirected,
lower bars). In both cases the network size is L = 1001 and we
illustrate the distribution for the densely connected case of p0 = 0.6
as described in the legend of Fig. 1(b). (a) Regular lattice limit,
β = 0. (b) Intermediate regime, β = 0.3. (c) Random Erdős-Rényi
limit, β = 1.
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consider the definition from Ref. [15], which is based on a com-
monly used definition of local clustering coefficient described
in Ref. [16] and has several desirable properties, including
applicability to both directed and undirected networks and the
fact that its value is p0 in the random ER limit of both directed
and undirected cases. This is in contrast to several calculations
in which this does not hold, e.g., in Ref. [8].

Let the network adjacency matrix be A, with transpose AT .
Then the global clustering coefficient can be written as [15,16]

C(A) =
1
2

∑
i[(A + AT )3]ii∑

i

[
d tot

i

(
d tot

i − 1
) − 2d↔

i

] , (5)

where d tot
i = ∑

j (A + AT )ij is the total degree (sum of in-
degree and out-degree) of node i and d↔

i = (A2)ii is the

number of bilateral edges from node i. Note that, unlike the
definition of network clustering coefficient used in Ref. [2]
as the average of the clustering coefficients for each node,
in Eq. (5) the numerator and denominator are averaged
individually. Thus, the global clustering coefficient is more
properly considered a directed generalization of transitivity.
We will express this clustering coefficient in terms of the triad
distribution with adjusted combinatorial factors, reflecting the
fact, for example, that in the numerator of Eq. (5) bilateral
edges contribute twice to the sum. In the directed case

Cd = Sclosed

Sconnected
, (6)

where

Sclosed = 1
2 [Pd(030T) + Pd(030C) + 2Pd(120D) + 2Pd(120U) + 2Pd(120C) + 4Pd(210) + 8Pd(300)], (7)

Sconnected = 1
3 [Pd(021D) + Pd(021U) + Pd(021C) + 2Pd(111D) + 2Pd(111U) + 3Pd(030T) + 3Pd(030C)

+ 4Pd(201) + 5Pd(120D) + 5Pd(120U) + 5Pd(120C) + 8Pd(210) + 12Pd(300)]. (8)

In the undirected case we have the simpler expression

Cud = 3Pud(300)

3Pud(300) + Pud(201)
, (9)

which corresponds to the classical definition of transitivity
for undirected networks [1,8]. In the regular lattice limit, β =
0, Eq. (9) reduces to the usual value [12] C = 3(1 − δ)/4,
δ = 1/(K − 1) if p0 � 2/3. See Fig. 1 for an example of
the application of Eq. (9). We note that Eqs. (6)–(8) and (9)
are general expressions for the global clustering coefficient in
terms of the triad distribution, which to our knowledge have not
been reported previously. Moreover, although we have given
separate expressions for the directed and undirected cases,
Cd and Cud as functions of the parameters L, p0, and β are
identical in our model.

In principle, a similar approach can be used to calculate the
occurrence of shortest paths of lengths 1, 2, . . . . For instance,
the probability that a pair of nodes is connected by a path of
length 1 is simply q1 = p0, and the probability that a pair of
nodes is connected by a path of length 2 (but not by a path of
length 1) is

q2 = 1

L − 1

∑
j �=0

(1 − p0j )

⎡
⎣1 −

∏
k �=0,j

(1 − p0kpkj )

⎤
⎦ . (10)

Thus, in the ER limit q2(β = 1) = (1 − p0)[1 − (1 − p2
0)L−2].

It is of interest to use this line of reasoning to express the exact
average path length in a tractable manner. Note that we can
perform (again, in principle) this calculation conditioned on
the network being connected.

Finally, there may be situations where it is convenient to
rewrite Eq. (1) in a way that emphasizes the periodic nature

of the ring lattice. We can obtain the same networks as those
generated by Eq. (1) if we “transform coordinates” to

zij = sin2

(
i − j

L
π

)
, μ0 = sin2

(
p0

2
π

)
. (11)

Then the probability of connection between nodes i and j is
given by

pij = βp0 + (1 − β)�(μ0 − zij ). (12)

In conclusion, we have introduced an alternative formulation
of the widely used Watts-Strogatz model for small-world net-
works. Although much of the material presented in this work is
quite straightforward, this formulation highlights an essential
feature of the WS model that has previously been overlooked,
namely the equivalence to a distance-dependent model, and
has the practical benefit of simplifying the generation of
both directed and undirected WS-type small-world networks.
We have also shown that, because each edge is present or
absent independently of the others in the reformulated WS
model, it becomes straightforward to derive exact expressions
for quantities such as the degree and motif distributions and
global clustering coefficient for both directed and undirected
networks. We believe that in many settings where the rewiring
algorithm is currently used, such advantages recommend
use of this mathematically cleaner interpretation of the
WS model.
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